文献综述-小波变换(Wavelet-Transform)的概念是1984年法国地球-...电子教案
小波讲义

小波小波(Wavelet)这一术语,顾名思义,“小波”就是小区域的波,而且是长度有限、均值为0的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
如下图正弦波Meyer 小波Morlet小波202()t j t t ee ωψ-=或频域形式:20()/2()eωωψω--=⋅121210()110t t t others ψ≤<⎧⎪=-≤<⎨⎪⎩Haar小波简单来说,小波函数必须满足下列条件:(1)2|()|t dt ψ∞-∞⎰, 也即2()L R ψ∈ 并单位化 ,(2) |()|t dt ψ∞-∞<+∞⎰, 也即1()L R ψ∈(3) ()0t dt ψ+∞-∞=⎰, 小波变换的反变换及对基本小波的要求小波变换区别于某些常用变换(如傅里叶变换、拉氏变换)的一个特点是没有固定的核函数,但也不是任何函数都可用作小波变换的基本小波()t ψ。
任何变换都必须存在反变换才有实际意义,但反变换并不一定存在,对小波变换而言,所采用的小波必须满足所谓“容许条件”(admissible condition),反变换才存在。
容许条件:20|()|d ψωωω∞<∞⎰正规性条件(regularity condition )本来满足容许条件的()t ψ便可用作基本小波,但实际上往往要求更高些,对()t ψ还要施加正规性条件,以便()ψω在频域上表现出较好的局域性能。
也就是要求()0pt t dt ψ∞-∞=⎰,1,2,,,p n =⋅⋅⋅ 且n 越大越好。
sin 2sin(2)cos(100)y x x x πππ=++sin 2sin(2)y x x ππ=+光滑紧支撑正交小波()t ϕ的构造满足(1){()}k Z x k ϕ∈-是中的标准正交基;(2)()x ϕ满足双尺度方程(/2)()k kx a x k ϕϕ=-∑, (3)1()()x L R ϕ∈且ˆ(0)0ϕ≠ (4)()x ϕ是紧支撑的。
小波变换(wavelet transform)

其中,左上角的元素表示整个图像块的像素值的平均值,其余是该图像块的细节系数。 如果从矩阵中去掉表示图像的某些细节系数,事实证明重构的图像质量仍然可以接受。 具体做法是设置一个阈值,例如的细节系数δ≤5 就把它当作“0”看待,这样相比, Aδ 中“0”的数目增加了 18 个,也就是去掉了 18 个细节系数。这样做的好 处是可提高小波图像编码的效率。对矩阵进行逆变换,得到了重构的近似矩阵
7 50 42 31 39 18 10 63
57 16 24 33 25 48 56 1
使用灰度表示的图像如图 11.2 所示:
图 11.2 图像矩阵 A 的灰度图
一个图像块是一个二维的数据阵列, 可以先对阵列的每一行进行一维小波变换, 然后对 再行变换之后的阵列的每一列进行一维小波变换, 最后对经过变换之后的图像数据阵列进行 编码。 (1) 求均值与差值 利用一维的非规范化哈尔小波变换对图像矩阵的每一行进行变换, 即求均值与差值。 在 图像块矩阵 A 中,第一行的像素值为 R0: [64 2 3 61 60 6 7 57] 步骤 1:在 R0 行上取每一对像素的平均值,并将结果放到新一行 N0 的前 4 个位置, 其余的 4 个数是 R0 行每一对像素的差值的一半(细节系数) : R0: [64 2 3 61 60 6 7 57] N0: [33 32 33 32 31 -29 27 -25] 步骤 2:对行 N0 的前 4 个数使用与第一步相同的方法,得到两个平均值和两个细节系 数,并放在新一行 N1 的前 4 个位置,其余的 4 个细节系数直接从行 N0 复制到 N1 的相应 位置上: N1: [32.5 32.5 0.5 0.5 31 -29 27 -25] 步骤 3:用与步骤 1 和 2 相同的方法,对剩余的一对平均值求平均值和差值, N2: [32.5 0 0.5 0.5 31 -29 27 -25] 3 0 0 1 V : V W W W2 其中,第一个元素是该行像素值的平均值,其余的是这行的细节系数。 (2) 计算图像矩阵 使用(1)中求均值和差值的方法,对矩阵的每一行进行计算,得到行变换后的矩阵:
小波变换发展史

小波变换发展史传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。
在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。
小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。
