大学物理第十一章 气体动理论习题
气体分子动理论习题解PPT课件

1 mv2 3 kT,可得
2
2
N 1 mv2 3 NkT
2
2
即
N
1 2
mv2
3 2
RTN
/(Nd m)
3 (M 2
/
M mol )RT
3 2
(RT
/
M mol )V
7.31106
E
1 2
(M
/
M mol )iRT
(V
/
M mol )
1 2
iRT
4.16104
J
(v2 )1/2
(v
2 2
)1/
2
(v21)1/2
(1) 气体分子的平动动能总和. (2) 混合气体的压强. (普适气体常量R=8.31 J·mol-1·K-1 )
3 kT 8.281021 J
2
Ek
N
( N1
N2)
3 kT 2
4.14105 J
p nkT 2.76 105 Pa
第6页/共10页
17.一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 = 6.21×10-21
[B]
8.速率分布函数f(v)的物理意义为:
(A) 具有速率v的分子占总分子数的百分比.
(B) 速率分布在v附近的单位速率间隔中的分子数占总分子数的百分比.
(C) 具有速率v的分子数.
(D) 速率分布在v附近的单位速率间隔中的分子数.
[B ]
9.设某种气体的分子速率分布函数为f(v),则速率在v 1─v 2区间内的分子的平均速
4.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,
而且它们都处于平衡状态,则它们
(A) 温度相同、压强相同.
大学物理气体动理论习题

大学物理气体动理论习题第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
大学物理第十一章 气体动理论习题详细答案

第十一章气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v的统计意义即可得出。
()f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dvvNf)(表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。
2、答案:A解:根据()f v的统计意义和pv的定义知,后面三个选项的说法都是对的,而只有A不正确,气体分子可能具有的最大速率不是pv,而可能是趋于无穷大,所以答案A正确。
3、答案:Armsv=据题意得222222221,16H O H HH O O OT T T MM M T M===,所以答案A正确。
4、由理想气体分子的压强公式23kp nε=可得压强之比为:Ap∶Bp∶Cp=n A kAε∶n B kBε∶n C kCε=1∶1∶15、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RTν=代入内能公式2iE RTν=可得2iE pV=,所以氧气和氦气的内能之比为5 : 6,故答案选C。
6、解:理想气体状态方程PV RTν=,内能2iU RTν=(0mMν=)。
由两式得2U iPV=,A、B两种容积两种气体的压强相同,A中,3i=;B中,5i=,所以答案A正确。
7、由理想气体物态方程'mpV RTM=可知正确答案选D。
8、由理想气体物态方程pV NkT=可得气体的分子总数可以表示为PVNkT=,故答案选C。
9、理想气体温度公式21322k m kTευ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
温度越高,分子的平均平动动能越大,分子热运动越剧烈。
因此,温度反映的是气体分子无规则热运动的剧烈程度。
由于k ε是统计平均值,因而温度具有统计意义,是大量分子无规则热运动的集体表现,对个别分子或少数分子是没有意义的。
故答案选B 。
10、因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2i E RT ν=可知内能不相等;又由理想气体温度公式21322k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。
大学物理热学习题课

dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:
Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)
大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。
气体动力学课后习题答案

气体动力学课后习题答案气体动力学课后习题答案气体动力学是研究气体在不同条件下的行为和性质的学科。
它涉及到许多基本概念和公式,需要通过大量的练习来加深理解和掌握。
下面是一些常见的气体动力学习题及其答案,希望对大家的学习有所帮助。
1. 一个气体体积为3L,温度为300K,压强为2 atm,求气体的物质的量。
答案:根据理想气体状态方程PV=nRT,其中P为压强,V为体积,n为物质的量,R为气体常数,T为温度。
将已知条件代入方程,得到n = PV/RT = (2 atm × 3L) / (0.0821 atm·L/mol·K × 300K) ≈ 0.296 mol。
2. 一定体积的气体在常温下压强为1 atm,将其加热至温度翻倍时,求新的压强。
答案:根据查理定律,当气体的温度和物质的量不变时,气体的压强与温度成正比。
即P1/T1 = P2/T2。
已知P1 = 1 atm,T1为常温,T2为常温翻倍后的温度。
代入已知条件,得到P2 = P1 × T2/T1 = 1 atm × 2/1 = 2 atm。
3. 一个气体在压强为2 atm、温度为300K的条件下体积为3L,将其压缩至体积减少一半,求新的温度。
答案:根据波义耳定律,当气体的压强和物质的量不变时,气体的体积与温度成反比。
即V1/T1 = V2/T2。
已知V1 = 3L,T1 = 300K,V2 = V1/2。
代入已知条件,得到T2 = T1 × V1/V2 = 300K × 3L/(3L/2) = 600K。
4. 一个容器中有1 mol的气体,在常温下体积为10L,将其压缩至体积减少一半,求新的物质的量。
答案:根据阿伏伽德罗定律,当气体的压强和温度不变时,气体的物质的量与体积成正比。
即n1/V1 = n2/V2。
已知n1 = 1 mol,V1 = 10L,V2 = V1/2。
大学物理习题册答案第11单元 气体动理论

