大学物理仿真实验迈克尔逊干涉仪
大学物理实验-迈克尔逊干涉仪

迈克尔逊干涉仪》实验报告一、引言迈克尔逊曾用迈克尔逊干涉仪做了三个闻名于世的实验:迈克尔逊-莫雷以太漂移、推断光谱精细结构、用光波长标定标准米尺。
迈克尔逊在精密仪器以及用这些仪器进行的光谱学和计量学方面的研究工作上做出了重大贡献,荣获1907年诺贝尔物理奖。
迈克尔逊干涉仪设计精巧、用途广泛,是许多现代干涉仪的原型,它不仅可用于精密测量长度,还可以应用于测量介质的折射率,测定光谱的精细结构等。
二、实验目的(1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法(2)学习一种测定光波波长的方法,加深对等倾的理解(3)用逐差法处理实验数据三、实验仪器迈克尔逊干涉仪、He-Ne激光器、扩束镜等。
四、实验原理迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。
用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。
后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。
1.干涉仪的光学结构迈克尔逊干涉仪的光路和结构如图1与2所示。
M1、M2是一对精密磨光的平面反射镜,M1的位置是固定的,M2可沿导轨前后移动。
G1、G2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。
G1的一个表面镀有半反射、半透射膜A,使射到其上的光线分为光强度差不多相等的反射光和透射光;G1称为分光板。
当光照到G1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过G2,在G1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过G1射向E。
由于光线(2)前后共通过G1三次,而光线(1)只通过G1一次,有了G2,它们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G2称为补偿板。
(大物实验)迈克尔孙干涉仪实验

大学物理实验迈克尔孙干涉仪一.实验原理1.迈克尔孙干涉仪的结构和原理2. 点光源产生的非定域干涉即M1和M2之间的距离每改变半个波长,其中心就“生出”或“消失”一个圆环。
两平面反射镜之间的距离增大时,中心就“吐出”一个个圆环。
反之,距离减小时中心就“吞进”一个个圆环,同时条纹之间的间隔(即条纹的稀疏)也发生变化。
由式可知,只要读出干涉仪中M1移动的距离△h和数出相应吞进(或吐出)的环数就可求得波长。
3. 条纹的可见度利用上式可测出纳黄光双线的波长差4. 时间相干性问题长差越小,光源的单色性越好,相干长度就越长,所以上面两种解释是完全一致的。
t m则用下式表示钠光灯所发射的谱线为589.0nm与589.6nm,相干长度有2cm。
氦氖激光器所发出的激光单色性很好,其632.8nm的谱线,只有10-14~10-7nm,相干长度长达几米到几公里的范围。
对白光而言,其和λ是同一数量级,相干长度为波长数量级,仅能看到级数很小的几条彩色条纹。
5.透明薄片折射率(或厚度)的测量(1)白光干涉条纹(2)固体透明薄片折射率或厚度的测定当视场中出现中央条纹之后,在M1与A之间放入折射率为n、厚度为l的透明物体,则此时程差要比原来增大因而中央条纹移出视场范围,如果将M1向A前移d,使,则中央条纹会重新出现测出d和l求出折射率n。
二.实验步骤1.测量He-Ne激光的波长①调整好干涉仪,为实验做好准备。
②打开He-Ne激光器,在光源前放一小孔光栏,调节M2上的三个螺钉,从小孔初设的激光束,经M1,M2反射后,在观察屏上重合。
③去掉小孔光栏,换上焦距透镜而使光源成为发散光束,在两光程差不太大时,在毛玻璃屏上即可观察到干涉条纹,轻轻调节M2后的螺钉,应出现基本在中心的圆纹。
④测量He-Ne激光的波长。
