模拟电子技术基础1
模拟电子技术基础(第四版)第1章

ID
理想二极管符号 UD
(V)
ID
开关模型等效电路
0.7V 0 0.7
0
UD
(V)
(a)理想模型 特性 )理想模型VA特性
(b)开关模型 特性 )开关模型VA特性
3、折线模型:正向导通时。相 、折线模型:正向导通时。 当于理想二极管串联一个等效 和一个电压源U 电阻rD和一个电压源 ON ,特 性曲线如图( 所示 所示。 性曲线如图(c)所示。
二极管的伏安特性仍可由 二极管的伏安特性仍可由
iD = IS (e
近似描述。 近似描述。
UD / UT
−1)
D E
导通电压
IS:反向饱和电流 UT:电压当量,室温下26mV
IR
反向 漏电
开启电压 Uon
开启电压 导通电压
硅二极管 0 .5 V 0 . 6 ~ 0 .8 V (取 0 .7 V )
锗二极管 0 .1 V 0 . 2 ~ 0 .3 V (取 0 .3 V )
发射区:发射载流子 发射区: 集电区: 集电区:收集载流子 基区: 基区:传送和控制载流子 为例) (以NPN为例) 为例
演示
载流子的传输过程
以上看出,三极管内有两种载流子 自由电子 自由电子和 以上看出,三极管内有两种载流子(自由电子和空 参与导电, 穴)参与导电,故称为双极型三极管-BJT (Bipolar 参与导电 故称为双极型三极管- Junction Transistor)。 。
二极管伏安特性与温度T的关系: 二极管伏安特性与温度T的关系:
的增加而增加 所以二极管的正向压降 增加, 的增加而降低 降低。 由于IS随T 的增加而增加,所以二极管的正向压降VF随T 的增加而降低。 一般线性减少2 2.5mV/C° 一般线性减少2~2.5mV/C° (利用该特性,可以把二极管作为温度传感器) 利用该特性,可以把二极管作为温度传感器)
《模拟电子技术基础》习题课1-2章-概念

三种组态为:BJT的共射、共基、共集 FET的共源、共栅、共漏
BJT
FET
差放
共射 共射 共集 共基 共源 共漏 共栅 差模 共模 (带反馈Re)
微变等效电路
p74
Ri
Ro
Av
15
模拟电路习题课(一)
共射小信号(微变)等效分析 输入电阻、输出电阻和增益
Ri
vi ii
rbe // Rb
Av
vo vi
(1 1)R'L rbe (1 1)R'L
1
R'o
rbe
1 1
//
rce1
rbe
1 1
Ro R'o // ro2 R'o
共集放大器的Ri比共射大很多
电压放大倍数接近于1(小于1)因此称为射随器
共集放大器的Ro比共射的小很多
17
模拟电路习题课(一)
共基小信号(微变)等效分析
R'i
U
反向击穿 电压VBR
2
二极管的电阻
模拟电路习题课(一)
直流等效电阻 RD:
RD
VD ID
交流(动态)电阻 rd:
rd
(
diD dvD
)Q1
2vd 2id
rd
(
diD dvD
)Q1
VT ID
3
模拟电路习题课(一)
共射(共E)BJT工作原理
以发射极(E极)作为公共端,EB结正偏,CB结反偏。
iC
参见 P12 图1.3.4
7
3. 饱和区
vCE<vBE vCB<0
4
集电结正偏
1模拟电子技术基础简明教程(第三版)杨素行_PPT课件_第一章1

又称正向偏置,简称正偏。
P
空间电荷区
空间电荷区变窄,有利 于扩散运动,电路中有 较大的正向电流。
N
I 内电场方向
外电场方向
V
R
图3 正向偏置PN结
在 PN 结加上一个很小的正向电压,即可得到较大的 正向电流,为防止电流过大,可接入电阻 R。
(2) PN 结外加反向电压(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
模拟电子技术基础
一、电子技术的发展
• 1947年 • 1958年 • 1969年 • 1975年
贝尔实验室制成第一只晶体管 集成电路 大规模集成电路 超大规模集成电路
第一片集成电路只有4个晶体管,而1997年一片集成电路 中有40亿个晶体管。有科学家预测,集成度还将按10倍/6年 的速度增长,到2015或2020年达到饱和。
3. 本征半导体中自由电子和空穴的浓度相等。
4. 载流子的浓度与温度密切相关,它随着温度 的升高,基本按指数规律增加。
三、杂质半导体
杂质半导体有两种 1、 N 型半导体
N 型半导体 P 型半导体
在硅或锗的晶体中掺入少量的 5 价杂质元素, 如磷、锑、砷等,即构成 N 型半导体(或称电子 型半导体)。
学习电子技术方面的课程需时刻关注电子技术的发展!