小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。
1.从傅立叶分析到小波分析1807年,法国学者Fourier指出任何周期函数都可以用一系列正弦波来表示,开创了傅立分析。
傅立叶分析揭示了时域与频域之间内在的联系,反映了“整个”时间范围内信号的“全部”频谱成分,是研究信号的周期现象不可缺少的工具。
建立在傅立叶分析基础上的采样定理和FFT技术奠定了现代数字化技术的理论基础。
尽管傅立叶变换具有很强的频域局域化能力,但是它明显的缺点,那就是无法反映非平稳信号在局部区域的频域特征及其对应关系,即FT在时域没有任何分辨率,无法确定信号奇异性的位置。
为了研究信号在局部时间范围内的频谱特征,1946年,Gabor提出了短时傅立叶变换(Short Time Fourier Transform,STFT),但是STFT的窗口宽度是固定的(和频率无关),这使得它无法同时兼顾信号的低频和高频特征,在分析时变信号时也有一定的局限性。
另外,STFT的窗口函数或核函数不能提供一组离散正交基,所以给数值计算带来了不便,这也是导致STFT 没有得到广泛应用的重要原因。
从傅立叶分析演变而来的小波分析的优点恰恰可以弥补傅立叶变换中存在的不足之处。
小波变换的基本原理

10.2小波变换的基本原理地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。
近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。
在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。
小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。
1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。
小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。
小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。
不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。
它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。
小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。
因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。
下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。
10.2.1小波分析的基本原理小波函数的数学表达正弦调和波形小波波形。
小波基础知识

1986年著名数学家Y.Meyer偶然构造出一个真正的 小波基,并与S.Mallat合作建立了构造小波基的 同样方法及其多尺度分析之后,小波分析才开始 蓬勃发展起来,其中比利时女数学家 I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作 用。它与Fourier变换、窗口Fourier变换(Gabor 变换)相比,这是一个时间和频率的局域变换, 因而能有效的从信号中提取信息,通过伸缩和平 移等运算功能对函数或信号进行多尺度细化分析 (Multiscale Analysis),解决了Fourier变换 不能解决的许多困难问题,从而小波变化被誉为 “数学显微镜”,它是调和分析发展史上里程碑 式的进展。
简化
正如1807年法国的热学工程师 J.B.J.Fourier提出任一函数都能展开成 三角函数的无穷级数的创新概念未能得到 著名数学家grange,place 以及A.M.Legendre的认可一样。幸运的是, 早在七十年代,A.Calderon表示定理的发 现、Hardy空间的原子分解和无条件基的 深入研究为小波变换的诞生做了理论上的 准备,而且J.O.Stromberg还构造了历史 上非常类似于现在的小波基;
绪论
小波变换的历史:
小波分析是当前数学中一个迅速发展的新 领域,它同时具有理论深刻和应用十分广 泛的双重意义。
小波变换的概念是由法国从事石油信号处 理的工程师J.Morlet在1974年首先提出的, 通过物理的直观和信号处理的实际需要经 验的建立了反演公式,当时未能得到数学 家的认可。
1822年Fourier变换,在频域的定位最准确,无任 何时域定位能力。