轻轻转动微动转轮,移动M1,中心每出生或吞进n个条纹,记下移动的距离,用公式2h/n求出波长。
2.测量钠波波长,波长差及相干长度①波长测量同激光波长的测量②慢慢移动M1,增加光程差,条纹可见度下降,乃至看不清,测出两不可见位置的距离差L=t1-t2,即可求出波长。
大学物理《迈克尔逊专题》—迈克尔逊干涉仪实验报告

大学物理《迈克尔逊专题》—迈克尔逊干涉仪实验报告《迈克尔逊专题》实验报告前几周我做了迈克尔逊专题实验,对迈克尔逊干涉仪有了更加深刻的认识。
迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。
它是利用分振幅法产生双光束以实现干涉。
通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。
主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。
在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。
利用该仪器的原理,研制出多种专用干涉仪。
迈克耳逊干涉仪是这个专题实验最主要的试验仪器,此专题包括:1、迈克耳逊干涉仪在钠光灯照射下测量钠双线波长差; 2、白光干涉测量平板玻璃折射率;3、由迈克耳逊干涉仪改装成的法布里——玻罗干涉仪测钠双线波长差。
这三个实验都与波的干涉有关,都是利用干涉原理进行试验的。
迈克尔逊干涉仪的工作原理是干涉条纹是等光程差点的轨迹,因此,要分析某种干涉产生的图样,必求出相干光的光程差位置分布的函数。
若干涉条纹发生移动,一定是场点对应的光程差发生了变化,引起光程差变化的原因,可能是光线长度L发生变化,或是光路中某段介质的折射率n发生了变化,或是薄膜的厚度e发生了变化。
另外钠光灯辐射产生的两条强谱线的波长是不一样的,分别为589.6nm和589.0nm,波长差与中心波长相比甚小。
如果用这种光源照明迈克尔逊干涉仪,所获得的圆形等倾条纹实际上是两种波长分别形成的两套干涉条纹的叠加。
当全反镜M1、M2之间的距离d为某一值时,会恰好出现波1的k1级明条纹恰好与波2的k2级暗条纹重合,这时条纹最模糊,对比度小,为零。
当动镜M1继续移动时,两个条纹会错开,会出现清晰的圆形等倾条纹。
这就是钠光灯产生的干涉现象。
现在根据上述原理对以下实验进行介绍。
迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告
实验目的,通过使用迈克尔逊干涉仪,观察干涉条纹的形成及
其变化规律,加深对干涉现象的理解。
实验仪器与材料,迈克尔逊干涉仪、激光器、准直透镜、半反
射镜、平台、调节螺丝等。
实验步骤:
1. 将迈克尔逊干涉仪放置在水平平台上,并调整好仪器的位置。
2. 用激光器照射光线到准直透镜上,使其成为平行光。
3. 将平行光照射到半反射镜上,使其一部分光线反射到一面平
板上,另一部分光线透射到另一面平板上。
4. 调节半反射镜和平板的位置,使得两路光线相互干涉。
5. 观察在干涉仪屏幕上出现的干涉条纹,并记录其形状和变化
规律。
实验结果与分析:
在实验中,我们观察到了在迈克尔逊干涉仪屏幕上出现的清晰的干涉条纹。
随着半反射镜和平板的微小调节,我们发现干涉条纹的间距和形状会发生变化。
通过仔细观察和记录,我们发现了干涉条纹的规律,并且加深了对干涉现象的理解。
自查与总结:
在实验过程中,我们需要仔细调节仪器,以确保干涉条纹的清晰度和稳定性。
同时,观察和记录干涉条纹的变化规律也需要耐心和细心。
在今后的实验中,我们需要更加熟练地操作迈克尔逊干涉仪,加深对干涉现象的理解,并且在实验中更加注重数据的准确性和实验结果的分析。
通过这次实验,我们对干涉现象有了更深入的认识,也掌握了使用迈克尔逊干涉仪的技巧和方法。
迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
自查报告。
实验名称,迈克尔逊干涉仪实验。
实验日期,2022年10月10日。
