数学f1初中数学苏科版九年级(上)数学期中测试试卷 (2)

合集下载

最新苏科版九年级数学上册期中考试试卷及答案

最新苏科版九年级数学上册期中考试试卷及答案

最新苏科版九年级数学上册期中考试试卷及答案班级___________ 姓名___________ 成绩_______(考试时间:120分钟 总分:150分) 请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题纸上,答案写在试卷上无效.3.作图必须用2B 铅笔,并请加黑加粗.一、选择题(每题3分,共18分)1. 一元二次方程x (x ﹣1)=0的根是( )A .1B .0C .0或1D .0或﹣12.已知⊙O 的半径为10,圆心O 到直线l 的距离为6,则反映直线l 与⊙O 的位置关系的图形是( )A .B .C .D .3. 某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则依题意列出的方程为( )A .1185x 2=580B .1185(1﹣x )2=580C .1185(1﹣x 2)=580D .580(1+x )2=11854.如图,⊙O 为△ABC 的外接圆,∠A=30°,BC=6,则⊙O 的半径为( )A .6B .9C .10D .12 5.边长分别为5、5、6的三角形的内切圆的半径为( )A .32B .23C .43D .34 6.在Rt △ABC 中,∠ACB =90°,CD 是△ABC 的高,E 是AC 的中点,ED 、CB 的延长线相交于点F ,则图中相似三角形有( )A.3对B.4对C.5对D.6对二、填空题:(每题3分,共30分) 7.已知53y x =,则yx y x -+= . 8.若△ABC ∽△A ′B ′C ′,∠A=40°,∠C=110°,则∠B ′等于 .9.已知21、x x 是一元二次方程x 2﹣2x ﹣1=0的两根,则21x x += . 10.如图,一个正n 边形纸片被撕掉了一部分,已知它的中心角是40°,那么n= .11.已知75°的圆心角所对的弧长为5π,则这条弧所在圆的半径为 .12. 已知点C 是AB 的黄金分割点(AC <BC ),AB=4,则BC 的长为 .(保留根号)13.圆锥的底面的半径为3,母线长为5,则圆锥的侧面积为 .14.如图,四边形ABCD 内接于⊙O,A D 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F ,∠A =50°,则∠E+∠F = .15.如图,P 为⊙O 外一点,PA 与⊙O 相切于点A ,PO 交⊙O 于点B ,BC ⊥OP 交PA 于点C ,BC=3,PB=4,则⊙O 的半径为 .16.已知Rt △ABC 中,∠ACB =90°,中线BD 、CE 交于G 点,∠BGC =90°,CG =2,则BC =.三、解答题:(共102分)17.(本题满分10分)解方程:(1))4(3)4(+-=+x x x (2)52)3(2+=+x x(第4题) (第6题) (第10题) (第14题) (第15题) (第16题)18.(本题满分8分)已知,关于x 的方程x 2﹣2mx+m 2﹣1=0.(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求代数式3822-+-m m 的值.19.(本题满分8分)如图所示的网格中,每个小方格都是边长为1的正方形,B 点的坐标为(﹣1,﹣1).(1)把格点△ABC 绕点B 按逆时针方向旋转90°后得到△A 1BC 1,请画出△A 1BC 1,并写出点A 1的坐标;(2)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1:4请在下面网格内画出△A B 2C 2.20.(本题满分10分)如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC=6cm ,AC=8cm ,∠ABD=45°.(1)求BD 的长;(2)求图中阴影部分的面积.21.(本题满分10分)如图,在⊙O的内接四边形ABCD中,AB=AD,E在弧AD上一点.(1)若∠C=110°,求∠E的度数;(2)若∠E=∠C,求证:△ABD为等边三角形.22.(本题满分10分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其月销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10000元?23.