小波变换 完美通俗解读2
小波变换原理

小波变换原理
小波变换是一种信号分析方法,它可以将一个信号分解成不同频率和时间的小波基函数的线性组合。
这种分解能够提供关于信号局部特征的信息,并且具有较好的时频局部化性质。
小波变换的基本原理是利用小波基函数对信号进行多尺度分析。
小波基函数是一组函数,它们具有有限时间和频率的特性。
通过对不同尺度的小波基函数进行缩放和平移,可以得到不同频率和时间的基函数。
在小波变换中,通常采用离散小波变换(DWT)进行信号分析。
离散小波变换将信号分解成不同尺度和位置的小波系数,每个小波系数表示信号在相应尺度和位置上的能量。
小波变换的优点之一是可以提供多分辨率的信号分析。
通过对信号进行分解,可以得到不同尺度上的信息,从而揭示信号在局部的频率特征。
这对于处理非平稳信号和突发信号非常有用。
小波变换还具有较好的时频局部化性质。
在时域上,小波基函数具有较短的时域长度,可以更好地描述信号的瞬时特征。
在频域上,小波基函数具有较宽的频带,可以更好地描述信号的频率特征。
小波变换在信号处理、图像处理、模式识别等领域有着广泛的应用。
它可以用于信号去噪、压缩、特征提取等任务,也可以用于图像边缘检测、纹理分析等任务。
总之,小波变换是一种多尺度信号分析方法,通过对信号进行分解,可以提取信号在不同尺度和位置上的特征。
它具有较好的时频局部化性质,可以有效地描述非平稳信号和突发信号的特征。
小波变换完美通俗解读

小波变换完美通俗解读
嘿,朋友们!今天咱就来好好唠唠这小波变换!这玩意儿可神奇啦!
你看啊,就好比我们听音乐。
那音乐里有各种不同的声音吧,高音、低音啥的。
小波变换呢,就像是一个超级厉害的音乐分析师,能把这音乐里的各种成分给分得清清楚楚!比如我们平时说话的声音,有高有低,语调也不一样,小波变换就能把这些不同的部分准确地分辨出来。
再想想看,我们看一幅画,上面有各种色彩和线条。
小波变换就像是一个能把这些元素都拆解开来的大师!它可以把画里的细节,什么线条的走向啦,颜色的分布啦,都弄得明明白白。
那这小波变换到底有啥牛的呢?嘿,你想啊,我们在生活中,有时候会遇到很复杂的信息,就像一团乱麻。
而小波变换就能像一把神奇的剪刀,把这团乱麻给理清咯!
比如说医生要看 X 光片,那么多复杂的影像,小波变换就能帮忙找出关键的地方,难道这还不厉害吗?或者是在气象研究中,那么多变幻莫测的气候数据,小波变换就能从中找出规律!你说神不神奇!
“哎呀,那这小波变换也太了不起了吧!”这时候可能有人就问了,“那咱普通人能用它干啥呀?”嘿,用处可大了去了!如果你喜欢摄影,它可以帮你更好地处理照片,让照片更清晰更漂亮。
要是你对声音处理感兴趣,它能让你的音乐听起来更棒!这不就是让我们的生活变得更美好嘛!