实验地点,XXX大学实验室。
实验目的,通过迈克尔逊干涉仪实验,掌握干涉仪的基本原理和操作方法,观察干涉条纹的形成,并测量出光的波长。
实验过程,在实验中,我们首先搭建了迈克尔逊干涉仪,调整好光源和镜片的位置,使得两束光相互干涉。
然后我们观察了干涉条纹的形成,并通过调整干涉仪的参数,如改变镜片的位置和倾斜角度,来改变干涉条纹的间距和形状。
最后,我们使用干涉条纹的间距来计算出光的波长。
实验结果,通过实验,我们成功观察到了干涉条纹的形成,并且根据干涉条纹的间距测量出了光的波长,结果与理论值相符合。
实验总结,通过本次实验,我们深入了解了迈克尔逊干涉仪的
原理和操作方法,掌握了干涉条纹的观察和测量技巧。
同时,也加
深了对光的波动性质的理解。
在实验中,我们也遇到了一些问题,
例如调整干涉仪的参数需要耐心和细心,需要不断尝试和调整才能
得到清晰的干涉条纹。
通过这次实验,我们不仅学到了知识,也提
高了实验操作的技能。
存在问题,在实验中,我们发现在调整干涉仪参数时,需要更
加耐心和细心,以确保获得准确的实验结果。
同时,在实验报告中,需要更加详细地描述实验步骤和结果,以便他人能够清晰理解。
改进计划,在今后的实验中,我们将更加细心地调整实验仪器,提高实验操作的技能。
同时,在撰写实验报告时,我们将更加详细
地描述实验步骤和结果,以提高报告的质量。
签名,XXX 日期,2022年10月12日。
迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
实验目的,通过迈克尔逊干涉仪观察干涉现象,验证光的波动性,并测量光的波长。
实验仪器,迈克尔逊干涉仪、白光光源、准直器、透镜、分光镜、反射镜、测微器等。
实验原理,迈克尔逊干涉仪利用分束镜将光分为两束,经过不
同路径后再次合成,观察干涉条纹的变化来测量光的波长。
实验步骤:
1. 将白光光源通过准直器发出的平行光照射到分光镜上,分光
镜将光分为两束。
2. 一束光经过反射镜反射后再次通过分光镜,另一束光则直接
通过分光镜。
3. 两束光分别经过不同路径后再次合成,观察干涉条纹的变化。
4. 通过调节反射镜的位置,使得干涉条纹清晰,测量反射镜的位移来计算光的波长。
实验结果,通过实验观察,成功观察到了干涉条纹的变化,通过测量反射镜的位移计算出了光的波长为XXX。
实验总结,通过本次实验,加深了对光的波动性的认识,同时也熟悉了迈克尔逊干涉仪的使用方法。
在实验过程中,我们也发现了一些操作上的细节问题,例如调节仪器的精度要求较高,需要耐心和细心。
希望在以后的实验中能够更加熟练地操作仪器,提高实验的准确性和可靠性。
大学物理实验:迈克尔逊干涉仪实验

迈克尔逊干涉仪实验
实验仪器
迈克尔逊干涉仪 激光器
实验原理
1. 迈克尔逊干涉仪结构原理
点光源S,分光镜G1右表面 镀有半透半反膜,使入射光 分成强度相等的两束。
全反射镜M1和M2:M2为固 定全反射镜,背部有三个粗 调螺丝,侧面和下面有两个 微 调 螺 丝 。 M1 为 可 动 全 反 射镜,背部有三个粗调螺 丝。
微 动 手 轮 : 每 转 一 圈 读 数 窗 口 内 刻 度 盘 转 动 一 格 , 即 M1 移 动 0.01mm,微动手轮有100格,每格0.0001mm,还可估读下一位。 △△△由微动手轮上刻度读出。
注意螺距差的影响。
3. 激光波长测试原理及方法
在调出圆形干涉条纹的情况下,转动微调手轮,移动M1, 可以看到条纹由中心向外涌出(或向中心涌入),在条纹开始 涌出(或涌入)时,记下M1的位置d1。再继续移动M1同时开 始计数,当条纹涌出(或涌入)条纹数N时,记下M1的位置d2。 计算出Δd=|d2-d1|,由公式
2d
N
测量激光波长。用逐差法,求三次,取平均。
5. 实验注意事项
光学元件表面严禁触摸,精密仪器操作耐心 细致,反射镜粗到微动螺丝不能出现拧紧拧死现 象,出现不好调节情况及时报告指导教师。
思考题
1 简述本实验所用干涉仪的读数方法。
2 怎样利用干涉条纹的“涌出”和“陷入”来 测定光波的波长?
3 何为定域、非定域干涉?
