双棒问题
(完整版)双棒问题

双棒问题1. 无外力等距双棒(1)电路特点:棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.(2)电流特点:随着棒2的减速、棒1的加速,两棒的相对速度v 2-v 1变小,回路中电流也变小。
v 1=0时:电流最大 v 2 =v 1时:电流I = 0(3)两棒运动情况:安培力大小:两棒的相对速度变小,感应电流变小,安培力变小. 棒1做加速度变小的加速运动 ,棒2做加速度变小的减速运动。
最终两棒具有共同速度。
(4)两个规律:①动量规律:两棒受到安培力大小相等方向相反,系统合外力为零,系统动量守恒.②能量转化规律:系统机械能的减小量等于内能的增加量.(类似于完全非弹性碰撞)两棒产生焦耳热之比:2. 无外力不等距双棒(1)电路特点:棒1相当于电源;棒2受安培力而起动,运动后产生反电动势.(2)电流特点:随着棒1的减速、棒2的加速,回路中电流变小。
最终当Bl 1v 1 = Bl 2v 2时,电流为零,两棒都做匀速运动(3)两棒运动情况:棒1加速度变小的减速,最终匀速; 棒2加速度变小的加速,最终匀速.(4)最终特征: 回路中电流为零 (5)动量规律:安培力不是内力,两棒合外力不为零,系统动量守恒。
(6)两棒最终速度:任一时刻两棒中电流相同,两棒受到的安培力大小之比为:整个过程中两棒所受安培力冲量大小之比: 对棒1: 对棒2: 结合: 21211212Blv Blv Bl(v v )I R R R R --==++012m Blv I R R =+222112B B l (v v )F BIl R R -==+2012m v (m m )v =+共21222011m v (m m )v Q 22=+共+1122Q R Q R =212211R R v Bl v Bl I +-=1122Blv Bl v =121122F BIl l F BIl l ==112212I F l I F l ==11011I m v m v =-2220I m v =-1122Bl v Bl v =可得: (7)能量转化情况: 系统动能→电能→内能(8)流过某一截面的电量3. 有外力等距双棒 (1)电路特点:棒2相当于电源;棒1受安培力而起动.(2)运动分析:某时刻回路中电流:安培力大小:棒1: 棒2: 当a 2=a 1时 ,v 2-v 1恒定,I 恒定 ,FB 恒定 ,两棒匀加速 (3)稳定时的速度差4. 有外力不等距双棒运动分析:某时刻两棒速度分别为v 1、 v 2,加速度分别为a 1、a 2经极短时间t 后其速度分别为:此时回路中电流为:当时,I 恒定 FB 恒定 两棒匀加速由得:此时回路中电流为: I 与两棒电阻无关 21222122110m l v v m l m l =+12122122120m l l v v m l m l =+222101122111222m v m v m v Q --=1122Q R Q R =2202Bl q m v =-B F BIl =11B F a m =22BF F a m -=12F (m m )a =+1B F m a =B F BIl =2112Bl(v v )I R R -=+121212212(R R )m F v v B l (m m )+-=+111B F F a m -=222B F a m =1122B B F l F l =111v v a t '=+222v v a t '=+11122212Bl (v a t )Bl (v a t )I R R +-+=+1122112212B(l v l v )B(l a l a )t R R -+-=+111B F F a m -=222B F a m =1122l a l a =1122B B F l F l =2121221221B l m F F l m l m =+1222221221B l l m F F l m l m =+221221221l a F l m l m =+122221221l l a F l m l m =+12221221l m F I l m l m B=⋅+。
磁场中的双棒问题研究

电磁感应现象中的“双棒”问题研究黄陂一中 姜付锦“双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。
笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。
一、分类1.按棒的长度可分为两类:等宽与不等宽(即一长一短) 2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型 3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类 二、规律(仅讨论水平导轨,且导棒的材料相同) 1.等长“双棒”两棒质量均为m ,长度均为L ,电阻均为R ,两间距足够大,所处磁场的磁感应强度为B(1)导轨光滑①冲量型:给棒1一个水平向右的速度0v ,则最终稳定后两棒均匀速直线运动,且速度均为122v v v ==,系统的动量守恒,动能损失204k mv E Q ==,两棒从相对运动到相对静止,相对滑动的距离为022mv s B L =。