小波分析的应用是与小波分析的理论研究紧 密地结合在一起地。现在,它已经在科技信 息产业领域取得了令人瞩目的成就。 电子 信息技术是六大高新技术中重要的一个领域, 它的重要方面是图象和信号处理。现今,信 号处理已经成为当代科学技术工作的重要部 分,信号处理的目的就是:准确的分析、诊 断、编码压缩和量化、快速传递或存储、精 确地重构(或恢复)。从数学地角度来看, 信号与图象处理可以统一看作是信号处理 (图象可以看作是二维信号),在小波分析 地许多分析的许多应用中,都可以归结为信 号处理问题。
小波变换

小波变换在现代的科学研究中有着广阔的应用。
作为一种近些年提出的新的数学概念,它的科学研究工具的作用正在被充分发掘。
1 小波变换的提出小波变换(wavelet transform )是80年代后期发展起来的应用数学分支。
虽然从历史上往上追溯,在此之前已有一些学者零散地进行过一些工作,但在理论上构成较系统的构架则主要是法国数学家Y .Meyer 和地质物理学家J.Morlet 及理论物理学家A.Grossmanr 的贡献。
而把这一理论引入工程应用,特别是信号处理领域,法国学者 I.Daubechies 和 S.Mallat 则起着极为重要的作用。
因此人们有把小波分析的兴起归功于所谓‘法国学派’。
小波变换的含义是:把某一被称为基本小波[也叫母小波(mother wavelet )]的函数()t ψ作位移τ后,再在不同尺度α下与待分析信号()x t 作内积:*(,)()(),0x t WT x t dt τατϕαα+∞-∞-=>等效的频域变化是:*(,)()()2j x WT x e d ωπατωϕαωωπ+∞+-∞=⎰其中()X t ,()ψω是()x t ()t ϕ的傅里叶变换。
2 小波变换的特点小波变换有以下特点:1、具有多分辨率(multi-resolution ),也叫多尺度(multi-scale )的特点,可以由粗及精地逐步观察信号。
2、也可以看成是用基本频率特性为()ψω的带通滤波器在不同尺度α下对信号作滤波。
由于傅里叶变换的尺度特性: 如果()t ψ的傅里叶变换是()ψω,则()t αϕ的傅里叶变换为()αψαω。
因此这组滤波器有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。
注意,α愈大相当于频率愈低。
3、适当地选择基本小波,使()t ϕ在时域上为有限支撑,()ψω在频域上也比较集中,便可以使WT 在时频两域都有表征信号局部特征的能力,因此有利于检测信号的瞬态或奇异点。
小波变换详解

基于小波变换的人脸识别近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。
小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。
具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。
4.1 小波变换的研究背景法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。
傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。
在早期的信号处理领域,傅立叶变换具有重要的影响和地位。
定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下:()()dt e t f F t j ωω-⎰∞-∞+= (4-1) 傅立叶变换的逆变换为:()()ωωπωd e F t f t j ⎰+∞∞-=21 (4-2)从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。
可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。
尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。
但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。
第3章小波变换简介共58页文档

小波母函数
设 为一平方可积函数,若其傅立叶变换 满足条件:
C 衰减)R| ()|d(容许性条件:频域也
称 为一个基本小波或者小波母函数。 特点:小(紧支撑,速降);波动性(均值为
0, (t)dt0);频域也衰减。 R
傅立叶变换
F() f(t)ejtdt
将信号分解为不同频率的正弦波的叠加
傅立叶变换
架起了时域和频域的桥梁
只有频率分辨率而没有时间分辨率。 可确定信号中包含哪些频率的信号,但不能确
定具有这些频率的信号出现在什么时候。
傅立叶变换