电子技术的发展很大程度上反映在元器件的发展 上。从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成电 路研制成功
电子管、晶体管、集成电路比较
值得纪念的几位科学家!
第一只晶体管的发明者
(by John Bardeen , William Schockley and Walter Brattain in Bell Lab)
模拟电子技术基础

模拟电子技术基础模拟电子技术基础(一)一、基础概念1. 电路电路是由电子元器件或者电气元件(例如,电阻、电容、电感等)连接而成,构成的电子装置。
电路分为直流电路和交流电路,其中直流电路的电流一般是恒定不变的,而交流电路的电流则是周期性变化的。
2. 元器件元器件是电路中最基本的构成单元,包括电阻、电容、电感等。
不同的元器件对电路中的电信号具有不同的影响。
例如,电阻会阻碍电流的流动,而电容则会将电信号存储下来,并释放出来。
3. 电压、电流和电阻电压是电路中电子流动的驱动力,也称电势差,通常用符号V表示。
电压越高,电流也相应地越大。
电压的单位是伏特(V)。
电流是电子在电路中流动的数量,通常用符号I表示。
电流的单位是安培(A)。
电阻是电路中阻碍电流流动的因素,通常用符号R表示。
电阻的单位是欧姆(Ω)。
电阻的大小越大,则电流通过电路的速度越慢。
4. 电路图电路图是用符号表示电路中各种元器件的图示。
通过电路图,我们可以识别电路中所使用的元器件,并了解电路中各元器件之间的连接关系。
二、基础元器件1. 电阻电阻是电路中最基本的元器件之一,其作用是阻碍电流的流动。
电阻的物理量是电阻值,通常用符号R表示。
电阻的单位是欧姆(Ω)。
电阻分为固定电阻和变阻器两种。
固定电阻一般以芯片电阻或线圈形式存在,主要是用来控制电路中的电流。
变阻器则被用来调节电路中电阻的大小。
2. 电容电容是能够将电能存储在其中的元器件。
电容器的物理量是电容值,通常用符号C表示。
电容的单位是法拉(F)。
电容一般分为电解电容和固体电容。
电解电容主要应用于大电容电路中,而固体电容一般应用于小电容电路中。
3. 电感电感是在电路中产生磁场并由此引起电动势的元器件。
电感的物理量是电感值,通常用符号L表示。
电感的单位是亨利(H)。
电感一般分为线圈电感和铁芯电感两种。
线圈电感主要应用于高频电路中,而铁芯电感则应用于低频电路中。
三、放大器放大器是一种能够放大电子信号的电路。
华中科技大学《模拟电子技术基础》——CH01-1省公开课一等奖全国示范课微课金奖PPT课件

绝大部分电路使用 电压恒定,电流随负载改变
电流源
电路中恒流用
不能成为电路系统电源
18/7118
模拟电子电源表示: 电源在哪里?
图二
图一
图三
电源省略
19/71
电源是什么样:
20/71
模拟电路电源大小:
直流电压源:5V,±5V, ±12V ,±15V 直流电压源:1.8V,2.7V, 3.3V , 特点:弱电
2/71 2
1.0 引言
我们生存自然界中存在大量物理量
温度 电量
压力 重量
光亮 流量
声音 风速 XX
速度 液位 XX
位移 转速 XX
3/71 3
1.0 引言
物理量改变就是信息
IT是什么?
信息技术
问题:怎样获取这些物理量改变?
传感器
4/71 4
1.0 引言
传感器怎样反应物理量改变?
温度 重量 压力 流量 光亮 液位 速度 转速 位移 XX 电压 XX
48/7148
1.4.3 放大电路模型类型
AS
Vo VS
AVO
RL Ro RL
Ri Rs Ri
源电压放大倍数是对信号纯放大,应该尽可能确保
信号源电阻会消耗一部分信号源电压造成开环放大倍数降低 为降低开环放大倍数降低,输入电阻应尽可能大
输出电阻会消耗一部分输出电压造成开环放大倍数降低 为降低开环放大倍数降低,输入电阻应尽可能小
模拟电路电源对电路电位限制:
普通情况下,电路中各点电位不会超出电源电压
21/71
放大器
信号源
电源 放大器
负载
n模电关键 n为何要放大? n什么是放大? n对放大有什么要求? n怎样满足对放大要求? n什么器件能够进行放大? n怎样组成放大系统?