第11单元 气体动理论一、选择题【C 】1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10【B 】2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT) (C) pV/(RT) (D) pV/(mT)【D 】3.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT v x 32= (B)m kT v x 3312= (C) m kT v x 32= (D)mkT v x =2 【解析】m kT v 32=,222231v v v v z y x ===,故mkT v x =2。
【变式】一定量的理想气体贮于某一容器内,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向分量的平均值为( ) 0 D. π38 . C π831 B. π8 A.==⋅==x x x x mkT m kT m kT v v v v 解:在热平衡时,分子在x 正反两个方向上的运动是等概率的,故分子速度在x 方向分量的平均值为零。
所以答案选D 。
【D 】4.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则)(21221v Nf mv v v ⎰ d v 的物理意义是(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和 【D 】5.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为1n ,它产生的压强为1p ,B 种气体的分子数密度为12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p 1p (D)61p【A 】6.两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等 (B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等 (D) 平均速率不相等,方均根速率不相等.【解析】根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=。
大学物理 气体分子动理论习题

hi
为氢气分子速率分布曲线。
w. z
气体的摩尔质量 M mol =
解:由克拉珀龙状态方程 pV =
RT 可得摩尔质量为 ρRT 11.3 × 10 −3 × 8.31 × ( 27 + 273) = p 1.0 × 10 − 2 ×1.013 × 105
ww
M = M mol =
= 27.8 × 10 −3 (kg ⋅ mol − 1 )
5.在一个容积不变的容器中,储有一定量的理想气体,温度为 T0 时,气体分子的平均速 率为 v 0 ,分子平均碰撞次数为 Z0 ,平均自由程为 λ0 。当气体温度升高为 4T0 时,气体分 [ ] (A) v = 4v0 , Z = 4 Z 0 , λ = 4λ0
8kT ∝ πm
(C) v = 2v 0 , Z = 2Z0 , λ = 4λ0
v
O
v
O
,所以 (D)不对。另由概率归 解:在同一温度下,氮气和氦气的 v p 不等(摩尔质量不等) 一化条件
∫ f (v )dv = 1,说明若 v
0
∞
p
大,则 v > v p 的 f (v) 将减小,而(A) 、(C)中 v > v p 的 故选 B
f (v) 没有减小,所以(A)、(C)都不对。
O
na
v0
0
dN 解:由麦克斯韦速率分布函数 f (v ) = 的有 Ndv
f (v )dv = ∫
v2
v1
∞
hi
∆N v1 → v2 dN ⋅ dv = Ndv N
由题意 A 、B 两部分面积相等有 说明
∫ f (v )dv = ∫ f (v )dv
v0
w. z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数 ()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
(2)麦克斯韦速率分布律23/222()4()2mkT m f e kT υυπυπ-= 这一分布函数表明,在气体的种类及温度确定之后,各个速率区间内的分子数占总分子数的百分比是确定的。
麦克斯韦速率分布曲线的特点是:对于同一种气体,温度越高,速率分布曲线越平坦;而在相同温度下的不同气体,分子质量越大的,分布曲线宽度越窄,高度越大,整个曲线比质量小的显得陡。
第十一章 气体动理论习题一、选择题1、用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰; (C )201()2mv Nf v dv ∞⎰; (D )01()2mvf v dv ∞⎰。
2、下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大;(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
3、有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。
4、 A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4:2:1,而分子的平均平动动能之比为kA ε∶kB ε∶kC ε=1:2:4,则它们的压强之比A p ∶B p ∶C p = [ ](A) 1 :2:1 (B) 1 :1:1 (C) 1 :2 :2 (D) 2 :1:25、在标准状态下,体积比为1:2的氧气和氦气(均视为理想气体)相混合,混合气体中氧气和氦气的内能之比为:[ ](A) 1 : 2 (B) 5 : 3 (C) 5 : 6 (D) 10 : 36、有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫⎪⎝⎭和BU V ⎛⎫ ⎪⎝⎭的关系为[ ](A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A B U U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。