总之,小波变换真的是一个超级神奇又超级实用的东西!大家可得好好去了解了解它,说不定就能给你的生活带来意想不到的惊喜呢!别小瞧它哦,它真的超厉害!。
小波变换名词解释

小波变换名词解释
小波变换 (wavelet transform) 是一种时空局部化的数据变换方法,它通过对数据进行多尺度分析,从而实现数据的压缩、重构、滤波、边缘检测等操作。
小波变换的基本概念包括小波函数、小波基、小波变换系数、多分辨率分析等。
其中,小波函数是一种构造小波变换的基础,它可以用来描述信号或图像在不同尺度上的特征。
小波基是小波函数的线性组合,它用来实现小波变换的多尺度分析。
小波变换系数是小波基在数据上的投影,它可以用来描述数据的局部特征。
多分辨率分析是小波变换的一个重要概念,它表示数据在不同尺度上的分析,通过多分辨率分析,小波变换可以实现数据的分辨率增强。
小波变换在信号处理、图像处理、模式识别、数据压缩等领域有着广泛的应用。
图像的小波变换原理

图像的小波变换原理
小波变换原理是一种数学变换方法,主要用于图像处理和数据分析。
它通过将图像分解成不同尺度的频率分量,从而可以实现图像的压缩、去噪和特征提取等操作。
小波变换的核心思想是利用一组基函数(小波函数)对原始信号或图像进行分解和重构。
小波函数是一种特殊的函数,具有时域和频域上的局部性,能够有效地捕捉图像的局部特征。
小波变换通常采用多尺度分析的方法,即将原始信号或图像分解为不同频率范围的子信号。
这种分解方法可以通过将原始信号与一组尺度变换和平移的小波函数进行卷积运算来实现。
具体而言,小波变换的过程可以分为两个步骤:分解和重构。
在分解过程中,原始信号或图像通过低通滤波器和高通滤波器进行滤波,得到低频成分和高频成分。
然后,低频成分再次进行下一次的分解,直到达到所需的分解层数。
在重构过程中,将分解得到的低频和高频成分通过滤波和加权求和的方式进行重构,得到原始信号或图像的近似重构。
利用小波函数的正交性质,可以保证信号或图像在分解和重构过程中的信息完整性和精确性。
小波变换的优点是可以同时获取时间和频率信息,并且能够有效地处理非平稳信号和图像。
此外,小波变换还具有多尺度分析、高时频局部性和能量集中等特性,使得它在图像处理和数据分析领域得到了广泛的应用。
小波变换详解

基于小波变换的人脸识别近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。
小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。
具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。
4.1 小波变换的研究背景法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。
傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。
在早期的信号处理领域,傅立叶变换具有重要的影响和地位。
定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下:()()dt e t f F t j ωω-⎰∞-∞+= (4-1) 傅立叶变换的逆变换为:()()ωωπωd e F t f t j ⎰+∞∞-=21 (4-2)从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。
可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。
尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。
但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。
浅析小波变换

三 移动小波,重复步骤一和二,一直遍历整个 数据;
四 对小波进行缩放,重复步骤一到三;
五 在所有小波尺度下,重复上述步骤.
2、小波尺度和信号频率的关系
大尺度
小尺度
信号的低频
信号的高频
离散小波变(DWT)
一、DWT的由来
(Inverse Discrete Wavelet Transform, IDWT)。
H′
H′ S L′
L′
小波重构算法示意图
(1) 重构近似信号与细节信号
由小波分解的近似系数和细节系数可以重构出原
始信号。
同样,可由近似系数和细节系数分别重构出信号
的近似值或细节值,这时只要近似系数或细节系数置
为零即可。
(t ) e
t 2 / 2 i0t
e
ˆ ( ) 2 e( 0 )
2
/2
Morlet小波不存在尺度函数; 快速衰减但非紧支撑. Morlet小波是Gabor 小波的特例。
g t
2
1
1/ 4
e
t2 2 2
1, 5
Gabor 小波 Morlet小波
图 多级信号分解示意图 (a) 信号分解; (b) 小波分树; (c)小波分解树
在使用滤波器对真实的数字信号进行变换时, 得到的数据将是原始数据的两倍。