模拟电子技术基础期末模拟试卷一(答案)(1)

期末模拟试卷一答案课程名称:模拟电子技术基础一、选择题1. 在保持二极管反向电压不变的条件下,二极管的反向电流随温度升高而____。
A 、增大 ,B 、减小,C 、不变 答案:A2. 在N 型半导体中,空穴浓度____电子浓度。
A 、大于,B 、小于 ,C 、等于 答案:B3. 直接耦合与变压器耦合多级放大电路之间主要不同点是⎽⎽⎽⎽。
A 、所放大的信号不同,B 、交流通路不同,C 、直流通路不同 答案:C4. 在长尾式的差分放大电路中,Re 对__有负反馈作用。
A 、差模信号,B 、共模信号,C 、任意信号 答案:B5. 用直流电压表测出UCE ≈VCC ,可能是因为_____。
A 、CC V 过大 , B 、c R 开路, C 、b R 开路, D 、β 过大答案:C6. 已知图中二极管的反向击穿电压为100V ,测得I =1μA 。
当R 从10Ωk 减小至5Ωk 时,I 将____。
A 、 为2μA 左右,B 、为0.5μA 左右,C 、变化不大,D 、远大于2μA 答案:C7.测得某NPN型晶体管3个电极的电位分别为UB=1V,UE=0.3V,UC=3V,则此晶体管工作在____状态。
A.截止B.饱和C.放大 D. 开关答案:C8. 差动放大电路的主要特点是____。
A. 放大差模信号,抑制共模信号;B. 既放大差模信号,又放大共模信号;C. 放大共模信号,抑制差模信号;D. 既抑制差模信号,又抑制共模信号。
答案:A9.互补输出级采用射极输出方式是为了使____。
A. 电压放大倍数高B. 输出电流小C. 输出电阻增大D. 带负载能力强答案:D10.集成运放电路采用直接耦合方式是因为____。
A. 可获得较高增益B. 可使温漂变小C. 在集成工艺中难于制造大电容D. 可以增大输入电阻答案:C11、利用正反馈产生正弦波振荡的电路,其组成主要是____。
A、放大电路、反馈网络B、放大电路、反馈网络、选频网络C、放大电路、反馈网络、稳频网络答案:B13、分别指出下列传递函数表达式各表示哪一种滤波电路(A、低通,B、高通,C、带通,D、带阻,E、全通)。
模拟电子技术基础-第一章课后习题详解

习题1.1选择合适答案填入空内。
(1)在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。
A. 五价B. 四价C. 三价(2)当温度升高时,二极管的反向饱和电流将。
A. 增大B. 不变C. 减小(3)工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为。
A. 83B. 91C. 100(4)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将。
A.增大B.不变C.减小解:(1)A ,C (2)A (3)C (4)A1.2 能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能。
因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V时,管子会因电流过大而烧坏。
1.3 电路如图P1.3所示,已知u i=10sinωt(v),试画出u i与u O的波形。
设二极管正向导通电压可忽略不计。
图P1.3解图P1.3解:u i和u o的波形如解图P1.3所示。
1.4 电路如图P1.4所示,已知u i=5sinωt(V),二极管导通电压U D=0.7V。
试画出u i与u O的波形,并标出幅值。
图P1.4解图P1.4解:波形如解图P1.4所示。
1.5 电路如图P1.5(a)所示,其输入电压u I1和u I2的波形如图(b)所示,二极管导通电压U D=0.7V。
试画出输出电压u O的波形,并标出幅值。
图P1.5解:u O的波形如解图P1.5所示。
解图P1.51.6 电路如图P1.6所示,二极管导通电压U D=0.7V,常温下U T≈26mV,电容C对交流信号可视为短路;u i为正弦波,有效值为10mV。