v t -图象如下: 01020304050607080900.51V1i V2it i②恒定外力型:对棒1施加一个恒定外力F ,则最终稳定后,两棒均作匀加速直线运动,且两棒的加速度相等2F a m =,两棒的速度之差为一定值1222FRv v v B L=-=,两棒速度之和与时间成正比12Fv v t m+=。
v t -图象如下: 0102030405060708090204060V1i V2it i2 1③恒定功率型:以恒定功率作用在棒1上,则最终两棒的速度趋于无穷大,而两棒的速度差将趋于零,此时对应的外力为无穷小(零),v t -图象如下010203040506070102030V1i V2it i(2)导轨粗糙①冲量型:给棒1初速度0v ,则两棒的运动类型有如下三种情况:10当2202B L v mg Rμ≤时,则只有棒1运动,最终速度减小为零,棒2始终不动,v t -图象如下: 02468101250100V1it i20当2202B L v mg Rμ>时,两棒一起运动,棒2先不动后加速最后减速,棒1一直减速运动,最后均静止。
高考电磁感应中“单、双棒”问题归类经典例析

电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动.现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】

第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
电磁感应中“单、双棒”问题归类例析

专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
双棒问题

电磁学中的双金属棒运动类问题★例1、如图所示,两金属杆a b 和cd 长均为l ,电阻均为R ,质量分别为M 和m ,M m >,用两根质量和电阻均可忽略不计的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。
两金属杆都处在水平位置。
整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B ,若金属杆正好匀速向下运动,求其运动的速度。
22()2M m gR v B l-=★例2、两根足够长的光滑平行金属导轨在同一水平面内,宽为l 导轨的一半位于磁感应强度为B 的匀强磁场中,方向垂直于导轨平面。
在导轨上放置两根垂直于导轨的质量均为m 的金属棒a b 和cd ,其中棒a b 在磁场区域外。
当水平推棒a b 一下,使它获得向右的速度0v ,如图所示。
求棒a b 和cd 两端的最终电压各是多少。
012E B lv B lv ==★例题3、如图所示,两根相距0.20l m =平行金属导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁感应强度0.20B T =,导轨上面横放着两根金属细杆,构成矩形回路。
每根金属细杆的电阻0.25r =Ω。
回路中其余部分的电阻可忽略不计。
已知两金属细杆在平行于导轨的拉力作用下沿导轨向相反的方向匀速平移,速度大小都是 5.0v m s =,如图所示。
不计导轨的摩擦。
(1)求作用于每根细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m 的滑动过程中总计产生的热量。
★拓展1: 如图所示,在水平面上有两条平行导电导轨M N 、PQ ,导轨间距离为l ,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度大小为B ,两根金属杆甲、乙摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知甲杆被外力拖动以恒定的速度沿导轨运动;达到稳定状态时,乙杆也以恒定速度沿导轨运动,导轨的电阻可忽略不计,求此时乙杆克服摩擦力做功的功率。
电磁感应力电综合问题(6)——双棒问题

电磁感应力电综合问题(6)——双棒问题1. (海淀)如下图所示,两根相互平行、间距为L 的金属轨道MN 和PQ 固定在水平面内,轨道所在空间存在竖直向上的匀强磁场,磁感强度为B ,在该轨道上垂直轨道方向放置两根金属杆ab 和cd ,它们的电阻分别为R 1和R 2,质量分别为m 1和m 2。
开始时两金属杆静止在轨道上。
某一时刻ab 杆受到瞬间水平向右冲量作用,以初速度v 0沿轨道滑动,这个瞬间cd 杆的速度仍可视为零。
已知金属杆ab 和cd 在轨道上滑动时所受到的摩擦力可忽略不计,金属轨道足够长且电阻不计,金属杆与轨道接触良好。