根据耐奎斯特(Nyquist)采样定理就提出了降采样的方 法,即在每个通道中每两个样本数据取一个,得到的 离散小波变换的系数(coefficient)分别用cD和cA表示
号可用A1+D1=S重构出来。对应于信号的多层小波分
小波变换2

15.3 多分辨率分析小波变换:*(,)()()x t CWT a x t dt aττψ∞-∞-=⎰小波反变换: ()(,211,x t x t CWT a dad C a a ψψτττ∞∞-∞-∞-⎛⎫=⎪⎝⎭⎰⎰ 具有变尺度的性质,在不同尺度下对信号进行分析,称为信号的多尺度分析。
小波变换中尺度的变化,将引起时、频域分辨率的变化(时频矩形窗wt D aD a⨯),因此信号的多尺度分析实际上就是信号的多分辨率分析。
即多尺度分析----多分辨率分析 5.3.1 正交多分辨率分析的概念多分辨率分析-----由空间划分来看是多分辨率逼近,最终目的是力求:1)构造一个在频率上高度逼近2()L R 空间的正交基;2)将信号投影到由这些基函数组成的频谱由低到高的正交子空间中。
(或者说就是用某些基函数将信号按照频谱的低到高进行分解描述)。
在一个平方可积空间2()L R 中对于任一信号2()()x t L R ∈ ,可以考虑用分辨率2j -来逼近该信号的问题(2j a =二进尺度,这里j 对应a 简称尺度,02j k ττ=,/2002()()2(2)2j j j jt t k t k a ττψτ----==-) (5-20) 先来看频谱由低到高子空间(正交)的划分问题,再来考虑信号的逼近问题5.3.1.1 空间(正交)的划分问题将空间2()L R 逐级二分, 这样逐级二分的函数分为两类,(1) 令一类函数:(),,1,0,1,j V t j =⋅⋅⋅-⋅⋅⋅ 其频谱()j V ω只有在2j ωπ-<的有限区间内部不为零(低通特性),把具有这一性质函数的集合记作 {}j V 。
(2) 令一类函数:(),,1,0,1,j W t j =⋅⋅⋅-⋅⋅⋅其频谱()j W ω只有在122j j πωπ--+<<的有限区间内部不为零(表现为带通特性),把具有这一性质函数的集合记作{}j W 。
小波变换的理解

由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受.2信号的分解付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数.3小波变换的时频分析思想付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多.4小波变换的实质小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据.如此这般循环,最后得出的就是信号的小波分解(小波级数).当然这只是一种粗略的解释.5连续小波变换,二进小波变换与离散小波变换的关系当尺度及位移均作连续变化时,可以理解必将产生一大堆数据,作实际应用时并不需要这么多的数据,因此就产生了离散的思想.将尺度作二进离散就得到二进小波变换,同时也将信号的频带作了二进离散.当觉得二进离散数据量仍显大时,同时将位移也作离散就得到了离散小波变换!6 MALLAT算法的意义想必大家都注意到,小波变换是以内积或卷积的形式实现的,这给数值计算带来了不利之处,因为用计算机作数值积分其计算量大.MALLAT算法则解决了这一问题,它不涉及小波的具体形式,只是对系数进行操作!其计算也就是用高通及低通滤波系数与小波系数作卷积.因为作信号处理时,我们往往并不关心小皮的具体形式,更为关心小波系数.需提出的是该算法仅适用于正交小波如果小波不是正交的(如B样条小波)则算法失效!7小波变换的模极大值及其意义对于我们搞信号奇异性检测的人来说,小波变换最重要的应用就是用模极大值定值奇异点.我觉得模极大值可以从两个方面去理解:第一,从直观角度,上文已说明小波变换的实质就是一种度量波形相似程度的方法.信号与小波越相似,则小波系数越大.这也就可理解为出现了小波变换的模极大值.因为当信号出现奇异点时,或是间断点,或是一阶导数不连续点,其在各个尺度下都将必然出现大的小波系数.从而可以定位奇异点!第二个方面从小波的取法来看,当小波取为光滑函数一阶导数或二阶导数时,从公式可以推导出小波变换将出现模极大值点或是过零点.也就是很多书上说的模极大值检测和零交叉检测.这些可以查书看!我只谈谈连续小波变换,对于离散的也有同样的argument。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这是《小波变换和motion信号处理》系列的第二篇,深入小波。
第一篇我进行了基础知识的铺垫,第三篇主要讲解应用。
在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。
而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。
缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。
