n阶范德蒙德行列式
[整理版]范德蒙行列式及其应用
![[整理版]范德蒙行列式及其应用](https://img.taocdn.com/s3/m/acbe5cfc162ded630b1c59eef8c75fbfc77d94c0.png)
范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。
它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质1.范德蒙行列式的定义定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---=(1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在错误!未找到引用源。
级行列式中,第错误!未找到引用源。
行(或第错误!未找到引用源。
列)的元素除错误!未找到引用源。
外都是零,那么这个行列式等于错误!未找到引用源。
与它的代数余子式错误!未找到引用源。
的乘积错误!未找到引用源。
,在错误!未找到引用源。
=错误!未找到引用源。
中,从最后一行开始,每一行减去它相邻前一行的错误!未找到引用源。
倍得错误!未找到引用源。
=错误!未找到引用源。
根据上述定理错误!未找到引用源。
=错误!未找到引用源。
提出每一列的公因子后得错误!未找到引用源。
=错误!未找到引用源。
最后一个因子是错误!未找到引用源。
阶范德蒙行列式,用错误!未找到引用源。
表示,则有错误!未找到引用源。
=错误!未找到引用源。
同样可得错误!未找到引用源。
=(错误!未找到引用源。
)(错误!未找到引用源。
)错误!未找到引用源。
(错误!未找到引用源。
)错误!未找到引用源。
此处错误!未找到引用源。
是一个n-2阶范德蒙行列式,如此继续下去,最后得错误!未找到引用源。
=错误!未找到引用源。
(错误!未找到引用源。
)错误!未找到引用源。
(错误!未找到引用源。
)错误!未找到引用源。
(错误!未找到引用源。
关于行列式的一般定义和计算方法

关于行列式的一般定义和计算方法n 阶行列式的定义n 阶行列式nnn n nn a a a a a a a a a 212222111211=∑-nn n j j j nj j j j j j a a a 21212121)()1(τ2 N 阶行列式是N ! 项的代数和;3、N 阶行列式的每项都是位于不同行、不同列N 个元素的乘积;特点:(1)(项数)它是3!项的代数和;(2)(项的构成)展开式中的每一项都是取自行列式不同行不同列的三个元素之积.其一般项为:(3)(符号规律)三个正项的列标构成的排列为123,231,312. 它们都是偶排列;三个负项的列标构成的排列为321,213,132, 它们都是奇排列.§行列式的性质性质1:行列式和它的转置行列式的值相同。
即nnn n nn a a a a a a a a a 212222111211=nnn n n n a a a a a a a a a 212221212111;行列式对行满足的性质对列也同样满足。
性质2 互换行列式的两行(列),行列式的值变号.如: D=dc b a =ad-bc , b a dc =bc-ad= -D以r i 表第i 行,C j 表第j 列。
交换 i ,j 两行记为r j i r ↔,交换i,j 两列记作C i ↔C j 。
性质3:如果一个行列式的两行(或两列)完全相同,那么这个行列式的值322311332112312213a a a a a a a a a ---322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a D ++==(1等于零。
性质4:把一个行列式的某一行(或某一列)的所有元素同乘以某一个常数k的结果等于用这个常数k 乘这个行列式。
(第i 行乘以k ,记作r i k ⨯)推论1:一个行列式的某一行(或某一列)的所有元素的公因式可以提到行列式符号的前面。
范德蒙德行列式例题

范德蒙德行列式例题范德蒙德行列式 (Vandermonde determinant) 是一种特殊的行列式,它可以用来求解超过三个未知数的线性方程组的解。
其求解方法被称为“范德蒙德消元法”(Vandermonde reduction method)。
以下是一些范德蒙德行列式的例题:1. 求解线性方程组 Ax=b 的解,其中 A 为 n 阶方阵,x 为 n 维列向量,b 为 n 维列向量。
解:令 d1, d2, ..., dn 为 A 的列向量,则 x = (d1, d2, ..., dn)T。
首先计算 d1, d2, ..., dn 的范德蒙德行列式,记为 D:D = (-1)^(n-1) * adj(A)其中 adj(A) 表示 A 的伴随矩阵,即 A 的转置矩阵减去 I 的n-1 次方。
然后,利用 D 的符号,可以确定 x 的解向量:if D > 0, then x = (d1, d2, ..., dn)T is a solutionif D < 0, then x = (-d1, -d2, ..., -dn)T is a solution if D = 0, then x is any n-vector2. 求解线性方程组 Ax=b 的最小解,其中 A 为 n 阶方阵,x 为n 维列向量,b 为 n 维列向量。
解:令 D 为上述例题中计算得到的范德蒙德行列式,则 x 的最小解向量为:x^T = (D + b^T * I)^(-1) * b其中 I 表示 n 阶单位矩阵。
3. 求解线性方程组 Ax=b 的最小二乘解,其中 A 为 n 阶方阵,x 为 n 维列向量,b 为 n 维列向量。
解:利用最小二乘解的思想,求解 x 的最小二乘解向量,需要计算 A 的逆矩阵,然后应用上述例题中的方法。
具体地,令 D 为上述例题中计算得到的范德蒙德行列式,则 x 的最小二乘解向量为:x^T = (D + b^T * I)^(-1) * b其中 I 表示 n 阶单位矩阵。
n阶的范德蒙德行列式转置

n阶的范德蒙德行列式转置范德蒙德行列式是数学中一种特殊的行列式形式,它是由一列数值按照特定规律排列形成的。
范德蒙德行列式常用于揭示数值序列之间的某种规律或者关系。
本文将介绍n阶范德蒙德行列式及其转置的相关内容。
首先,我们来定义范德蒙德行列式。
n阶范德蒙德行列式的通项公式为:$$V=\begin{vmatrix}1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & a_n & a_n^2 & \cdots & a_n^{n-1}\end{vmatrix}$$其中,a1, a2, ..., an 是给定的n个实数。
该行列式以a1,a2,...,an为底数,以1,a1,a1^2,...,a1^(n-1)为指数构成,每一列都是底数上依次求幂的结果。
接下来我们将展示n阶范德蒙德行列式的转置表达式。
首先,我们记Vi,j为n阶范德蒙德行列式中的第i行第j列元素,那么转置后的行列式记作V',有:$$V'=\begin{vmatrix}1 & 1 & 1 & \cdots & 1 \\a_1 & a_2 & a_3 & \cdots & a_n \\a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\\vdots & \vdots & \vdots & \ddots & \vdots \\a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1}\end{vmatrix}$$接下来我们探讨n阶范德蒙德行列式转置的形式推导过程。
考研数学《线性代数》考点知识点总结

n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;
或
k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 1 1
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 x32
x n 1 1
x n 1 2
x n 1 3
xn xn2 = (xi x j ) .证明用数学归纳法.