以下说法中正确的是( )A. 当ab 杆以水平初速度v 0开始在轨道上滑动瞬间,cd 杆两端电势差为BL v 0B. 当ab 杆以水平初速度v 0开始在轨道上滑动瞬间,cd 杆所受到的磁场力方向与初速度v 0方向相同,大小为212022R R R v L B + C. 在两杆都滑动的过程中,金属杆ab 和cd 总动量不变,大小总是m 1v 0D. 在两杆都滑动的过程中,金属杆ab 动量减小,cd 动量增大,ab 和cd 的总动量减小2. (多选)(2016·湖南长沙一中月考)如图所示,完全相同的金属棒ab 、cd 垂直放在足够长的水平光滑金属导轨上且接触良好,匀强磁场的方向竖直向下。
ab 棒在极短的时间内获得水平向右的初速度,在此后的运动过程中,下列说法正确的是( )A .安培力对ab 棒做正功B .cd 棒一直加速C .abdca 回路的磁通量先增加后不变D .ab 棒损失的机械能等于回路产生的总热量和cd 棒动能的增量之和3. (多选)如图8所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1。
用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变4. (多选)如图所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则( )A. 当12m/s a v =时,18m/s b v =B. 当12m/s a v =时,22m/s b v =C. 若导轨很长,它们最终速度必相同D. 它们最终速度不相同,但速度差恒定5. (多选)(2016·河北石家庄质检)如图所示,虚线MN 上方存在垂直纸面向里的匀强磁场,MN 下方存在竖直向下的匀强磁场,两处磁场磁感应强度大小均为B 0。
单棒双棒问题演示文稿

式
导棒的动能
第4页,共15页。
二、无外力双棒问题
基本模型 运动特点 最终状态 能量转化
等 距 式
1
杆1做a渐小 的加速运动 v0 ,杆2做a渐
v1=v2, I=0
导棒2的动能
转化为内能和
导棒1的动能
小的减速运动
2
不 等 距 式
v0 2
1
杆1做a渐小的
减速运动,杆
2做a渐小的
加速运动
a=0, I=0
系统动量守恒吗?
v v0 v2
v1 O
t
第13页,共15页。
有外力等距双棒
F
某时刻回路中电流: I Blv2 Blv1 1
2
R1 R2
安培力大小: FB BIl
棒1:
a1
FB m1
棒2:
a2
F FB m2
最初阶段,a2>a1,
只要a2>a1, (v2-v1) I FB a1 a2 当a2=a1时 v2-v1恒定 I恒定 FB恒定 两棒匀加速
第7页,共15页。
无外力含容充电式
回路电流: I Blv UC R
电容器被充电,UC渐大,阻碍电流。
当Blv=UC时,I=0, F安=0,棒匀速运动。
注意:此时电容器带电量不为零
最终速度?
对杆应用动量定理: mv0 mv BIl t Blq
V=mv0/(m+cB2l2)
v0
第8页,共15页。
v1
v2
1
(4)两棒位于不 同磁场中
2
(5)两棒位于
不同磁场中
e
O1 c
v0
1
2
两棒总动量守
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁学中的双金属棒运动类问题★例1、如图所示,两金属杆a b 和cd 长均为l ,电阻均为R ,质量分别为M 和m ,M m >,用两根质量和电阻均可忽略不计的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。
两金属杆都处在水平位置。
整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B ,若金属杆正好匀速向下运动,求其运动的速度。
22()2M m gR v B l-=★例2、两根足够长的光滑平行金属导轨在同一水平面内,宽为l 导轨的一半位于磁感应强度为B 的匀强磁场中,方向垂直于导轨平面。
在导轨上放置两根垂直于导轨的质量均为m 的金属棒a b 和cd ,其中棒a b 在磁场区域外。
当水平推棒a b 一下,使它获得向右的速度0v ,如图所示。
求棒a b 和cd 两端的最终电压各是多少。
012E B lv B lv ==★例题3、如图所示,两根相距0.20l m =平行金属导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁感应强度0.20B T =,导轨上面横放着两根金属细杆,构成矩形回路。
每根金属细杆的电阻0.25r =Ω。
回路中其余部分的电阻可忽略不计。
已知两金属细杆在平行于导轨的拉力作用下沿导轨向相反的方向匀速平移,速度大小都是 5.0v m s =,如图所示。
不计导轨的摩擦。