(本题满分10分)李华晚上在两根相距40m的路灯杆下来回散步,已知李华身高AB=1.6m,灯柱CD=EF=8m.(1)若李华距灯柱CD的距离DB=16 m,求他的影子BQ的长.(2)若李华的影子PB=5m,求李华距灯柱CD的距离.24.(本题满分10分)已知∠ADE=∠C ,AG 平分∠BAC 交DE 于F ,交BC 于G.(1)△ADF ∽△ACG ; (2)连接DG ,若DG ∥AC ,52 AG AF ,AD =6,求CE 的长度. G F EDC BA25.(本题满分12分)如图,正方形ABCD 中,对角线 AC 、BD 交于点P ,O 为线段BP 上一点(不与B 、P 重合),以O 为圆心OA 为半径作⊙O 交直线AD 、AB 于E 、F .(1)求证:点C 在⊙O 上;(2)求证:DE =BF ;(3)若AB =24,DE =2,求BO 的长度.26.(本题满分14分)已知,在平面直角坐标系中,A 点坐标为(0,m )(0>m ),B 点坐标为(2,0),以A 点为圆心OA 为半径作⊙A ,将△AOB 绕B 点顺时针旋转α角(0°<α<360°)至△A /O /B 处.(1)如图1,4=m ,α=90°,求O /点的坐标及AB 扫过的面积;(2)如图2,当旋转到A 、O /、A /三点在同一直线上时,求证:O /B 是⊙O 的切线;(3)如图3,2=m ,在旋转过程中,当直线BO/与⊙A 相交时,直接写出α的范围.图1 图2参考答案一、选择题(每题3分,共18分)1.C2.B3. B4.A5.B6.B二、填空题:(每题3分,共30分)7.4- 8.30° 9.2 10.9 11.12 12.252- 13.π15 14.80° 15.6 16.32三、解答题:(共102分)17.(1)4,321-=-=x x .......(5分) (2)221-==x x .......(10分)23. (1)04)1(4)2(22>=---m m ,所以方程两个不相等的实数根;.......(4分)(2)3 .......(8分)24.(1)如图.......(2分),(-4,3).......(4分) (2)如图.......(8分)(每图2分)25.(1)25;.......(5分)(2)225425-π.......(10分)21.(1)125° .......(5分) (2)因为四边形ABCD 是⊙O 的内接四边形,所以∠BAD+∠C=180°,因为四边形ABDE 是⊙O 的内接四边形,所以∠ABD+∠E =180°,又因为∠E=∠C ,所以∠BAD =∠ABD ,所以AD =BD ,.......(8分)因为AB=AD ,所以AD =BD =AD ,所以△ABD 为等边三角形........(10分)22.设这种台灯的售价定为x 元时,每个月的利润恰为10000元.1000014010600)130(=⎥⎦⎤⎢⎣⎡-⋅--x x ................................(5分) 解之得80,5021==x x ................................(9分)答:这种台灯的售价定为50或80元时,每个月的利润恰为10000元......(10分)23.(1)4m .................(5分) (2)20m .................(10分)24.(1)因为AG 平分∠BAC ,所以∠DAF=∠CAG ,又因为∠ADE=∠C ,所以△ADF ∽△ACG ;...............(5分)(2)求到AC =15........(7分)求到AE =4.........(9分)CE =11.......(10分)25.(1)连接OC ,因为正方形ABCD ,所以BD 垂直平分AC ,所以OC =OA ,所以点C 在⊙O 上;...............(4分)(2)连接CE 、CF ,因为四边形AFC E 是⊙O 的内接四边形,所以∠BFC+∠AEC =180°,因为∠DEC+∠AEC =180°,所以∠BFC =∠DEC ,因为CD =BC ,∠ADC =∠FBC =90°, 所以△FBC ≌△EDC ,所以DE =BF ;...............(8分)(3)3...............(12分)26.(1)(2,2)...............(2分) π5...............(4分)(2) 证AO /=AO 即可;...............(10分)(3)0°<α<90°或180°<α<270°...............(14分)附: 初中数学学习方法总结1.先看笔记后做作业有的同学感到,老师讲过的,自己已经听得明明白白了。