A
0
A2
0
A11
,若
A
0 ,则 A1
As
0
A
1 2
0
A
1 s
性质: A A1 A2 As ,且 Ai 0 (i 1,2, , s) ,则 A 0 .
行向量:
α1T
A mn
α
T 2
,
α
T m
αiT (ai1, ai2, , ain )
列向量:
A (a1, a2 , , an )
线性方程组有解,称它相容;无解,就称 它不相容.
(iii)有无限多解的充分必要条件是 R( A) R( A, b) n .
线性方程组 Ax b 有解的充要条件是 R(A) R(A, b) .
n 元齐次线性方程组 Ax 0 有非零解的充要条件是 R(A) n .
矩阵方程 AX B 有解的充要条件是 R(A) R(A, B) .
定理 2: n 阶行列式可定义为 D (1)t a a p11 p2 2 apnn = (1)t a1p1 a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
关于范德蒙德行列式的性质探讨

范德蒙德行列式的应用探讨李珊珊摘要:范德蒙德行列式作为一种重要的、著名的行列式性质独特、形式优美,利用范德蒙德行列式能大大降低我们解题时的难度,起到事半功倍的效果. 本文将介绍范德蒙德行列式的概念及其性质,并且给出范德蒙德行列式在行列式计算,向量空间理论,线性变换理论,多项式理论和微积分问题五个方面较全面的具体应用,并对方法和技巧做出概括和总结.关键词:范德蒙德行列式;向量空间;线性变换;多项式;微积分中图分类号:O13Discussion on The Application of VandermondeDeterminantLi Shan-shanAbstract:The determinant is an important tool in Mathematics. It is the basis of the follow-up to the content system, such as linear equations, matrix, vector spaces and linear transformations. And it has a wide range of applications. As an important and famous determinant, Vandermonde determinant has not only unique structure, but also exquisite form. Using V andermonde determinant can greatly reduce our computation on solving problems. That is also the essence of using V andermonde determinant. This article will introduce the concept of V andermonde determinant and its calculation method and properties. What's more, this article will summarize V andermonde determinant in determinant computation, vector space, linear transformation theory, theory of polynomial and solving the problems of calculus in specific applications. And the article in the methods and techniques of Vandermonde determinant will make a summary.Keywords: V andermonde determinant; vector space; linear transformation; polynomial; Calculus1. 引言行列式在高等代数中是一个重要的数学工具,活跃在数学的各个分支. 行列式最早出现在16世纪关于求解线性方程组的问题中. 它的研究是伴随着线性代数的发展而发展起来的. 18世纪,法国著名的数学家范德蒙德(A.T.V andermonde ,1735-1796)将行列式的理论脱离线性方程组,而放到理论高度作为专门的理论进行研究,并在此基础上确立了行列式的一些性质,使行列式逐步成为一门独立的数学研究课题. 范德蒙德行列式是范德蒙德在1772年提出的一种著名的行列式,具有重要的理论研究价值和广泛的应用价值. 利用范德蒙德行列式和它的一些性质,我们可以使计算变得更为简单、直接,从而大大的提高对高等代数和数学分析中问题的计算速度. 自上世纪50年代以来,数学工作者对范德蒙德行列式的计算方法和在一些应用方面进行了研究. 不同研究者的角度、出发点和研究方向均不相同. 例如:北京大学第三版《高等代数》教材(高等教育出版社,王萼芳 石生明修订)中就提到了范德蒙德行列式在行列式计算和多项式根的存在性问题中的应用. 在一些高校的学报中我们也可以找到许多范德蒙德行列式的应用. 如:徐杰在《范德蒙德行列式的应用》(职校论坛,2009)中探讨了应用范德蒙德行列式证明向量的线性相关性问题;张文治、赵艳在《范德蒙德行列式应用三则》(北华航天工业学院学报,2007)中给出了构造范德蒙德行列式计算缺项行列式;程伟健、贺冬冬在《范德蒙德行列式在微积分中的应用》(大学数学,2004)中研究了利用范德蒙德行列式求高阶无穷小和证明K 阶导数极限存在问题等等. 综上所述,虽然国内外对范德蒙德行列式的应用研究比较多,但是对应用方法技巧的总结、归纳还比较欠缺和零散,系统性、规范性不足. 针对这种情况,本文较为系统的探讨范德蒙德行列式的应用,并对方法和技巧做出了总结.2. 范德蒙德行列式的概念及其性质定义 形如12322221231111123111...1........................n n n n n n na a a a a a a a a a a a ----的行列式,称为n 阶范德蒙德(V andermonde )行列式,记为n D .范德蒙德行列式构造独特、形式优美,并且有独特的性质. 下面将给出范德蒙德行列式的各种性质.首先,范德蒙德行列式拥有普通行列式的所有性质.(1)行列互换,行列式不变;(2)以一个数乘行列式的一行(列),相当于用这数乘此行列式;(3)行列式某一行(列)是两组数的和,则此行列式等于两个行列式的和; (4)如果行列式中两行(列)成比例,则行列式为零; (5)把一行(列)的倍数加到另一行(列),行列式不变; (6)行列式中两行(列)的位置,行列式符号改变.其次,我们给出范德蒙德行列式的五个更特别的性质. 性质1 对任意的(2)n n ≥,123222212311111123111...1......()..................n n n i j j i nn n n n na a a a D a a a a a a a a a a ≤<≤----==-∏,并且0n D =的充要条件是12,,...,n a a a 这n 个数中至少有两个相等,其中∏表示同类因子的乘积.证明: 对n 进行数学归纳. 当2n =时,211211n D a a a a ==-,结果正确. 假设对于1n -结论成立,即111()n i j j i n D a a -≤<≤-=-∏.则对于n 阶的情况有,在n D 中第n 行减去第1n -行的1a 倍,第1n -行减去第2n -行的1a 倍,以此类推,由下向上依次减去上一行的1a 倍,有2131122221231311212122123131111...10 0..................0...n n n nn n n n n n nna a a a a a D a a a a a a a a a a a a a a a a a a ---------=------=2131122221231311212122123131.....................n n nn n n n n n nna a a a a a a a a a a a a a a a a a a a a a a a ---------------=1232222213111232222123111...1...