(1)求作用于每根细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m 的滑动过程中总计产生的热量。
★拓展1: 如图所示,在水平面上有两条平行导电导轨M N 、PQ ,导轨间距离为l ,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度大小为B ,两根金属杆甲、乙摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知甲杆被外力拖动以恒定的速度沿导轨运动;达到稳定状态时,乙杆也以恒定速度沿导轨运动,导轨的电阻可忽略不计,求此时乙杆克服摩擦力做功的功率。
(2004广东高考)解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势)(0v v Bl E -= ①感应电流 21R R E I +=②杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④解得 )]([2122202R R lB gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--B I l g m F μ ① 对杆2有 02=-g m B I l μ ② 外力F 的功率 0Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P PF μ-+-= ④由以上各式得 )]([212202R R lB gm v g m P g +-=μμ ⑤★拓展2:如图所示,PQMN 与C D E F 为两根足够长的固定平行金属导轨,导轨间距为L 。
PQ 、M N 、C D 、E F 为相同的弧形导轨;QM 、D E 为足够长的水平导轨。
导轨的水平部分QM 和D E 处于竖直向上的匀强磁场中,磁感应强度大小为B 。
a 、b 为材料相同、长都为L 的导体棒,跨接在导轨上。
已知a 棒的质量为m 、电阻为R ,a 棒的横截面是b 的3倍。
金属棒a 和b 都从距水平面高度为h 的弧形导轨上由静止释放,分别通过DQ 、EM 同时进入匀强磁场中,a 、b 棒在水平导轨上运动时不会相碰。
若金属棒a 、b 与导轨接触良好,且不计导轨的电阻和棒与导轨的摩擦。
(1)金属棒a 、b 刚进入磁场时,回路中感应电流的方向如何?(2)通过分析计算说明,从金属棒a 、b 进入磁场至某金属第一次离开磁场的过程中, 电路中产生的焦耳热。
★拓展3:如图所示,平行倾斜导轨与平行水平导轨平滑连接,两导轨光滑且电阻不计。
水平部分有竖直向上的匀强磁场穿过, 2.0B T =,导轨间距0.5L m =。
导体棒a b 的质量为1 1.0m k g =,电阻10.2R =Ω,静止在水平导轨上。
导体棒cd 的质量2 2.0m kg =,电阻为20.3R =Ω,从高0.45h m =的倾斜导轨上由静止滑下。
求:(1)cd 棒刚进入磁场时a b 棒的加速度。
(2)若cd 不与a b 相碰撞,且导轨足够长,a b 、cd 两棒的最终速度分别是多大。
(3)整个过程中,在a b 、cd 棒上产生的热量各为多少?(210g m s =)★拓展4:“拓展3”中LNKQ 处导轨间距为M LPK 处导轨间距的一半,且各处水平导轨足够长,则各问的结论各为多少?(用物理符号表示)练练手:★1、如图1,平行光滑导轨MNPQ 相距L ,电阻可忽略,其水平部分置于磁感应强度为B 的竖直向上的匀强磁场中,导线a 和b 质量均为m ,a 、b 相距足够远,b 放在水平导轨上,a 从斜轨上高h 处自由滑下,求回路中产生的最大焦耳热。
★2、如图17-120所示,磁场方向竖直且足够大,水平放置的光滑平行金属导轨由宽窄两部分连接而成,宽者间距是窄者的2倍.两根质量相同的金属棒ab 、cd 均垂直导轨平面.现给ab 一水平向左的初速v 0同时使cd 不动时,ab 整个运动过程产生热量为Q .那么,当cd 不固定时,ab 以v 0起动后的全过程中一共产生多少热量(设导轨很长,cd 也不会跑到宽轨上)?解:cd 固定时有212Q m v =cd 可动时,设ab 速度减为u ,cd 速度增为2u 的经历时间为t .此时,穿过回路的磁通量不再变化,感应电流消失,ab 、cd 均作匀速直线运动.上述的t 时间内,每一时刻ab 受的磁场力都是cd 的2倍,可认为ab 受的平均磁场力为cd 。
则对a b 有:02F t m v m u -=-(1)对有:=-cd Ft m2u 0(2)由式和式得-=,=(1)(2)mv mu 4mu u 0v 05设以上过程产生热量,由能量守恒得:′=-+=·=Q mv [12mu 12m(2u)]mv Q02220212451245★如图所示,abcde 和/////e d c b a 为两平行的光滑轨道,其中abcd 和/////e d c b a 部分为处于水平面内的导轨,ab 与a /b 的间距为cd 与d c /间距的2倍,de 、e d /部分为与水平导轨部分处于竖直向上的匀强磁场中,弯轨部分处于匀强磁场外。