7、一定量的理想气体可以:(A) 保持压强和温度不变同时减小体积;(B) 保持体积和温度不变同时增大压强;(C) 保持体积不变同时增大压强降低温度;(D) 保持温度不变同时增大体积降低压强。
8、设某理想气体体积为V ,压强为P ,温度为T ,每个分子的质量为m ,玻尔兹曼常数为k ,则该气体的分子总数可以表示为[ ] (A) PV km (B) PT mV (C) kT PV (D) kVPT 9、关于温度的意义,有下列几种说法:[ ](1)气体的温度是分子平均平动动能的量度;(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3)温度的高低反映物质内部分子运动剧烈程度的不同;(4)从微观上看,气体的温度表示每个气体分子的冷热程度;上述说法中正确的是:(A) (1) 、(2)、(4).(B) (1) 、(2)、(3).(C) (2) 、(3)、(4).(D) (1) 、(3)、(4).10、摩尔数相同的氢气和氦气,如果它们的温度相同,则两气体:[ ](A) 内能必相等;(B) 分子的平均动能必相同;(C) 分子的平均平动动能必相同;(D) 分子的平均转动动能必相同。
二、填空题1、用分子质量m,总分子数N,分子速率v和速率分布函数()f v表示下列各量:1)速率大于100m/s的分子数;2)分子平动动能的平均值;3)多次观察某一分子速率,发现其速率大于100m/s的概率;2、温度为T的热平衡态下,物质分子的每个自由度都具有的平均动能为;温度为T的热平衡态下,每个分子的平均总能量;温度为T的热平衡态下,νmol(0/m Mν=为摩尔数)分子的平均总能量;温度为T的热平衡态下,每个分子的平均平动动能。
3、质量为50.0g、温度为18.0o C的氦气装在容积为10.0升的封闭容器内,容器以200v=m/s的速率做匀速直线运动。
若容器突然停止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度将增加 K;压强将增加 Pa。
4、某种理想气体分子在温度T1时的方均根速率等于温度T2时的算术平均速率,则T2∶T1 = _________。
5、1mol氢气,在温度为27℃时,它的平动动能、转动动能和内能各是、、。
6、一瓶氧气和一瓶氢气等压、等温,氧气体积是氢气的2倍,则氧气和氢气分子数密度之比。
7、由质量为m,摩尔质量为M,自由度为i的分子组成的系统的内能为.υ8、用总分子数N、气体分子速率υ和速率分布函数()fυ表示下列各量:(1) 速率大于υ的那些分子的平均速率= _________ ;(3) 多的分子数=_________;(2) 速率大于υ的概率= _________ 。
次观察某一分子的速率,发现其速率大于9、一容器内储有某种气体,若已知气体的压强为 3×105 Pa,温度为27℃,密度为3⋅,则可确定此种气体是_________气;并可求出此气体分子热运动的最概然速0.24kg m-率为_________1⋅。
m s-10、两个相同体积容器中盛有相同温度、压强的氦气和氢气,则氦气和氢气的内能之比的值为(氢气视为刚性双原子分子)。
三、判断题1、在同一温度下,不同气体分子的平均平动动能相等。
就氢分子和氧分子比较,氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子大()。
2、如果盛有气体的容器相对某坐标系运动,容器内的分子速度相对这坐标系也增大了,温度也因此而升高()。
3、如果氢和氦的摩尔数和温度相同,分子的平均平动动能相等()则下列各量是否相等,为什么?4、如3所问,分子的平均动能相等()。
5、如3所问,分子的内能相等()。
6、若某理想气体系统内分子的自由度为i,当该系统处于平衡态时,每个分子的能量都等于KT()7、一定量的理想气体可以保持温度不变同时增大体积降低压强()8、摩尔数相同的氢气和氦气,如果它们的温度相同,则两气体内能必相等。
()9、某种理想气体分子在温度T1时的方均根速率等于温度T2时的算术平均速率,则T2∶T1 =8π/3。
()10、若在某个过程中,一定量的理想气体的热力学能(内能)U随压强p的变化关系为一直线(其延长线过U—p图的原点),则该过程为等容过程。
()四、计算题1、将1mol温度为T的水蒸气分解为同温度的氢气和氧气,试求氢气和氧气的热力学能(内能)之和比水蒸气的热力学能增加了多少?(所有气体分子均视为刚性分子)。
2、某柴油机的气缸内充满了空气,压缩前其中空气的温度为47℃,压强为8.61×104Pa。
当活塞急剧上升时,可把空气压缩到原体积的1/17,此时压强增大到4.25×106Pa,求此时空气的温度(分别以K和℃表示)。
3、容器中储有氧气,其压强为p=0.1 MPa( 即1atm ),温度为27℃,求(1)分子数密度n;(2)氧分子的质量m;(3)气体密度 ;4、某柴油机的气缸充满空气,压缩前空气的温度为47℃,压强为8.61×104Pa。
当活塞急剧上升时,可把空气压缩到原体积的1/17,此时压强增大到4.25×106Pa,求这时空气的温度。
5、设有N个粒子的系统,其速率分布如图所示.求(1)分布函数)f的表达式;(v(2)a 与0v 之间的关系;(3)速度在1.50v 到2.00v 之间的粒子数.题4图vθxθv6、设想每秒有2310个氧分子(质量为32原子质量单位)以-1500m s⋅的速度沿着与器壁法线成45o 角的方向撞在面积为43210m -⨯的器壁上,求这群分子作用在器壁上的压强。
7、在半径为R 的球形容器里贮有分子有效直径为d 的气体,试求该容器中最多可以容纳多少个分子,才能使气体分子间不至于相碰?8、设氢气的温度为300℃。
求速度大小在3000m/s 到3010m/s 之间的分子数N 1与速度大小在p v 到10+p v m/s 之间的分子数N 2之比。
9、导体中自由电子的运动可以看成类似于气体分子的运动,所以常常称导体中的电子为电子气,设导体中共有N 个自由电子,电子气中电子的最大速率为f v (称做费米速率),电子的速率分布函数为:24,0()0,f f Av v v f v v v π⎧≤≤⎪=⎨>⎪⎩ 式中A 为常量,求:(1)用N 和f v 确定常数A ;(2)电子气中一个自由电子的平均动能。