年高考数学试题分类大全

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年高考数学试题分类汇编

数列

一.选择题:

1.(全国一5)已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( C )

A .138

B .135

C .95

D .23

2.(上海卷14) 若数列{a n }是首项为1,公比为a -3

2的无穷等比数列,且{a n }各项的和为a ,

10

a 10S A .64 B .100

C .110

D .120

8.(福建卷3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为C

A.63

B.64

C.127

D.128

9.(广东卷2)记等差数列{}n a 的前n 项和为n S ,若11

2

a =,420S =,则6S =( D ) A .16

B .24

C .36

D .48

10.(浙江卷6)已知{}n a 是等比数列,4

1

252=

=a a ,,则13221++++n n a a a a a a Λ=C (A )16(n --41) (B )16(n --21) (C )

332(n --41) (D )3

32(n --21) 11.(海南卷4)设等比数列{}n a 的公比2q =,前n 项和为n S ,则

4

2

S a =( C ) A. 2 B. 4 C.

15

D.

17 ,b 若

4.(湖北卷15)观察下列等式: ……………………………………

可以推测,当x ≥2(*

k N ∈)时,1111,,12k k k a a a k +-=

==+ 12

k 2k a -= .,0

5.(重庆卷14)设S n =是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16= .-72

三.解答题: 1.(全国一22).(本小题满分12分)

(注意:在试题卷上作答无效.........

) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;

(Ⅲ)设1(1)b a ∈,

,整数11ln a b

k a b

-≥.证明:1k a b +>.

1, 若存在某≤满足i ,则由⑵知:1k i +

2, 若对任意i k ≤都有b a i >,则k

k k k a a b a b a ln 1--=-+ b ka b a ln 11--≥)(1

1b a b a --->0=,即1k a b +>成立. 2.(全国二20).(本小题满分12分)

设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*

n ∈N . (Ⅰ)设3n

n n b S =-,求数列{}n b 的通项公式;

(Ⅱ)若1n n a a +≥,*

n ∈N ,求a 的取值范围.

解:

(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n

n n S S +=+,

由此得1

13

2(3)n n n n S S ++-=-. ······················· 4分

因此,所求通项公式为

13(3)2n n n n b S a -=-=-,*n ∈N .① ···················· 6分

1n n -*

2分 【解】:由题意知12a =,且

两式相减得()()1121n

n n n b a a b a ++--=-

即12n

n n a ba +=+ ①

(Ⅰ)当2b =时,由①知122n

n n a a +=+

于是()()1122212n

n

n

n n a n a n +-+⋅=+-+⋅

又1

112

10n a --⋅=≠,所以{}

12n n a n --⋅是首项为1,公比为2的等比数列。

(Ⅱ)当2b =时,由(Ⅰ)知11

22n n n a n ---⋅=,即()112n n a n -=+

当2b ≠时,由由①得 因此11112222n n n n a b a b b ++⎛⎫-

⋅==-⋅ ⎪--⎝⎭

得1

211n n n n a -=⎧⎪=⎨⎡⎤⎪ 6n +32 ……

21n n a a q --=,(2n ≥).

将以上各式相加,得2

11n n a a q q --+++=L (2n ≥).

所以当2n ≥时,1

1,,.

1,111n n q q q a n q

-≠=⎧-+

⎪=-⎨⎪⎩

上式对1n =显然成立.

(Ⅲ)解:由(Ⅱ),当1q =时,显然3a 不是6a 与9a 的等差中项,故1q ≠. 由3693a a a a -=-可得5

2

2

8

q q q q -=-,由0q ≠得3

6

11q q -=-, ①

整理得323()20q q +-=,解得32q =-或3

1q =(舍去).于是q =

另一方面,2113

3

(1)11n n n n n q q q a a q q q

+--+--==---,

则31111k k a ca c c c +=+-≤+-=,且3

1110k k a ca c c +=+-≥-=≥

1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立

(2) 设 1

03

c <<

,当1n =时,10a =,结论成立 当2n ≥ 时, 103

C <<

∵,由(1)知1[0,1]n a -∈,所以 2

1113n n a a --++≤ 且 110n a --≥

相关文档
最新文档