()()...().....................n n n n n n n na a a a a a a a a a a a a a a a a a -------.后面这是一个1n -阶的范德蒙德行列式,根据归纳法假设,它等于所有可能差(2)i j a a j i n -≤<≤的乘积,而包含1a 的差全在前面出现了. 因之,结论对n 阶范德蒙德行列式也成立. 根据数学归纳法,可知 1()n i j j i nD a a ≤<≤=-∏.由n D =1()i j j i na a ≤<≤-∏,可知0n D =的充要条件是12,,...,n a a a 这n 个数中至少有两个相等,证毕.注 2.1 因为T n n D D =,所以范德蒙德行列式还可以写成211112122221333211...1...1..................1...n n n n nnna a a a a a a a a a a a ----,行列式的值不变.性质2 若将范德蒙德行列式n D 顺时针旋转90 ,可得1211112222(1)1233312...1...1...1..................1n n n n n n n n n nnna a a a a a D a a a a a a --------=, 则有(1)(1)2(1)n n nn DD -=-.证明:因为T n n D D =,所以2111121222(1)21333211 (1)...1..................1...n n Tn n n n nnna a a a a a D D a a a a a a ----==,交换行列式的第1列与第n 列,则根据行列式的性质(6),行列式的值变为原来的-1倍,即有12111122221233312...1 (1)...1..................1n n n n n nnna a a a a a D a a a a a a ----=-, 再交换所得行列式的第2列和第1n -列,行列式变为原来的2(1)-倍,即有121111222221233312...1 (1)(1)...1..................1n n n n n n n n n nnna a a a a a D a a a a a a --------=-, 依次进行下去,得到最终的行列式12111122221233312...1...1...1..................1n n n n n n n n nnna a a a a a a a a a a a --------, 这样进行了(1)2(1)n n --次,于是1211112222(1)12233312...1...1(1)...1..................1n n n n n n n n n n n nnna a a a a a D a a a a a a ---------=-,结论得到证明.性质3 若将范德蒙德行列式n D 逆时针旋转90 ,可得(2)nD =212111121222211111 (1)...1 (1)...n n n nnn n n n n n n n n n n n a a a a a a a a a a a a --------------,有(1)(2)2(1)n n nn D D -=-.事实上,与性质2 的证明类似,依次交换行列式的两行,我们容易得到性质3 的结果.性质4 若将范德蒙德行列式n D 旋转180 ,可得(3)nD =111112122121211111............ (1)1...11n n n n n n n n n n nn n n n n a a a a a a a a a a a a -------------, 有(3)nn D D =.事实上,类似于性质2和性质3的证明,连续进行两次性质2 或性质3 的变换,就可以得到性质4 的结果.性质 5 n 阶准范德蒙1232222123(4)111112311111231231111n n nk k k k n k k k k nnnnnnx x x x x x x x D x x x x x x x x x x x x ----++++=1212,,...,1()n k n ki j p p p p p p j i nx x x x x --≤<≤=-∑∏,(1,2,,1)k n =- ,其中12,,,n k p p p - 是1,2,,n 中()n k -个数的一个正序排列,12,,,n kp p p -∑表示对所有()n k -阶排列求和.证明:在行列式中增补第(1)k +行和(1)n +列相应的元素. 考虑1n +阶范德蒙德行列式123222221231111111231231111112312311111()n n k k k k k n n kkkkknk k k k k nnnnnnnx x x x x x x x x xD x x x x x xx x x x x x x x x xx x x x x-----++++++=,按第1n +列展开,有11,12,11,11,111()1...()...()()inn n n i n n n n i j j i nD x A xA x A x A x x x x x x +++++++≤<≤=++++=---∏,其中,1(1,2,...,1)i n A i n +=+分别是21,,,...,n x x x 的代数余子式. 于是(4)(1)(1)1,1(1)n i ni n D A +++++=-. (1)对于11,12,11,11,111()1...()...()()inn n n i n n n n i j j i nD x A xA x A x A x x x x x x +++++++≤<≤=++++=---∏,由根与系数的关系(Vieta 定理)有12121,1,,...,1(1)...()n kn kn ii n p p p i j p p p j i nA x x x x x ---++≤<≤=--∑∏,由(1)式,可知1212(4),,...,1()n k n kni j p p p p p p j i nD x x x x x --≤<≤=-∑∏.3. 关于范德蒙德行列式应用的探讨前面介绍了范德蒙德行列式的概念及其性质,接下来我们将从行列式计算,向量空间理论,线性变换理论,多项式理论和微积分问题五个方面探讨范德蒙德行列式的应用.3.1 范德蒙德行列式在行列式计算中的应用范德蒙德行列式在行列式计算问题中起着举足轻重的作用. 利用范德蒙德行列式计算行列式已经被确立为一种特殊的方法被广泛使用. 下面我们来看几个例子:例1 计算行列式12322221232222123123111...1...........................n n n n n n nnnnnnx x x x x x x x D x x x x x x x x ----=.解:法1 构造1n +阶范德蒙德行列式1232222212312222212311111123123111...11......()...........................n n n n n n n n nn n n n n nnnnnnnx x x x x x x x x xD x x x x x x x x x x xx x x x x+----------=,则行列式D 为1()n D x +中元素1n x -的余子式,将行列式1()n D x +按1n +列展开得11,12,11,1()1...nn n n n n D x A xA x A +++++=+++,其中1n x -的系数为21,1,1,1(1)n n n n n n n A M M D ++++=-==-.