还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。
小波展开的近似形式是这样:其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。
和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。
但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的?在这一篇文章里,我们就来讨论一下这些特性背后的原理。
首先,我们一直都在讲小波展开的近似形式。
那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。
但是,母小波并非唯一的原始基。
在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。
它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交:另外,为了方便处理,父小波和母小波也需要是正交的。
可以说,完整的小波展开就是由母小波和父小波共同定义的。
其中是母小波,是父小波。
需要提醒一点的是,这个正交纯粹是为了小波分析的方便而引入的特性,并不是说小波变换的基就一定必须是正交的。
但大部分小波变换的基确实是正交的,所以本文就直接默认正交为小波变换的主要性质之一了。
引入这个父小波呢,主要是为了方便做多解析度分析(multiresolution analysis, MRA)。
说到这里,你的问题可能会井喷了:好好的为什么出来一个父小波呢?这个scaling function是拿来干嘛的?它背后的物理意义是什么?wavelet function背后的物理意义又是什么?这个多解析度分析又是什么呢?不急,下面,我们围绕一个例子来巩固一下前面的知识,同时再引出新的特性。
假设我们有这样一个信号:该信号长度为8,是离散的一维信号。
我们要考虑的,就是如何用小波将其展开。
为了方便讲解,我们考虑最简单的一种小波,哈尔小波。
下面是它的一种母小波:那如何构建基于这个母小波的基呢?刚才提到了,要缩放,要平移。
我们先试试缩放,那就是ψ(2n):但这样的话,它与自己的内积就不是1了,不符合小波基orthonormal的要求,所以我们要在前面加一个系数根号二,这样我们就得到了另一个哈尔小波的basis function:同理,我们可以一直这样推广下去做scale,得到4n,8n,…….下的basis function。
当然在这个例子里,我们信号长度就是8,所以做到4n就够了。
但推广来说,就是这种scaling对母小波的作用为,这是归一化后的表示形式。
平移的话也很简单,我们可以对母小波进行平移,也可以对scale之后的basis function进行平移。
比如对上一幅图中的basis function进行平移,就成了看得出来,平移后的basis function和母小波以及仅仅scale过的小波,都是正交的,附合小波basis的特点。
如果我们用ψ(n)来表示这个mother wavelet,那么这些orthonormal basis函数可以写成:这里的k是可以看成时域的参数,因为它控制着小波基时域的转移,而j是频域的参数,因为它决定了小波基的频率特性。
看到这里,你应该会感觉很熟悉,因为这里的平移和变换本质和刚才对scaling function的平移变换是一模一样的。
这样,我们就有了针对此信号space的哈尔小波basis组合:图1可以看出,我们用到了三层频率尺度的小波函数,每往下一层,小波的数量都是上面一层的两倍。
在图中,每一个小波基函数的表达形式都写在了波形的下面。
等等,你可能已经发现了,有问题。
这里为什么多了个没有函数表达式的波形呢?这货明显不是wavelet function阿。
没错,它是之前提到的scaling function,也就是父小波。
然后你可能就会问,为啥这个凭空插了一个scaling function出来呢?明明目标信号已经可以用纯的小波基组合表示了。
是,确实是,就算不包括scaling function,这些小波函数本身也组成了正交归一基,但如果仅限于此的话,小波变换也就没那么神奇的功效了。
引入这个scaling function,才能引入我们提到的多解析度分析的理论,而小波变换的强大,就体现在这个多解析度上。
那在这里,我们怎么用这个多解析度呢?这个哈尔小波basis组合是怎么通过多解析度推导出来的呢?话说在数学定义中,有一种空间叫Lebesgue空间,对于信号处理非常重要,可以用L^p(R)表示,指的是由p次可积函数所组成的函数空间。
我们在小波变换中要研究的信号都是属于L^2(R)空间的,这个空间是R上的所有处处平方可积的可测函数的集合,这样就等于对信号提出了一个限制,就是信号能量必须是有限的,否则它就不可积了。
小波变换的定义都是基于但不限于L^2(R)中的信号的。
这玩意的特性要具体解释起来太数学了,牵涉到太多泛函知识,我就不在这里详述了。