数学f1初中数学苏科版九年级(上)数学期中测试试卷参考答案(2)

数学f1初中数学苏科版九年级(上)数学期中测试试卷参考答案(2)

20、(本题 6 分) (1)证明:∵四边形 ABCD是正方形,∴∠ BCF+∠ FCD=900, BC=CD.∵△ ECF是等腰直角三
角形, CF=CE.∴∠ ECD+∠ FCD=900.∴∠ BCF=∠ ECD.∴△ BCF≌△ DCE
0
( 2)解: 在△ BFC中,BC=5,CF=3,∠ BFC=90.∴ BF=
SB2 = 1 [0 2 +0 2 + (-1) 2 +1 2 + 0 2 ] = 2
5
5
从 2001 至 2005 年, A、 B两个旅游点平均每年的旅游人数均为
但 A 旅游点较 B 旅游点的旅游人数波动大.
(3) 由题意,得 解得
x
5-
≤4
100
x≥ 100
100-80 = 20
答: A 旅游点的门票至少要提高 20 元.
BC2
CF 2
52 32 4 .∵
△BCF≌△ DCE,∴ DE=BF=4,∠ BFC=∠DEC=∠ FCE=900.∴ DE∥ FC.∴△ DGE∽△ CGF.∴ DG:
GC=D:E CF=4: 3.
21、(本题 6 分) ⑴、矩形,证明略 ⑵、∠ AOB=60°或∠ ABO=30°(答案不唯一) ⑶、 S△ACF=3
2b
若选择 a、 b、 c:
2
方法一 :在 Rt △ EBC 中,由勾股定理: (b+2r) 2+c2=(a+c) 2,得 r= a 2ac b . 2
方法二 : Rt△ODE ∽ Rt△CBE, a
b
2r
,得 r=
b
r
c
2b 8ac.源自4abbc
方法三 :连结 AD ,可证: AD// OC,