又111()()...()()n n i j j i nD x x x x x x x +≤<≤=---∏,由根与系数的关系有1n x-的系数是1ni i x =-∑,因此在1()n D x +中1n x -的系数为11()nij i i i j nx x x =≤<≤--∑∏,所以11()nij i i i j nD x x x =≤<≤=--∑∏.法2 由范德蒙德行列式的性质 5,1212,,...,1()n k n ki j p p p p p p j i nD x x x x x --≤<≤=-∑∏,这里11()nij i i i j nD x x x =≤<≤=--∑∏.例2 证明n 阶循环行列式123121112122341.........()()...()..................n n n n n n n a a a a a a a a a a a a f f f a a a a εεε---=, 其中112()...n n f x a a x a x -=+++,12,,...,n εεε是所有的n 次单位根.证明:由于12,,...,n εεε是所有的n 次单位根,其所构成的n 阶范德蒙德行列式12322221231111123111...1......0..................n n n n n n nεεεεεεεεεεεε----≠,令123121123222211212311112341123...111...1................................................n nn n n n n n n n n n na a a a a a a a D a a a a a a a a εεεεεεεεεεεε-------=⋅,再由行列式的乘法,D 的第i 行第j 列的元素是2112311......i i n ij n i n i j n jj n i jd a a a a a εεεε----+-+-+=++++++,1,2,...,i n =,规定n k k a a +=.由于22cossin,(1,2,...,)m m m i m n ππεππ=+=,所以1mm εε=.于是(2)(1)(1)23111111......jj i j i j i ij n i n i n n i d a a a a a εεεε----+-+-+=++++++.又11nε=,因而(1)11,,1,2,...,j i ij j d d i j n ε-==.而右端的数恰好为行列式111231222221231311111231111...100...0 00...0. 00...0....................................nn n n n n nna a a a εεεεεεεεεεεε---- 的第i 行第j 列的元素,即上面的行列式也等于D ,且原循环行列式的值为11121...n a a a , 由行列式D 的形状可知:1112...(),1,2,...,n j j n jj a a a a f j n εεε-=+++==.于是再根据行列式的性质有1232341(1)(2)2345212121.........(1)()()...()..................n n n n nn a a a a a a a a a a a a f f f a a a a εεε---=-.通过对上述例题的分析,可归纳出构造和利用范德蒙德行列式来计算行列式的一些技巧:① 观察要计算的行列式是否具有范德蒙德行列式的的某些结构特征; ② 通过适当的方法构造范德蒙德行列式;③ 结合范德蒙德行列式以及题目的要求进行行列式的求解;④ n 阶循环行列式的解法以多项式理论为基础,结合范德蒙德行列式进行求解,方法简便易行,具有一定的实用价值.3.2 范德蒙德行列式在向量空间理论中的应用向量空间有时也称为线性空间,它是线性代数最基本的概念之一,也是我们在高等代数的学习中接触到的第一个抽象的概念. 向量空间与其子空间的关系问题,向量空间中向量的线性相关性问题都是向量空间研究的重点和难点,对逻辑推理有较高的要求. 对于判断、证明、计算向量空间中相应问题多往往比较难. 但将其与行列式适当结合,特别是与范德蒙德行列式相结合时,题目就会变得容易理解和掌握,如下面几个例子:例3 设V 是数域F 上的n 维向量空间,则V 不能写成它的有限个真子空间的并.证明:对n 进行数学归纳. 当1n =时,显然成立.设1n >时,令123,,,...,n a a a a 是V 的一组基,设1*12{...|}n n S a ka k a k F V -=+++∈⊂, 其中*F 是F 中元素的集合, 令*112:,...n n F S k e ke k e ϕ-→→+++,其中12,,...,n e e e 是单位向量, 则易证ϕ是双射,从而S 中有无穷多个不同的元素.设i V (1,2,...i t =)为V 的真子空间,则S 中的元素在i V 中的个数小于n . 否则,若,1,2,...,j i V j n β∈=,111121112........................................n n n nn n n a k a k a a k a k aββ--⎧=+++⎪⎨⎪=+++⎩,即211111121222222133333211...1...1 (1)...n n n n nn nnn a k k k a k k k a k k k a k k k ββββ----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由,,1,2,...,,i j k k i j n i j ≠=≠知123,,,...,n a a a a 的系数行列式为范德蒙德行列式, 由范德蒙德行列式的性质 1知系数行列式非零,故,1,2,...,j k a V j n ∈=.进而,1,2,...,i V V i t ==矛盾, 从而S 中只有有限多个元素在1ti i V = ,即V 不能写成它有限个真子空间的并的形式.例4 设V 是数域F 上的n 维向量空间,任给正整数m n ≥,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取211(1,,,...,)n a c c c -=,222122(1,,(),...,())n a c c c -=, .......................................... 21(1,,(),...,())m m n m m a c c c -=.令111222333212121211()...()1()...()1()...()...............1()...()nnnk k k n k k k n k k k n n k k k n c c c c c c D cc ccc c----=,121...,n k k k m ≤≤≤≤≤c为任意常数.因为111222333212121211()...()1()...()1()...()...............1()...()nnnk k k n k k k n k k k n n k k k n c c c c c c D cc ccc c----=是范德蒙德行列式,由范德蒙德行列式的性质1知n 0D ≠,所以12,,...,nk k k a a a 线性无关. 再由n V F ≅,所以结论成立.在向量空间理论中,我们经常会碰到需要用范德蒙德行列式转化的问题,通过转化我们很容易地得到所需要的结论. 而这就要求我们充分掌握范德蒙德行列式以及它的结构特征,达到灵活的使用.3.3 范德蒙德行列式在线性变换理论中的应用线性变换反映了线性空间中元素之间的一种最基本的联系,它是线性函数的推广.线性变换与行列式、矩阵联系密切. 