而且老实说我也没能力完全讲清楚,毕竟不是学这个的,有兴趣可以参考wiki。
总之你记住,小波变换研究中所使用的信号基本都是平方可积的信号,但其应用不限于这种信号,就行了。
对L^2(R)空间做MRA是在干嘛呢?就是说,在L^2(R)空间中,我们可以找出一个嵌套的空间序列,并有下列性质:(i)(ii)(iii)(iv)(v) 有这样一个方程, 是的orthonormal basis。
我来简单解释一下这些性质。
这个V_j都是L^2(R)空间中的子空间,然后他们是由小到大的,交集是{0},因为这是最小的子空间,并集就是L空间。
是不是有点难以理解?没关系,看看下面这个图就清楚了:这个图是圈圈套圈圈,最里面的圈是V0,之后分别是V1,V2,V3,V4 。
那他们有趣的性质就是,假如有一个函数f(t)他属于一个某空间,那你将其在时域上平移,它还是属于这个空间。
但如果你对它频域的放大或缩小,它就会相应移到下一个或者上一个空间了。
同时我们还知道,你要形容每一个空间的话,都需要有对应的orthonormal basis,这是必然的,那对于V0来讲,它的orthonormal basis就是这一系列函数是什么呢?是的时域变换,而且我们刚才也说了,时域上平移,是不会跳出这个空间的。
这样,我们就可以说,由这一系列basis所定义的L^2(R)子空间V0被这些basis所span,表示成:k从负无穷到正无穷。
上面的bar表示这是一个闭包空间,也就是说这样,我们就定义了基本的V0这个子空间。
刚才说了,这个子空间的基都是对的整数时域变换,这里我们称为scaling function,所以换个说法,就是说这里整个子空间V0,由scaling function和其时域变换的兄弟们span。
当然,如果这个scaling function只是用来代表一个子空间的,那它的地位也就不会这么重要了。
刚才我们提到,这个嵌套空间序列有一个性质,。
这就是这个函数,如果你对它频域的放大或缩小,它就会相应移到下一个或者上一个空间了。
这个性质就有意思了,它代表什么呢?对于任何一个包含V0的更上一层的空间来讲,他们的基都可以通过对scaling function做频域的scale后再做时域上的整数变换得到!推广开来就是说,当我们有这也就意味着,对于任何属于V_j空间的函数f(t),都可以表示为:到这里,我们就明白这些个子空间和那个凭空冒出来的scaling function的作用了。
scaling的构建这些不同的子空间的基础,当j越大的时候,每一次你对频率变换后的scaling function所做的时域上的整数平移幅度会越小,这样在这个j子空间里面得到的f(t)表示粒度会很细,细节展现很多。
反之亦然。
通俗点说,就是对scaling function的变换平移给你不同的子空间,而不同的子空间给你不同的分辨率,这样你就可以用不同的分辨率去看目标信号。
下面就是时候看看什么是MRA equation了,这是更加有趣,也是更加核心的地方。
通过刚才的讲解,V0属于V1,那scaling function是在V0中的,自然也在V1中了。
我们把他写成V1的基的线性组合,那就是其中的h(n)是scaling function的系数,也叫做scaling filter或者scaling vector,可以是实数,也可以是虚数。
根号2是为了维持norm为1的。
看,在这个公式里,我们就把属于V0的函数用V1的基表示出来了。
同理,我们可以循环如此,把属于V0的在V2, V3, …, Vn中表示出来。
这些方程就是MRA equation,也叫refinement equation,它是scaling function理论的基础,也是小波分析的基础之一。
好,稍微总结一下。
到现在,已经讲了关于scaling function的基本理论知识,知道了信号空间可以分为不同精细度的子空间,这些子空间的basis集合就是scaling function或者频率变换之后的scaling function,如下图所示:上图就是四个子空间的basis集合的展览。
通过前面的讨论,我们还知道,一开始的scaling function可以通过更精细的子空间的scaling function(它们都是对应子空间的basis)来构建。
比如对于更加finer的scale:图2依此类推。
实际上,对于任何scale和translate过的scaling function,都可以用更加精细的scale层面上的scaling function构建出来。
然后,我们有各种scale下的scaling function了,该看看它们分别所对应的嵌套的空间序列了。
先看看V0,自然就是以基本的scaling function为基础去span 出来的:这个不新鲜,刚才就讲过了。
这个子空间代表什么样的信号?常量信号。
道理很简单,这个scaling function在整个信号长度上,没有任何变化。
继续往下看:这个相比V0更加finer的子空间,代表着这样一种信号,它从1-4是常量,从5-8是另一个常量。