试问二极管中流过的交流电流有效值解:二极管的直流电流I D=(V-U D)/R=2.6mA其动态电阻r D≈U T/I D=10Ω故动态电流有效值I d=U i/r D≈1mA 图P1.61.7现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。
第1章模拟电子技术基础(第4版)课后习题答案(周良权)

《模拟电子技术基础》第4版习题解答第1章半导体二极管及其基本应用电路一、填空题1.1 在杂质半导体中,多数载流子的浓度主要取决于,而少数载流子的浓度则与有很大关系。
1.2 在N型半导体中,多子是,少子是;在P型半导体中,多子是,少子是。
1.3二极管具有性;当时,二极管呈状态;当时,二极管呈状态。
1.4 2APl2型二极管是由半导体材料制成的;2CZ52A型二极管是由半导体材料制成的。
1.5在桥式整流电路中接入电容C(与负载并联)滤波后,输出电压较未加C时,二极管的导通角,输出电压随输出电流的增大而。
二、选择正确答案填空(只需选填英文字母)1.6二极管正向电压从0.7 V增大15%时,流过的电流增大(a.15%;b.大于15%;c.小于15%)。
1.7当温度升高后,二极管的正向压降将,反向电流将(a.增大;b.减小;c.不变)。
1.8利用二极管的组成整流电路(a1.正向特性;b1.单向导电性;c1.反向击穿特性)。
稳压二极管工作在状态下,能够稳定电压(a2.正向导通;b2.反向截止;c2.反向击穿)。
三、判断下列说法是否正确(用√或×号表示)1.9在N型半导体中,掺入高浓度的三价杂质,可以改型为P型半导体。
( )1.10 PN结的伏安特性方程可以描述PN结的正向特性和反向特性,也可以描述其反向击穿特性。
( )1.11 在桥式整流电路中,如用交流电压表测出变压器二次侧的交流电压为40 V,则在纯电阻负载两端用直流电压表测出的电压值约为36 V。
( ) 1.12光电二极管是受光器件,能将光信号转换为电信号。
( ) 解答:1.1 杂质浓度温度1.2 电子空穴空穴电子1.3 单向导电性 正向偏置 导通 反向偏置 截止1.4 N 型锗材料 N 型硅材料1.5 增大 减小 减小1.6 (b )1.7 (b ) (a )1.8 (b 1) (c 2)1.9 (√)1.10 (×)1.11 (√)1.12 (√)1.13某硅二极管在室温下的反向饱和电流为910-A ,求外加正向电压为0.2 V 、0.4 V 时二极管的直流电阻R D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体二极管及其基本应用
第1章
半导体二极管
1.1 半导体的基础知识 1.2 半导体二极管的特性和主要参数 1.3 二极管电路的基本应用
1.4 特殊二极管
1.5 二极管应用电路的测试
第1章
小
结
第1章
半导体二极管及其基本应用
第1章
半导体二极管
(Semiconductor Diode)
1.1 半导体的基础知 识
第1章
半导体二极管及其基本应用
本征半导体——化学成分纯净的半导体晶体。 制造半导体器件的半导体材料的纯度要达到99.9999999%,常 称为“九个9”。 本征半导体的共价键结构
+4 +4 +4
1.1.1 本征半导体
+4
+4
&
+4
在绝对温度T=0K时, 所有的价电子都被共价键 紧紧束缚在共价键中,不 会成为自由电子,因此本 征半导体的导电能力很弱 ,接近绝缘体。
第1章
可见本征激发同时产生
半导体二极管及其基本应用
+4
+4
+4
+4
空穴
+4
自由电子
+4
电子空穴对。 外加能量越高(温度 越高),产生的电子空 穴对越多。 与本征激发相反的 现象——复合
在一定温度下,本征激 发和复合同时进行,达 到动态平衡。电子空穴 对的浓度一定。
+4
电子空穴对
+4
+4
常温300K时: 10 1 . 4 10 硅: 3 cm 电子空穴对的浓度
电子空穴对
自由电子
N型半导体 + +
+4 +4 +4
+ + +
+ + +
+ + +
施主离子
磷原子
+
多数载流子——自由电子 少数载流子—— 空穴
第1章
半导体二极管及其基本应用
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
硅原子
+4 +4 +4
电子空穴对 空穴 P型半导体 -
+4 +3 +4
为什么要将半导体变成导电性很差的本征半导体?