利用行列式,尤其是范德蒙德行列式,来解决线性变换的特征值与特征向量问题能达到事半功倍的效果.例5 如果12,,...,s λλλ是线性变换的全部两两不同的特征值,(1,2,...)ii V i s λα∈=,则当12...0s ααα+++=时,必有12...0s ααα====.证明:注意到(1)i i i i s αλα=≤≤,对等式12...0s ααα+++=左右两边同时逐次作用,得112222211221111122 0...0 0s s s s s s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩, 用矩阵表示为()21111212222112333211 (1)...,,...,(0,0,...,0)1..................1...s s s s s sss λλλλλλαααλλλλλλ----⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭. (2)矩阵211112122221333211...1 (1)..................1...s s s s sss B λλλλλλλλλλλλ----⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙德行列式,并且由于12,,...,s λλλ两两不同,从而B 是可逆矩阵. 在(2)式两边右乘1B -,得()12,,...,(0,0,...,0)s ααα=,所以12...0s ααα====.例6 设数域F 上的n 维向量空间V 的线性变换σ有n 个互异的特征根12,,...,n λλλ则:(i )与σ可交换的V 的线性变换都是21,,,...,n e σσσ-的线性组合,其中e 为恒等变换;(ii )21,,,,...,n V αασασασα-∀∈线性无关的充要条件是1nii αα==∑,其中(),1,2,...,i i i i n σαλα==.证明:(i )设δ是与σ可交换的线性变换,且(),1,2,...,i i i i n σαλα==, 则{|}ii V k k F λα=∈是δ的不变子空间.令21121...n n xe x x x δσσσ--=++++且(),1,2,...,i i i k i n σαα==,则有下方程组21111211121212221221121.......................................n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=+++⎪=+++⎪⎨⎪⎪=+++⎩ , (3) 可知(3)的系数行列式是范德蒙德行列式,且系数行列式1()i j j i nD λλ≤<≤=-∏,因为12,,...,n λλλ互异,由范德蒙德行列式的性质 1知0D ≠.于是方程组(3)有唯一解,所以δ是21,,,...,n e σσσ-的线性组合. (ii )先证明充分性. 因为1nii αα==∑,所以21111212222121123333211 (1)...(,,,...,)(,,...,)1..................1...n n n n n n n nnλλλλλλασασασαααααλλλλλλ-----=.且2111121222213331211...1...()01..................1...n n n i j j i nn n nnλλλλλλλλλλλλλλ---≤<≤-=-≠∏,因而211112122221333211...1...1..................1...n n n n n nnλλλλλλλλλλλλ----是可逆矩阵. 又由12,,...,n ααα是V 的一组基,可知21,,,...,n ασασασα-线性无关. 再证必要性.设12,,...,n e e e 是分别属于12,,...,n λλλ的特征向量,则12,,...,n e e e 构成V 的一组基,因而有1122...n n k e k e k e α=+++. 若0,1,2,...,i k i n ≠=则i i k e 是σ的属于i λ的特征向量,故结论成立. 若存在{1,2,...,}j n ∈使0j k ≠,不妨设12,,...,r k k k 全不为零, 而1...0r n k k +===,因而有1122...r r k e k e k e α=+++,则211111111212222222212112333333321......(,,,...,)(,,...,).....................n n n n r n rr rr rr r k k k k k k k k e e e k k k k k k k k λλλλλλασασασαλλλλλλ-----⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭.利用范德蒙德行列式的性质 1可知21111111121222222221333333321...........................n n n n rr rr rr r k k k k k k k k A k k k k k k k k λλλλλλλλλλλλ----⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭有一个r 阶子式不为零,所以秩(A )=r ,从而21(,,,...,)n r ασασασα-=秩, 又因为21,,,...,n ασασασα-线性无关,所以21(,,,...,)n n ασασασα-=秩.而r n <,矛盾. 所以1nii αα==∑,其中(),1,2,...,ii i i nσαλα==.在高等代数中,线性变换一直是最难的部分之一,题目的变化也很多. 在这些题目中,我们巧妙地运用范德蒙德行列式来使复杂的问题得到解决.3.4 范德蒙德行列式在多项式理论中的应用多项式是一类最常见、最简单的函数,它的应用非常广泛. 虽然多项式在整个高的代数中相对独立,然而却为高等代数的基本内容提供了理论依据. 研究多项式、多项式根的存在性问题、多项式求根问题是多项式理论中的重难点. 而多项式的求根问题又与行列式相关联,巧妙应用它们之间的联系,会起到化繁为简的作用. 例7 设01()n n f x c c x c x =+++ ,若()f x 至少有n+1个不同的根,则()0f x =. 证明:121,,,n x x x + 为()f x 的n+1个不同的根,则有齐次线性方程组20112112012222201121100n n nn n n n n n c c x c x c x c c x c x c x c c x c x c x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩. (4) 将01,,,n c c c 看作方程组(4)的未知量.因为方程组(4)的系数行列式D 是范德蒙行列式,且1()0i j i j nD x x ≤<≤=-≠∏,由克莱姆法则知方程组(4)只有零解,从而有010n c c c ==== ,即()f x 是零多项式.例8 设12,,,n a a a 是数域F 中互不相同的数,12,,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,,i i f a b i n == .证明:设1011()n n f x c c x c x --=+++ , 由(),1,2,,i i f a b i n == ,知21011211112101222122210121n n n n n n n n n n c c a c a c a b c c a c a c a b c c a c a c a b------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩ . (5) 因为12,,,n a a a 互不相同,所以方程组(5)的系数行列式21111212222133312111()01...1n n n i j i j nn nnna a a a a a D a a a a a a a a ---≤<≤-==-≠∏.