如果想要研究函数在区间(a,b)上的性质, 一个很自然的想法就是利用函数 乘f(t)
傅立叶变换
F( ) f(t)xI(t)ejtdt
这就是1945 Gabor提出的STFT (short time Fourier transform)。
但是,在t=a,b处存在间断,这会使得傅立叶 变换附加新的高频成分。这种人为引入的高频 成分显然不是我们希望的。频谱“泄露”问题。
STFT的时间-频率关系图
f(t) F(
)ejtd
1
f (t)
C 0
Wf
(a,b)a,b(t)dbda2a
a,b(t)
1 (t b)
aa
小波系数的意义
Wf (a,b)表示信号与尺度为a小波的相关程 度。小波系数越大,二者越相似。
F() f(t)ejtdt
W f(a,b)f(t) a,b(t)dt
连续小波变换的简单步骤
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
许多数缩放函数和小波函数以开发者的名 字命名的,例如,Moret小波函数是Grossmann 和Morlet在1984年开发的;db6缩放函数和db6 小波函数是Daubechies开发的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述
小波变换(Wavelet Transform)的概念是1984年法国地球物理学家J.Morlet在分析处理地球物理勘探资料时提出来的。
小波变换的数学基础是19世纪的傅里叶变换,其后理论物理学家A.Grossman采用平移和伸缩不变性建立了小波变换的理论体系。
1985年,法国数学家Y.Meyer第一个构造出具有一定衰减性的光滑小波。
1988年,比利时数学家I.Daubechies证明了紧支撑正交标准小波基的存在性,使得离散小波分析成为可能。
1989年S.Mallat提出了多分辨率分析概念,统一了在此之前的各种构造小波的方法,特别是提出了二进小波变换的快速算法,使得小波变换完全走向了实用性。
小波分析是建立在泛函分析、Fourier分析、样条分析及调和分析基础上的新的分析处理工具。
它又被称为多分辨率分析,在时域和频域同时具有良好的局部化特性,常被誉为信号分析的“数据显微镜”。
近十多年来,小波分析的理论和方法在信号处理、语音分析、模式识别、数据压缩、图像处理、数字水印、量子物理等专业和领域得到广泛的应用。
小波变换分析在数据处理方面的应用主要集中在安全变形监测数据和GPS观测数据的处理,应为他们都对精度用较高的要求,而小波变换分析方法的优势能满足这个要求。
在安全变形数据处理主要集中在去噪处理、识别变形的突变点,也包括提取变形特征、分离不同变形频率、估计观测精度、小波变换最佳级数的确定等。
在GPS数据处理方面包括:利用小波分析法来检测GPS相位观测值整周跳变的理论与方法,GPS粗差检测、GPS信号多路径误差分析、相位周跳检测、基于小波的GPS双差残差分析等。
国内有关学者和研究人员研究工作如下:
李宗春等研究了变形测量异常数据中小波变换最佳级数的确定,综合分析数据去噪效果的4 个分项评价指标,即数据的均方根差变化量、互相关系数、信噪比及平滑度,将各分项评价指标归化到[0, 1]后相加得到总体评价指标,将总体评价指标最大值所对应的级数定义为小波分解与重构的最佳级数。
贺跃光等研究了基于小波分析的隧道施工地表监测数据处理;基于小波分析原理,对某隧道地表监测数据进行快速去噪、提取变形特征、分离不同变形频率、估计其观测精度等处理分析,使监测结果的误差控制在±1 mm以内,并得出隧道施工对地表变形的影响规律,为隧道的安全施工和质量控制提供了依据。
周大华等研究了基于小波分析的隧道监测数据处理。
基于小波分析理论,对一组隧道洞内水平收敛监测数据进行了去噪重构。
实际分析结果表明,小波分析能够有效地去除监
测数据的噪声,识别数据中的突变点;从去噪后的数据曲线分析,得出水平收敛量的发展趋势,可以有效地指导隧道的安全施工。
袁德宝研究了GPS变形监测数据的小波分析与应用。
针对GPS变形监测数据中噪声的不同分布,对小波变换特性、小波消失矩阵、正则性、紧支性和对称性等特性进行了理论分析,研究了变形数据预处理时最优小波基的选择问题,采用多种不同的小波函数对变形观测序列中含有的高斯噪声、多种系统性干扰信号或突变信号等进行了实际应用效果试验,提出了小波变换模极大值的信号去噪新方法和非线性小波变换闽值去噪新算法,构建了闭值法均方误差估计和阖值自适应算法。
将小波分析的多分辨率(多尺度)特性同卡尔曼滤波、人工神经网络强有力的逼近能力有机地结合起来,充分发挥它们各自的优势,建立了小波多尺度卡尔曼滤波模型与小波神经网络模型及算法,实现了对非线性变形的预测。
采用VC++语言和MATLAB开发了RINEX级GPS变形监测数据处理系统,为GPS变形监测数据处理与变形预报提供了一种新的手段与方法。