第1章
半导体二极管及其基本应用
1.1.2 杂质半导体
在本征半导体中掺入某些微量杂质元素后的 半导体称为杂质半导体。
1. N型半导体
在本征半导体中掺入五价杂质元素,例 如磷,砷等,称为N型半导体。
第1章
半导体二极管及其基本应用
N型半导体
硅原子 多余电子
+4 +5 +4 +4 +4 +4
电子为多数载流子 空穴为少数载流子 载流子数 电子数
空穴 — 多子 电子 — 少子 受主 施主 原子 离子 原子 载流子数 空穴数 离子
第1章
半导体二极管及其基本应用
P 型、N 型半导体的简化图示
多子—空穴
P型半导体
多子—电子
N型半导体
-
- -
-
- - 少子—电子
- - -
- - -
+
+ +
1.1.1 本征半导体 1.1.2 杂质半导体 1.1.3 PN 结
第1章
半导体二极管及其基本应用
1.1.1 本征半导体
什么是半导体?什么是本征半导体?
导电性介于导体与绝缘体之间的物质称为半导体。 导体--铁、铝、铜等金属元素等低价元素,其最外层电 子在外电场作用下很容易产生定向移动,形成电流。 绝缘体--惰性气体、橡胶等,其原子的最外层电子受原 子核的束缚力很强,只有在外电场强到一定程度时才可能导 电。 半导体--硅(Si)、锗(Ge),均为四价元素,它们原 子的最外层电子受原子核的束缚力介于导体与绝缘体之间。 本征半导体 — 纯净的半导体。如硅、锗单晶体。 本征半导体是纯净的晶体结构的半导体。 无杂质 稳定的结构
第1章
半导体二极管及其基本应用
1.1.1 本征半导体
载流子 — 自由运动的带电粒子。 共价键 — 相邻原子共有价电子所形成的束缚。
硅(锗)的原子结构 硅(锗)的共价键结构
Si 2 8 4 简化 模型
Ge 2 8 18 4
价电子
+4
+4
自 由 空 电 穴 子
+4 惯性核
(束缚电子)
+4 空穴
+4 空穴可在共 价键内移动
空穴
- - -
- - -
- -
- -
硼原子
+4 +4 +4
- 受主离子
多数载流子—— 空穴 少数载流子——自由电子
第1章
半导体二极管及其基本应用
1.1.2 杂质半导体 N 型半导体和 P 型半导体
N型 +4 +4 +4 +4 P型 +4 +4
+4 磷原子
+5
+4 自由电子
+4 硼原子
+3
+4 空穴
载流子
自由电子 空穴
带负电荷 带正电荷
电子流
+总电流 空穴流
本征半导体的导电性取决于外加能量:
温度变化,导电性变化;光照变化,导电性变化。
第1章
半导体二极管及其基本应用
本征激发: 在室温或光照下价电子获得足够能量摆 脱共价键的束缚成为自由电子,并在共价键 中留下一个空位(空穴)的过程。
复
合: 自由电子和空穴在运动中相遇重新结合 成对消失的过程。
漂
移: 自由电子和空穴在电场作用下的定向运
动。
第1章
半导体二极管及其基本应用
两种载流子
两种载流子 电子(自由电子) 空穴 结论:
两种载流子的运动 自由电子(在共价键以外)的运动 空穴(在共价键以内)的运动
1. 本征半导体中电子空穴成对出现,且数量少;
2. 半导体中有电子和空穴两种载流子参与导电;
3. 本征半导体导电能力弱,并与温度有关。
2 锗:. 5 10
13
cm
3
-
第 1 章 半导体二极管及其基本应用 E
+
导电机制
空穴很容易吸引邻近 共价键中的价电子去填 补,使空位发生移动, 这种价电子填补空穴的 运动可以看成空穴在运 动,其运动方向与价电 子运动方向相反。
+4
+4
+4
自由电子
+4
+4
+4
漂
移:
+4
+4
+4
自由电子和空穴 在电场作用下的 定向运动。
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
束缚电子
第1章
半导体二极管及其基本应用
+4
+4
+4
当温度升高或受到 光的照射时,束缚 电子能量增高,有 的电子可以挣脱原 子核的束缚,而参 与导电,成为自由
+4
空穴
+4
自由电子
+4
+4
+4
+4
电子。 自由电子产生的 同时,在其原来的共 价键中就出现了一个 空位,称为空穴。
这一现象称为本征激发,也称热激发。
+
+ +
+ + +
+ + +
少子—空穴 少子浓度——与温度有关,来自本征激发 多子浓度——与温度无关,取决于掺杂浓度
第1章
半导体二极管及其基本应用
说明:
1. 掺入杂质的浓度决定多数载流子浓度;温度决 定少数载流子的浓度。 2. 杂质半导体载流子的数目要远远高于本征半导 体,因而其导电能力大大改善。 3. 杂质半导体总体上保持电中性。