由克莱姆法则知方程组(5)有唯一解,即存在唯一的数域F 上次数小于n 的多项式1011()n n f x c c x c x--=+++ ,使得(),1,2,,i i f a b i n == .在多项式理论中,涉及到求根问题的有很多. 在分析有些题目时,范德蒙德行列式是能够起到关键的作用. 主要应用在多项式组成的方程组中,系数组成的行列式是范德蒙德行列式. 若系数行列式不为零(即范德蒙德行列式的性质 1),则由克莱姆法则知方程组只有零解. 熟练有效地运用范德蒙德行列式,对我们最终解决问题会有直接的帮助.3.5 范德蒙德行列式在微积分中的应用无穷大量、无穷小量、高阶导数和极限是微积分的主要内容. 这些概念的正确理解和掌握对学好微积分是必要的. 在解决这类问题的时候,有时巧妙地构造范德蒙德行列式变换形式,可以使问题得到容易理解的解答.例9 设f(x )在区间I 上n 阶可导(2)n ≥,若对x I ∀∈,0|()|f x M ≤,()|()|n n f x M ≤(0,n M M 是正常数).证明:若存在1n -个正常数121,,...,n M M M -,对x I ∀∈,()|()|(1,2,...,1)k k f x M k n ≤=-.证明:设121,,,,0,()n i i j a a a I a a a i j -∈≠≠≠ 且, 由泰勒公式,对1,2,...,1i n ∀=-,()()11()()()()!!k n n kni ii k fx ff x a f x a a k n ξ==+=++∑,由此得()()11()()()()!!k n n k nii i k fx fa f x a f x a k n ξ===+--∑,所以有()()101()|()||||()||()|||2,!!!k n n k nii i n k fx fA a f x a f x a M M k n n ξ==≤+++≤+∑其中11||m ax n ii n A a ≤≤-=.令1()1()()!kn k ii k a fx A x k ===∑,(x I ∈,1,2,...,1)i n =-, (6)则0|()|2!i n A A x M M n ≤+,(x I ∀∈,1,2,...,1)i n =-.由于方程组(6)的系数行列式D 为231111123122222311111...2!3!(1)!...2!3!(1)!..................2!3!(1)!n n n n n n n a a a a n a a a a D n a a a a n --------=--211112122221121333211111...1......1...1!2!...(1)!...............1...n n n n n n n n a a a a a a a a a a a a n a a a --------=-右边的行列式为121,,,n a a a - 的范德蒙德行列式,由0,()i i j a a a i j ≠≠≠知0D ≠,由克莱姆法则知,存在与x 无关的常数()()()121,,...,k k k n λλλ-,使得 1()()1()(),,1,2,...,1n k k i i i fx A x x I k n λ-==∀∈=-∑,由此推得x I ∀∈,1,2,...,1k n =-11()()()0011|()||||()|||(2)!n n k k k ii ik i i A fx A x M M M n λλ--==≤≤+=∑∑.例10 设函数f(x)在x=0附近有连续的n 阶导数,且'()(0)0,(0)0,...,(0)0n f f f≠≠≠,若121,,...,n p p p +是一组两两互异的实数,证明:存在惟一的一组实数121,,...,n λλλ+,使得当0h →时,11()(0)n i i i f p h f λ+=-∑是比n h 高阶的无穷小.证明:由题设的条件,可得()i f p h ,1,2,...,1i n =+在0x =处带有皮亚诺余项的麦克劳林展开式为:()110()(0)(),!k knk nk p h f p h fo h k ==+∑(1q )()220()(0)(),!kknk nk p h f p h fo h k ==+∑(2q ).........................()110()(0)(),!k knk nn n k p h f p h fo h k ++==+∑(1n q +)112211()()...()n n q q q λλλ++⨯+⨯++⨯,得111()11111()(0)(1)(0)()(0)()!n n nn k k kn ii i ii i i k i f p h f f p fh o h k λλλ+++====-=-++∑∑∑∑.当0h →时,若11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小,则有121112211222112211112211...1...0...0 0n n n n n n n n n n p p p p p p p p p λλλλλλλλλλλλ++++++++++=⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪⎩, 这是以121,,...,n λλλ+为未知数的线性方程组,其系数行列式有123122221231111231111...1......()0..................n n j i i j n nn nn n p p p p D p p p p p p p p p p ++≤<≤++==-≠∏,所以上述方程组有惟一的解,即存在唯一的一组实数121,,...,n λλλ+,使得当0h →时,11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小.例11 设f(x)至少有k 阶导数,且对某个实数α有()lim ()0,lim ()0k x x x f x x f x αα→∞→∞==. (7)试证:()lim ()0,0,1,2,...,i x x f x i k α→∞==,其中(0)()()fx f x =.证明:由条件(7)知,要证明()lim ()0i x x f x α→∞=,只要将()()i f x 写成()f x 与()()k f x 的线性组合的形式即可,利用泰勒公式,21'"(1)()()()()()...()()2!(1)!!k kk k m mmmf x m f x m f x f x fx fk k ξ--+=+++++- (8)其中,1,2,...,m x x m m k ξ<<+=.这是关于'"(1)(),(),...,()k f x f x f x -的线性方程组,其系数行列式为21211111...2!(1)!2212...2!(1)! (1)...2!(1)!k k k k D kkkk ----=-212121111 (1)122 (21133)...31!2!...(1)!...............1...k k k k kkk ---=-,后一行列式是范德蒙德行列式,且有212121111 (1)122...21!2!...(1)!133...3 (1)...k k k k kkk---=-,所以D =1. 于是可从方程组(8)把'"(1)(),(),.()k f x f x f x-写成()(1,2,...,)f x m m k +=与()()(1,2,...,)k m fm k ξ=的线性组合. 只需证明()lim ()lim ()0,(1,2,..,)k m x x x f x m x fm k ααξ→∞→∞+===.