扩展光源产生定域干涉的条纹形成于空间的特定区域; 点光源产生非定域干涉的球面波在空间处处相干。
观察区E,如E处的两束光满足相干条件,可发生干涉现象。 G2为补偿板,与G1为相同材料相同的厚度,且平行安装。
2. 可动反镜移动及读数
迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
实验目的,通过迈克尔逊干涉仪实验,了解干涉仪的原理和应用,掌握干涉条纹的观察方法,以及测量波长的技术。
实验仪器,迈克尔逊干涉仪、激光器、平面镜、半反射镜、微调平台、干涉滤光片等。
实验原理,迈克尔逊干涉仪是一种利用干涉现象测量光波长的仪器。
当一束光线通过半反射镜分成两束光线,分别经过不同路径后再次汇聚在一起时,会产生干涉现象。
通过观察干涉条纹的移动情况,可以计算出光的波长。
实验步骤:
1. 调整迈克尔逊干涉仪,使得激光器发出的光线通过半反射镜后分成两束光线,并经过不同路径后再次汇聚在一起。
2. 使用微调平台调整其中一束光线的路径长度,观察干涉条纹的变化。
3. 通过测量干涉条纹的移动距离和微调平台的位移量,计算出
光的波长。
实验结果,通过实验观察和数据处理,我们成功测量出了激光
的波长,并得到了准确的结果。
实验中观察到了清晰的干涉条纹,
通过微调平台的操作,成功调整了干涉条纹的位置,得到了稳定的
干涉现象。
实验总结,通过本次实验,我们深入了解了迈克尔逊干涉仪的
原理和操作方法,掌握了干涉条纹的观察技术,并成功测量了光的
波长。
同时,也发现了实验中可能存在的误差和不足之处,为今后
的实验提供了经验和教训。
自查报告,在本次实验中,我们按照实验步骤进行了操作,并
成功完成了实验目标。
在实验过程中,我们注意到了一些细节问题,比如在调整干涉条纹位置时需要小心操作,以免造成误差;另外,
在测量干涉条纹移动距离时,也需要注意准确读数。
在今后的实验中,我们将更加注意这些细节问题,以提高实验的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理仿真实验迈克尔逊干涉仪大学物理仿真实验------迈克尔逊干涉仪实验名称:迈克尔逊干涉仪实验目的:1了解迈克尔孙干涉仪的原理、结构和调节方法。
2观察非定域干涉条纹。
3测量氦氖激光的波长。
4并增强对条纹可见度和时间相干性的认识。
实验仪器:迈克尔逊最早为了研究光速问题而精心设计了该装置。
它是一种分振幅的干涉装置,它将一路光分解成相互垂直的两路相干光,然后通过反射再重新汇聚在另一个方向上。
基于其结构原因,它是光源、两个反射镜、接收器(屏或眼睛)四者完全分立,东南西北各据一方,便于光路中安插其它器件。
如利用白光测玻璃折射率,测定气体折射率等。
迈克尔逊干涉仪可以使等厚干涉、等倾干涉及各种条纹的变动做到非常易于调整,很方便进行各种精密测量。
它的设计精巧,用途广泛,在许多科研领域都有它应用的身影。
迈克尔逊干涉仪原理图A,B是分光板和补偿板;M1,M2是反射镜;S是光源;O是观察点,可以用观察屏来获得实像,也可以直接观察镜中虚像。
图中的M2'是等效的M2位置。
M1可在光线行进方向移动,产生与M2'的不同光程差。
M1的位置使用粗调和细调旋钮调节,并且移动轨道上设有标尺。
A,B是分光板和补偿板;M1,M2是反射镜;S是光源;O是观察点,可以用观察屏来获得实像,也可以直接观察镜中虚像。
图中的M2'是等效的M2位置。
M1可在光线行进方向移动,产生与M2'的不同光程差。
M1的位置使用粗调和细调旋钮调节,并且移动轨道上设有标尺。
分光板、补偿板和反射镜A和B是取自同一块玻璃上的厚度和折射率一样的两个玻璃板,其中一块A 的背面镀上半透半反膜,它使光线分成光强大致相等的两束相干光。
另一块是补偿板,它的作用是在两个反射镜在等臂时光程相等;因为若没有补偿板,一路反射光通过A三次,而另一路透射光只通过A一次;这对于单色光时没有影响,对于复色光时则影响测量结果。
其背面有三个可调螺钉,在实验中它充当三维角度调整;其中一个镜子的虚像(M2')和另一个镜子(M1)之间形成"空气夹层"。
若空气层是绝对的平行,则形成的条纹是等倾干涉圆条纹;若空气层是楔形的,则形成的条纹是等厚干涉直条纹。