国外有关学者和研究人员研究工作如下:
1995年,CollinF.和warantR利用小波研究了GPS数据的处理。
Chalermchon Satirapod等研究了通过合并小波分解进行GPS分析,应用基于小波的方法把GPS双差的残差分解成低频偏差项和高频噪声项,提取出来的偏差成分然后直接用于纠正GPS观测值的偏差。
主要表征的是GPS距离测量值和高频观测噪声的剩下的部分,被期望从最小二乘法处理中得到最好的线性无偏解决方案。
利用最小范数二次无偏估计得到的一个稳健的VCV估计,控制着随机模型的形式。
结果表明这种方法能够同时提高不确定性分辨率和估算基线的精确度。
Chalermchon Satirapod and Chris RizosGPS研究了基站上小波分析用于多路径效应消弱,应用小波分解技术从GPS观测值中提取多路径。
提取出来的多路径然后直接用于纠正GPS观测值中多路径效应。
结果表明在固定GPS基站上这种处理方法可以显著地削弱多路径效应。
K. Vijay Kumar, Kaoru Miyashita and Jianxin Li研究了针对日本中部长期的地壳变形,基于小波分析的GPS时间序列数据处理,应用小波技术分析来自连续GPS网站——地理网(GEONET),从1996年到1999年四年的日常坐标GPS时间序列。
在目前的分析中,用ARMA技术剔除了与地震有关的跳跃值和人为错误,同时应用小波技术剔除了季节性波动值和白噪声,从而来估计日本中部的长期地壳变形。
安全监测数据包括低频成分和高频成分,低频成分主要表现为误差。
而高频成分主要
表现实际监测情况,利用小波分解可以实现低频信号和高频信号的分离。
从而达到去噪的目的。
同时安全监测数据中可能存在粗差,也就会有奇异值,也就是频率会发生很大的变化,利用小波分析能准确地找到奇异值,并给予剔除,从而使安全监测数据更准确和有效。
将安全监测的数据系列视为由不同频率成分组成的数字信号序列,结合小波分析理论,对监测数据进行分析处理,包括奇异性检测、降噪处理和时效分量提取等。
参考文献:
1. 李宗春,邓勇,张冠宇等. 变形测量异常数据中小波变换最佳级数的确定[J]. 武汉大学学报•信息科学版, 2011, 36(3):285~288
2. 潘国荣,谷川. 变形监测数据的小波神经网络预测方法[J]. 大地测量与地球动力学, 2007, 27(4): 47~50
3. 贺跃光,刘莉淋,孟岩等. 基于小波分析的隧道施工地表监测数据处理[J]. 现代隧道技术, 2010, 47(2):19~23
4. 陈继光,李光东,刘中波. 大坝变形数据处理中的离散小波分析方法[J]. 水电能源科学, 2003, 21(4):11~12
5. 周大华,肜增湘,陈建平等. 基于小波分析的隧道监测数据处理[J]. 现代隧道技术, 2010, 47(4):58-61
6. 田胜利,周拥军,葛修润,卢允德. 基于小波分解的建筑物变形监测数据处理[J] 岩石力学与工程学报, 2004, 23(15):2639~2642
7. 万程辉,欧阳平. 大坝变形监测数据的小波分析处理方法[J]. 北京测绘, 2010.1:32~34
8. Aballe A,Bethencourt M,Botana F J,et al. Using wavelets transform in the analysis of electrochemical noise data[J]. Electrochimica Acta,1999,44(26):4 805~4 816
9. Andrew Tangborn,Zhang Sara Q. Wavelet transform adapted to an approximate Kalmanfilter system[J]. Applied Numerical Mathematics,2000,33:307~316
10. 冉云,刘鸿福. 基于小波分析的瞬变电磁测深数据处理与解释[J]. 勘探地球物理进展, 2010, 33(4): 275~278
11. 飞思科技产品研发中心. 小波分析理论与MATLAB7实现[M]. 北京: 电子工业出版社, 2006
12. 郭锐. 测井数据的小波分析方法[D], 吉林:吉林大学, 2011
13. 孙姚姚. 小波分析在桥梁健康监测系统中的应用研究[D]. 西安:长安大学, 2010
14. 曾珍. 小波分析在测井资料处理中的应用研究[D]. 成都:成都理工大学, 2008
15. 袁德宝. GPS变形监测数据的小波分析与应用研究[D]. 北京:中国矿业大学, 2009
16. 朱喜军. 基于小波分析的高精度GPS测量质量控制研究[D]. 青岛:山东科技大学, 2006。