在靠近aa '和cc '处分别放着两根金属棒MN 、PQ ,质量分别为m2和m 。
为使棒PQ 沿导轨运动,且通过半圆轨道的最高点ee ',在初始位置必须至少给棒MN 以多大的冲量?设两段水平面导轨均足够长,PQ 出磁场时MN 仍在宽导轨道上运动。
解题方法与技巧:若棒PQ 刚能通过半圆形轨道的最高点ee ',则由Rv mmg e2=,可得其在最高点时的速度gR v e =.棒PQ 在半圆形轨道上运动时机械能守恒,设其在dd '的速度为d v , 由R mg mv mv e d 2212122⋅+=可得:gR v d 5=两棒在直轨上运动的开始阶段,由于回路中存在感应电流,受安培力作用,棒MN 速度减小,棒PQ 速度增大。
当棒MN 的速度1v 和棒PQ 的速度2v 达到221v v =时,回路中磁通量不再变化而无感应电流,两者便做匀速运动,因而252gR v v d ==。
在有感应电流存在时的每一瞬时,由IlB F =及MN 为PQ 长度的2倍可知,棒MN 和PQ 所受安培力F 1和2F 有关系212F F =。
从而,在回路中存在感应电流的时间t 内,有 212F F =。
设棒MN 的初速度为0v ,在时间t 内分别对两棒应用动量定理,有:01122mv mv t F -=-, 22mv t F =将以上两式相除,考虑到212F F =,并将1v 、2v 的表达式代入,可得2530gR v =从而至少应给棒MN 的冲量:gR m mv I 5320==★例题4、如图所示,两根平行金属导轨,固定在同一水平面上,磁感应强度0.50B T =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离0.20l m =。
两根质量均为0.10m kg =的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为0.50R =Ω,在0t =时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动,经过 5.0t s =,金属杆甲的加速度为21.37a m s =,问此时两金属杆的速度各为多少?(2003高考全国理综卷)★拓展1:如图所示1111a b c d 和2222a b c d 为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场终,磁场方向垂直导轨所在平面(纸面)向里。
导轨的11a b 段与22a b 段是竖直的,距离为1l ;11c d 段与22c d 也是竖直的,距离为2l 。
11x y 与22x y 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直与导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R 。
F 为作用于金属杆11x y 上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率大小和回路电阻上的热功率。
(2004浙江高考题)解法1:设杆向上的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。
由法拉第电磁感应定律,回路中的感应电动势的大小 v l l B E )(12-= ①回路中的电流 RE I = ②电流沿顺时针方向。
两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为I Bl f 11= ③方向向上,作用于杆x 2y 2的安培力为 I Bl f 22= ④ 方向向下,当杆作匀速运动时,根据牛顿第二定律有 02121=-+--f f g m g m F ⑤解以上各式得 )()(1221l l B gm m F I -+-=⑥ R l l B g m m F v 212221)()(-+-=⑦作用于两杆的重力的功率的大小 gv m m P )(21+= ⑧ 电阻上的热功率 RI Q 2= ⑨由⑥⑦⑧⑨式,可得g m m R l l B g m m F P )()()(21212221+-+-=⑩R l l B gm m F Q 21221])()([-+-= ⑾解法2:回路中电阻上的热功率等于运动过程中克服安培力做功功率,当杆作匀速运动时,根据牛顿第二定律有1221f f g m g m F -=--电路中克服安培力做功功率为: []v g m m F v f f P )()(2112+-=-=将 R l l B g m m F v 212221)()(-+-=代入可得Rl l B g m m F P Q 21221)()(⎥⎦⎤⎢⎣⎡-+-==★拓展2:如图所示,两根相距为l 的平行光滑金属长导轨固定在同一水平面上,并处于竖直方向的匀强磁场中,磁场的磁感应强度为B 。