两个反射镜中一个(M2)是固定的,另一个(M1)是可以在导轨上移动的。
实验原理:1( 迈克尔孙干涉仪的结构和原理迈克尔孙干涉仪的原理图如图1所示,A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1和M2后各有几个小螺丝可调节其方位。
图1 迈克尔逊干涉仪的原理图光源S发出的光射向A板而分成(1)、(2)两束光,这两束光又经M1和M2反射,分别通过A的两表面射向观察处O,相遇而发生干涉,B作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2与A板的距离决定。
由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。
从O处向A处观察,除看到M1镜外,还可通过A的半反射膜看到M2的虚像M’2,M1与M2镜所引起的干涉,显然与M1、M’2引起的干涉等效,M1和M’2形成了空气“薄膜”,因M’2不是实物,故可方便地改变薄膜的厚度(即M1和M’2的距离),甚至可以使M1和M’2重叠和相交,在某一镜面前还可根据需要放置其他被研究的物体,这些都为其广泛的应用提供了方便。
2( 点光源产生的非定域干涉一个点光源S发出的光束经干涉仪的等效薄膜表面M1和M’2反射后,相当于由两个虚光源S1、S2发出的相干光束(图2)。
若原来空气膜厚度(即M1和M’2之间的距离)为h,则两个虚光源S1和S2之间的距离为2h,显然只要M1和M’2(即M2)足够大,在点光源同侧的任一点P上,总能有S1和S2的相干光线相交,从而在P点处可观察到干涉现象,因而这种干涉是非定域的。
若P点在某一条纹上,则由S1和S2到达该条纹任意点(包括P点)的光程差是一个常量,故P点所在的曲面是旋转双曲面,旋转轴是S1、S2的连线,显然,干涉图样的形状和观察屏的位置有关。
当观察屏垂直于S1、S2的连线时,干涉图是一组同心圆。
下面我们利用图3推导的具体形式。
光程差图2 点光源的薄膜干涉图3 薄膜干涉计算示意图把小括号内展开,则由于h<<Z,所以从式(1)可以看出,在δ=0处,即干涉环的中心处光程差有极大值,即中心处干涉级次最高。
如果中心处是亮的,则。
若改变光程差,使中心处仍是亮的,则,我们得到和M之间的距离每改变半个波长,其中心就“生出”或“消失”一个圆环。
即M12两平面反射镜之间的距离增大时,中心就“吐出”一个个圆环。
反之,距离减小时中心就“吞进”一个个圆环,同时条纹之间的间隔(即条纹的稀疏)也发生变化。
由式(2)可知,只要读出干涉仪中M移动的距离 h和数出1相应吞进(或吐出)的环数就可求得波长。
把点光源换成扩展光源,扩展光源中各点光源是独立的、互不相干的,每个点光源都有自己的一套干涉条纹,在无穷远处,扩展光源上任两个独立光源发出的光线,只要入射角相同,都会会聚在同一干涉条纹上,因此在无穷远处就会见到清晰的等倾条纹。
当M1和M’2不平行时,用点光源在小孔径接收的范围内,或光源离M1和M’2较远,或光是正入射时,在“膜”附近都会产生等厚条纹。
3( 条纹的可见度使用绝对的单色光源,当干涉光的光程差连续改变时,条纹的可见度一直是及λ,且λ和λ相差很小,当光不变的。
如果使用的光源包含两种波长λ1212程差为(其中m为正整数)时,两种光产生的条纹为重叠的亮纹和暗纹,使得视野中条纹的可见度降低,若λ与λ的光的亮度又相同,12则条纹的可见度为零,即看不清条纹了。
再逐渐移动M以增加(或减小)光程差,可见度又逐渐提高,直到λ的亮11条纹与λ的亮条纹重合,暗条纹与暗条纹重合,此时可看到清晰的干涉条纹,2再继续移动M,可见度又下降,在光程差1时,可见度最小(或为零)。
因此,从某一可见度为零的位置到下一个可见度为零的位置,其间光程差变化应为。
化简后式中。
利用式(3)可测出纳黄光双线的波长差。
4( 时间相干性问题时间相干性是光源相干程度的一个描述。
为简单起见,以入射角i=0作为例子,讨论相距为d的薄膜上、下两表面反射光的干涉情况。
这时两束光的光程差L=2d,干涉条纹清晰。
当d增加某一数值d’后,原有的干涉条纹变成一片模糊,2d’就叫作相干长度,用L表示。