苏科版数学九年级(上)期中数学试卷及答案

苏科版数学九年级(上)期中数学试卷及答案

九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)如果(m+3)x2﹣mx+1=0是一元二次方程,则()A .m≠﹣3 B.m≠3 C.m≠0 D.m≠﹣3且m≠02.(3分)(2013•滨州)对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为()A .有两个相等的实数根B.没有实数根C .有两个不相等的实数根D.无法确定3.(3分)关于x的一元二次方程的两实数根的和为﹣4的方程是()A .x2+4x+7=0 B.x2+4x﹣3=0 C.2x2﹣8x﹣7=0D.2x2﹣8x+7=04.(3分)要使分式的值为0,则x应该等于()A .﹣4或﹣1 B.﹣4 C.﹣1 D.4或15.(3分)若n是方程x2+mx+n=0的根,n≠0,则m+n等于()A .﹣B.C.1 D.﹣16.(3分)已知相交两圆的半径分别为5和8,则它们的圆心距可能是()A .2 B.3 C.7 D.137.(3分)(2012•泰州)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是()A .40°B.45°C.50°D.60°8.(3分)下列四边形中,一定有外接圆的是()A .平行四边形B.菱形C.矩形D.梯形9.(3分)(2001•黑龙江)如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为()A .B.1 C.1或3 D.10.(3分)(2001•哈尔滨)如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A .(π﹣1)R2B.R2C.(π+1)R2D.πR2二、填空题(每小题3分,共30分)11.(3分)一元二次方程x(x﹣2)=0的解是_________.12.(3分)(2011•孝感一模)方程(x﹣2)(2x+1)=x2+2化为一般形式为_________.13.(3分)方程x2+3x+m=0的一个根是另一个根的2倍,则m的值为_________.14.(3分)(2011•扬州)某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是_________.15.(3分)(2006•天津)已知关于x的方程x2﹣(a+2)x+a﹣2b=0的判别式等于0,且x=是方程的根,则a+b 的值为_________.16.(3分)分圆为1:5两部分,则弦所对的圆周角为_________.17.(3分)(2004•大连)如图,⊙O的半径为5cm,圆心O到弦AB的距离OD为3cm,则弦AB的长为_________ cm.18.(3分)若正六边形的边长为2,则它的外接圆的半径是_________,内接圆的半径为_________.19.(3分)(2006•威海)如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为_________.20.(3分)(2012•海门市模拟)如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=_________.三、解答题21.(16分)解下列方程(1)(x﹣2)2﹣4=0(2)x2﹣4x=0(3)2(x﹣3)2=x(x﹣3)(4)x2﹣2x﹣4=0.22.(6分)(2010•吉林)如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:(1)将⊙A向左平移_________个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为_________,阴影部分的面积S=_________;(2)求BC的长.23.(7分)(2013•荆州)已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0(1)求证:无论k为任何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.24.(7分)(2006•中山)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.25.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.26.(8分)如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.(1)求证:AD平分∠BAC;(2)若AD=,AE=4,求图中阴影部分的面积.27.(8分)张家港永安旅行社为吸引市民组团去普陀山风景区旅游,推出了如下收费标准:(1)现有一个35人的团队准备去旅游,人均旅游费为_________元.(2)某单位组织员工去普陀山风景区旅游,共支付给永安旅行社旅游费用27000元,请问:该单位这次共有多少员工去普陀山风景区旅游?28.(10分)已知:如图,点D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,过C作CE∥AB,交AD或其延长线于E,连结B交AC于G.(1)求证:AE=CE;(2)若过点C作CM⊥AD交AD的延长线于点M.试说明:MC与⊙O相切;(3)若CE=7,CD=6,求CG的长.2013-2014学年江苏省苏州市常熟市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如果(m+3)x2﹣mx+1=0是一元二次方程,则()A .m≠﹣3 B.m≠3 C.m≠0 D.m≠﹣3且m≠0考点:一元二次方程的定义.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.因为(m+3)x2﹣mx+1=0是一元二次方程,所以(m+3)≠0,即:m≠﹣3.解答:解:如果(m+3)x2﹣mx+1=0是一元二次方程,(m+3)≠0,即:m≠﹣3.故选A.点评:本题主要考查了一元二次方程的一般形式中二次项系数不能为0.2.(3分)(2013•滨州)对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为()A .有两个相等的实数根B.没有实数根C .有两个不相等的实数根D.无法确定考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵a=1,b=﹣2(k+1),c=﹣k2+2k﹣1,∴△=b2﹣4ac=[﹣2(k+1)]2﹣4×1×(﹣k2+2k﹣1)=8+8k2>0∴此方程有两个不相等的实数根,故选C.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(3分)关于x的一元二次方程的两实数根的和为﹣4的方程是()A .x2+4x+7=0 B.x2+4x﹣3=0 C.2x2﹣8x﹣7=0D.2x2﹣8x+7=0考点:根与系数的关系.分析:根据一元二次方程根与系数的关系,利用两实数根的和为﹣,将每一个选项分别进行计算即可.解答:解:A.此方程没有实数根,故错误;B.x1+x2=﹣4,符合题意,正确;C.x1+x2=4,不符合题意,错误;D.x1+x2=4,不符合题意,错误.