事实上,设x t x k ≤≤+,于是()()()lim ()lim ()()lim ()lim ()0,(0,)i i i x x x x x x x ft t ft t ft i k tt ααααα→∞→∞→∞→∞====.在此式中分别令,0t x m i =+=和令,m t i k ξ==,则得()lim ()lim ()0,(1,2,..,)k m x x x f x m x fm k ααξ→∞→∞+===.通过对以上例题的分析可以总结利用范德蒙德行列式解决微积分问题的方法: ① 首先要应用泰勒公式,写出函数在某点的近似解;② 根据构造函数在某点的泰勒展开形式,构造范德蒙德行列式;③结合范德蒙德行列式和题目本身进行求解.4. 结束语范德蒙德行列式为问题的求解提供了十分有效地手段. 对范德蒙德行列式的应用,不仅需要对范德蒙德行列式的形式、特点及性质熟练掌握,而且要能灵活的应用. 范德蒙德行列式应用中,构造范德蒙德行列式是解决问题的难点和关键点. 要巧妙地构造范德蒙德行列式进行解题,必须对高等数学的基础知识熟练掌握,要善于将知识衔接起来. 达到这样的境界非一日之功,因此只有打好高等数学的基础,不断地分析解决典型的题目,找出内在的规律,日积月累,对范德蒙德行列式的应用才能得到进一步的掌握.参考文献:[1] 北京大学数学系集合与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 华东师范大学数学系.数学分析[M]. 北京:高等教育出版社,2001.[3] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006.[4] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社,2001.[5] 章乐.几道考研试题的推广[J].大学数学,2003.[6] 牛莉.线性代数[M].北京:中国水利水电出版社,2005.[7] 吴良森,毛羽辉,宋国栋,魏木生,数学分析习题精解[M].北京:科学出版社,2002.[8] 易大义, 陈道琦. 数值分析引论[M].杭州: 浙江大学出版社, 1998.。
关于行列式的一般定义和计算方法

关于行列式的一般定义和计算方法之答禄夫天创作创作时间:贰零贰壹年柒月贰叁拾日n 阶行列式的定义n 阶行列式nnn n nn a a a a a a a a a 212222111211=∑-nn n jj j nj j j j j j a a a 21212121)()1(τ2N 阶行列式是N !项的代数和;3、N 阶行列式的每项都是位于分歧行、分歧列N 个元素的乘积;特点:(1)(项数)它是3!项的代数和;(2)(项的构成)展开式中的每一项都是取自行列式分歧行分歧列的三个元素之积.其一般项为:(3)(符号规律)三个正项的列标构成的排列为123,231,312.它们都是偶排列; 三个负项的列标构成的排列为321,213,132, 它们都是奇排列. §行列式的性质322311332112312213a a a a a a a a a ---322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a D ++==(1性质1:行列式和它的转置行列式的值相同。
行列式对行满足的性质对列也同样满足。
性质2互换行列式的两行(列),行列式的值变号.如以i 行,j 列。
交换 i ,j 两行记为交换i,j两列记作性质3:如果一个行列式的两行(或两列)完全相同,那么这个行列式的值等于零。
性质4:把一个行列式的某一行(或某一列)的所有元素同乘以某一个常数k 的结果等于用这个常数k 乘这个行列式。
(第i 行乘以k ,记作推论1:一个行列式的某一行(或某一列)的所有元素的公因式可以提到行列式符号的前面。
推论2:如果一个行列式的某一行(或某一列)的所有元素都为零,那么行列式值等于零。
推论3:如果一个行列式的某二行(或某二列)的对应元素成比例,那么行列式值等于零。
性质5:如果行列式D 的某一行(或某一列)的所有元素都可以表成两项的和,那么行列式D 等于两个行列式D 1和D 2的和。
范德蒙德行列式的几点应用

第2讲 范德蒙德行列式的几点应用我们知道,n 阶范德蒙德行列式()2111121222121111n n n ijj i nn nnnx x x x x x V x x x x x --<-==-∏≤≤,当这些i x 两两互异时,0n V ≠.这个事实有助于我们理解不少结果.例1 证明一个n 次多项式之多有n 个互异根. 证 设()2012n n f x a a x a x a x =++++有1n +个互异的零点121,,,n x x x +,则有()20120n i i i n i f x a a x a x a x =++++=,1 1i n +≤≤.即这个关于01,,,n a a a 的齐次线性方程组的系数行列式()211122221121111101nn ijj i n n n n n x x x x x x x x x x x <++++=-≠∏≤≤,因此0120n a a a a =====.这个矛盾表明()f x 至多有n 个互异根. 例2 设12,,,n a a a 是n 个两两互异的数.证明对任意n 个数12,,,n b b b ,存在惟一的次数小于n 的多项式()L x :()1nj i i j ii jx a L x b a a =≠-=-∑∏,使得()i i L a b =,1 i n ≤≤.证 从定义容易看出()L x 的次数小于n ,且()i i L a b =,故只需证明唯一性即可. 设()210121n n f x c c x c x c x --=++++满足()i i f a b =,1 i n ≤≤,即这个关于0121,,,,n c c c c -的线性方程组的系数行列式()21111212221211101n n ijj i nn nnna a a a a a a a a a a --<-=-≠∏≤≤,故0121,,,,n c c c c -是唯一的,必须()()f x L x =.这个例子就是有名的拉格朗日插值公式.例3 设()()()121,,,n f x f x f x -是1n -个复系数多项式,满足 ()()()121211|n n n n n n x x f x xf x x f x ---++++++,证明()()()1211110n f f f -====.证 设()()()()()211211n n n n n n f x xf x x f x p x x x ---+++=+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得这个关于()()()1211,1,,1n f f f -的齐次线性方程组的系数行列式()()()22221211101n n n n n ωωωωωω-----≠,因此()()()1211110n f f f -====.例4 设n 是奇数,()()()121,,,n f x f x f x -是1n -个复系数多项式,满足()()()123221211|n n n n n n n n x x x f x xf x x f x -------+-++++,证明()()()1211110n f f f --=-==-=.证 注意到当n 是奇数时,()()123111n n n n x x x x x ---+=+-+-+,可按照例3的思路完成证明.例5 设A 是个n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关.证 设12,,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,,r ααα适合i i i A αλα=,1 i r ≤≤,假设11220r r x x x ααα+++=,那么有()11220j r r A x x x ααα+++=,1 1j r -≤≤.