相干长度除以光速c,是光走过这段长度所需m 的时间,称为相干时间,用t表示。
不同的光源有不同的相干长度,因而也有m不同的相干时间。
对于相干长度和相干时间的问题有两种解释。
一种解释是认为实际发射的光波不可能是无穷长的波列,而是有限长度的波列,当波列的长度比两路光的光程差小时,以路光已通过了半反射镜,另一路还没有到达,这时它们之间就不可能发生干涉,只有当波列长度大于两路光的程差时,两路光才能在半发射镜处相遇发生干涉,所以波列的长度就表征了相干长度。
另一种解释认为:实际光源发射的光不可能是绝对单色的,而是有一个波长范围,用谱线宽度来表,谱线宽度为,也就是说“单色光”示。
现假设“单色光”的中心波长为λ0是由波长为之间所有的波长组成的,各个波长对应一套干涉花纹。
随着距离d 的增加,之间所形成的各套干涉条纹就逐渐错开了,当d增加到使两者错开一条条纹时,就看不到干涉条纹了,这时对应的就叫做相干长度。
由此我们可以得到L与λ及之间的m0关系为:波长差越小,光源的单色性越好,相干长度就越长,所以上面两种解释是完全一致的。
相干时间t则用下式表示 m钠光灯所发射的谱线为589.0nm与589.6nm,相干长度有2cm。
氦氖激光器-14-7所发出的激光单色性很好,其632.8nm的谱线,只有10~10nm,相干长度长达几米到几公里的范围。
对白光而言,其和λ是同一数量级,相干长度为波长数量级,仅能看到级数很小的几条彩色条纹。
5( 透明薄片折射率(或厚度)的测量(1) 白光干涉条纹干涉条纹的明暗决定于光程差与波长的关系,用白光光源,只有在d=0的附近才能在M、M’交线处看到干涉条纹,这时对各种光的波长来说,其光程差(反12 ),故产生直线黑纹,即所谓的中央条纹,两旁有对称分布的彩色射时附加条纹。
d稍大时,因对各种不同波长的光,满足明暗条纹的条件不同,所产生的干涉条纹明暗互相重叠,结果就显不出条纹来。
只有用白光才能判断出中央条纹,利用这一点可定出d=0的位置。
(2) 固体透明薄片折射率或厚度的测定当视场中出现中央条纹之后,在M与A之间放入折射率为n、厚度为l的透1 明物体,则此时程差要比原来增大因而中央条纹移出视场范围,如果将M向A前移d,使,则中央条纹会1重新出现,测出d及l,可由下式求出折射率n。
实验内容:1(观察非定域干涉条纹(1)打开He-Ne激光器,使激光束基本垂直M面,在光源前放一小孔光阑,调2节M上的三个螺钉(有时还需调节M后面的三个螺钉),使从小孔出射的激光21 束,经M与M反射后在毛玻璃上重合,这时能在毛玻璃上看到两排光点一一重12合。
(2)去掉小孔光阑,换上短焦距透镜而使光源成为发散光束,在两光束程差不太大时,在毛玻璃屏上可观察到干涉条纹,轻轻调节M后的螺钉,应出现圆心2基本在毛玻璃屏中心的圆条纹。
(3)转动鼓轮,观察干涉条纹的形状,疏密及中心“吞”、“吐”条纹随程差的改变而变化的情况。
2(测量He-Ne激光的波长以改变h,利用采用非定域的干涉条纹测波长。
缓慢转动微动手轮,移动M1式(2)可算出波长,中心每“生出”或“吞进”50个条纹,记下对应的h值。
N的总数要不小于500条,用适当的数据处理方法求出λ值。
3(测钠黄光波长及钠黄光双线的波长差,观察条纹可见度的变化。
4(测量钠光的相干长度,观察氦氖激光的相干情况(不必测出相干长度)。
5(调节观察白光干涉条纹,测透明薄片的折射率。
实验步骤:鼠标移到小孔光栏或短焦距透镜上,可以拖动,要领是:按住左键拖动,拖到正确位置上松开左键,则恰当放置,否则,被拖动的物体自动回原处。
调节小孔光栏或短焦距透镜的动作有两个:拖动和调节高度。
要调节高度,必须先正确放置,然后,在右键弹出的菜单上选择“调节光栏或透镜高度”,再调节,左键调低,右键调高。
在这种状态下,要拖动光栏或透镜,也必须在弹出菜单上选择“归位”后才行。
光栏和透镜的放置位置应该是激光器和干涉仪的中间。
在菜单上单击“打开光源”项,放置小孔光栏,在菜单上选择“调节M2上的螺钉”,则出现M2调节画面(如图5所示)。
M2上三个旋钮,有共同的操作方法:左键左旋,右键右旋。
打开光源后,在操作台上会出现显示屏的放大画面(如图6所示)。