即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫==⋅= ⎪⎝⎭∑∑∑,注意到()0j ir rλ⨯≠,必须11220r r x x x ααα====,于是120r x x x ====,这证明了12,,,r ααα线性无关.例6 计算行列式()()()()()()()()()111212122211121111n n n n n n n x x x x x x D x x x ϕϕϕϕϕϕϕϕϕ---=,其中()11kk k k nk x x a xa ϕ-=+++.解 注意到下面的等式: 即得()1n ijj i nD x x <=-∏≤≤.例7 计算行列式1212111111111n n n x x x D x x x n n n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,其中()()11!x x x x k k k --+⎛⎫= ⎪⎝⎭.解 直接利用例6可得()()111!2!1!n ijj i nD x x n <=--∏≤≤. 例8 设12,,,n a a a 是正整数,证明n 阶行列式能被()()2121221n n n n ----整除.证 直接运用例6、例7可得 能被()()()2121!2!1!1221n n n n n ---=--整除.例9 计算n 阶范德蒙德行列式()()()221212421111111111n n n n n n V εεεεεεεεε-----=, 其中22cossini n nππε=+⋅. 解 注意到1kε=当且仅当|n k ,可得()()()1222000000100000n n n n n nV n n n--==-, 由此()()1222n n n n V i n --=±,n V 的模2n n V n =.现在来确定n V 的幅角:令cossini nnππα=+,2εα=,故对于上面考虑的j 和k ,总有0k j n <-<,这意味着()sin0k j nπ->,因此()2012sinn n j k n k j V n nπ<--==∏≤≤,由此可设n n V V β=⋅,其中这样就求得了()()13222n n n n V in --=.例10 证明缺项的n 阶范德蒙德行列式 证 按n V 的第一行展开行列式,可得 例11 设有n 个常数12,,,n b b b ,n 个两两不同的常数12,,,n a a a 以及由x 的恒等式定义的一个多项式()p x .对于一个已知多项式()t φ,定义另一个多项式()Q x ,它为上面的恒等式中将()12,,,,n p x b b b 分别代之以()()()()12,,,,n Q x b b b φφφ所得的x 的恒等式所确定.证明用多项式()()()12n x a x a x a ---除以()()p x φ所得的余式为()Q x .证 由于n 阶范德蒙德行列式()21111212221211101n n kj j k nn nnna a a a a a aa a a a --<-=-≠∏≤≤,按题设这里的行列式的最后一列展开,可知()p x 是个次数小于n 的多项式.从条件知对每个i a ,()()212121111111112121222222222121000011101111n i ii i i i n n n n n n nnnnnnnnp a b a a a p a a a a b a a a b a a a b a a a b a a a b a a a b --------==, 必须()i i p a b =,1 i n ≤≤.由拉格朗日插值公式知()1nj i i j ii jx a p x b a a =≠-=-∑∏.同理可求出由恒等式所定义的多项式()()1nj i i j ii jx a Q x b a a φ=≠-=-∑∏.设()()()()()()()12n p x q x x a x a x a r x φ=⋅---+,其中()r x 的次数小于n .为证()()r x Q x =,只需证明1 i n ≤≤时,()()i i r a Q a =即可.事实上,对每个i a ,()()()()()i i i i r a p a b Q a φφ===是易见的,因此结论成立.例12 设()f y 在[],a b 上连续,在(),a b 内存在2阶导数,证明在a x b <<上有()()()()()12f x f a f b f a x a b a f c x b -----''=-,这里(),c a b ∈.特别地,存在(),c a b '∈,使()()()()2224b a a b f b f f a f c -+⎛⎫'''-+=⎪⎝⎭. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F y x x f x b b f b =, 则()F y 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,由中值定理存在12a x x x b <<<<,使()()120F x F x ''==,故再运用一次中值定理,存在()12,c x x ∈,使()0F c ''=,即()()()()()2220021011f c a a f a F c x x f x b b f b ''''==, 展开行列式即得()()()()()12f x f a f b f a x a b a f c x b -----''=-.特别地,取2a bx +=,则有相应的(),c a b '∈,使上式成立,即 ()()()()21222a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--'''=+-,化简即得()()()()2224b a a b f b f f a f c -+⎛⎫'''-+= ⎪⎝⎭. 例13 设()f x 在[],a b 内存在1n -阶导数,12n a x x x b =<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏.证 在[],a b 上构造函数()()()()()21211111212222211111n n n n nn nn x x x f x x x x f x F x x x x f x x x x f x ----=, ()F x 在[],a b 内存在1n -阶导数.因()()()120n f x f x f x ====,反复利用微分中值定理,存在(),c a b ∈,使()()10n Fc -=,即()()()()()()()()12211111112212222222100001!1011n n n n n n n n nn n nn n f c x x x x f x F c x x x x f x x x x x f x ---------==.按第一行展开行列式得()()()()()()221111*********222222111111!11n n n n n n n nnn nnnx x f x x x x x x f x x x x n f c x x f x x x x --------=,左边按最后一列展开行列式,化简可得()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例14 设()f x 在[],a a nh +内存在n 阶导数,这里0h >.证明存在a c a nh <<+,使()()()()()()()()()12112nn n n n f a nh f a n h f a n h f a h f c ⎛⎫⎛⎫+-+-++--+-= ⎪ ⎪⎝⎭⎝⎭.证 置i x a ih =+,0 i n ≤≤,则012n a x x x x a nh =<<<<=+.于是例14在本质上是例13的特殊情形.。