故选B.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.(3分)要使分式的值为0,则x应该等于()A .﹣4或﹣1 B.﹣4 C.﹣1 D.4或1考点:分式的值为零的条件.分析:根据分式的分子为0,分母不能为0,可得分式的值为0.解答:解:∵x2+5x+4=0,x+4≠0,∴x=﹣1,或x=﹣4,又∵x≠﹣4∴x=﹣1,故选:C.点评:本题考查了分式值为0的条件,注意分子为0,同时分母不能等于.5.(3分)若n是方程x2+mx+n=0的根,n≠0,则m+n等于()A .﹣B.C.1 D.﹣1考点:一元二次方程的解.专题:计算题.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将n代入原方程化简即可求得m+n的值.解答:解:把x=n代入方程得:n2+mn+n=0,即n(n+m+1)=0,又∵n≠0,∴n+m+1=0,∴m+n=﹣1;故选D.点评:本题考查的是一元二次方程的根及方程的解的定义.6.(3分)已知相交两圆的半径分别为5和8,则它们的圆心距可能是()A .2 B.3 C.7 D.13考点:圆与圆的位置关系.分析:根据两圆相交时圆心距与两圆半径之间的数量关系进行解答.解答:解:∵8﹣5=3,8+5=13,∴相交时,3<圆心距<13,∴只有C中7满足.故选C.点评:本题利用两圆相交时,圆心距与两圆半径之间的数量关系进行判断.7.(3分)(2012•泰州)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是()A .40°B.45°C.50°D.60°考点:圆周角定理;垂径定理.专题:压轴题.分析:首先连接OB,由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数,又由OB=OC,根据等边对等角的性质,即可求得∠OCD的度数.解答:解:连接OB,∵∠A=50°,∴∠BOC=2∠A=100°,∵OB=OC,∴∠OCD=∠OBC==40°.故选A.点评:此题考查了圆周角定理与等腰三角形的性质.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意掌握辅助线的作法,注意数形结合思想的应用.8.(3分)下列四边形中,一定有外接圆的是()A .平行四边形B.菱形C.矩形D.梯形考点:圆内接四边形的性质.分析:根据有外接圆的条件四边形必须对角互补,即可得出答案.解答:解:∵有外接圆的条件四边形必须对角互补,∴只有矩形一定有外接圆,故选:C.点评:此题主要考查了四边形与三角形有外接圆的条件,根据题意得四边形必须对角互补任何,才有外接圆是解决问题的关键.9.(3分)(2001•黑龙江)如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为()A .B.1 C.1或3 D.考点:弧长的计算;圆心角、弧、弦的关系.专题:压轴题.分析:利用勾股定理,弧长公式,圆的周长公式求解.解答:解:如图,分两种情况,①设扇形S2做成圆锥的底面半径为R2,由题意知:扇形S2的圆心角为270度,则它的弧长==2πR2,R2=;②设扇形S1做成圆锥的底面半径为R1,由题意知:扇形S1的圆心角为90度,则它的弧长==2πR1,R1=.故选D.点评:本题利用了勾股定理,弧长公式,圆的周长公式求解.10.(3分)(2001•哈尔滨)如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A .(π﹣1)R2B.R2C.(π+1)R2D.πR2考点:扇形面积的计算.专题:压轴题.分析:从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED 的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.解答:解:新月形ACED的面积==R2.故选B.点评:本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二、填空题(每小题3分,共30分)11.(3分)一元二次方程x(x﹣2)=0的解是x1=0,x2=2.考点:解一元二次方程-因式分解法.专题:计算题.分析:利用因式分解法解方程.解答:解:x=0或x﹣2=0,所以x1=0,x2=2.故答案为:x1=0,x2=2.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.(3分)(2011•孝感一模)方程(x﹣2)(2x+1)=x2+2化为一般形式为x2﹣3x﹣4=0.考点:一元二次方程的一般形式.分析:把方程展开,再根据一元二次方程的一般形式进行排列各项即可.解答:解:(x﹣2)(2x+1)=x2+2,可化为:2x2+x﹣4x﹣2=x2+2,化为一般形式为x2﹣3x﹣4=0.点评:去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.13.(3分)方程x2+3x+m=0的一个根是另一个根的2倍,则m的值为2.考点:根与系数的关系.分析:根据已知条件“方程x2+x+m=0的一个根是另一个根的2倍”,一元二次方程的根与系数的关系x1+x2=﹣求该方程的两个根即可,进而求出m的值.解答:解:根据题意得x1+x2=﹣=﹣3,令x1=x,则x+2x=﹣3,解得:x=﹣1,将x=﹣1代入方程得出:(﹣1)2+3×(﹣1)+m=0,解得:m=2,故答案为:2.点评:本题考查的是一元二次方程的解,根据根与系数的关系可以求出方程的两个根是解题关键.14.(3分)(2011•扬州)某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是25%.考点:一元二次方程的应用.专题:增长率问题.分析:设平均每月增长的百分率是x,根据4月份的利润为160万元,要使6月份的利润达到250万元,可列方程求解.解答:解:设平均每月增长的百分率是x,x=25%或x=﹣225%(舍去).平均每月增长的百分率是25%.故答案为:25%.点评:本题考查的是一个增长率问题,关键知道4月份的利润为160万元,6月份的利润达到250万元,从而求出每个月的增长率.15.(3分)(2006•天津)已知关于x的方程x2﹣(a+2)x+a﹣2b=0的判别式等于0,且x=是方程的根,则a+b的值为.考点:根的判别式;一元二次方程的解.专题:压轴题.分析:由△=[﹣(a+2)]2﹣4×(a﹣2b)=0得一关于a,b的方程,再将x=代入原方程又得一关于a,b的方程.联立两个方程组成方程组,解方程组即可求出a、b的值.解答:解:由题意可得:△=[﹣(a+2)]2﹣4×(a﹣2b)=0,再将x=代入原方程得:2a﹣8b﹣3=0,根据题意得:两方程相加可得a2+2a+1=0,解得a=﹣1,把a=﹣1代入2a﹣8b﹣3=0中,可得b=,则a+b=.故填空答案为.点评:此题考查了根的判别式,以及方程的解的定义,把求未知系数的问题转化为解方程组的问题.16.(3分)分圆为1:5两部分,则弦所对的圆周角为30°或150°.考点:圆周角定理;圆心角、弧、弦的关系.专题:数形结合.分析:根据题意画出图形,如图所示,由弦AB分圆为1:5两部分,求出劣弧所对数,根据同弧所对的圆心角等于所对圆周角的2倍,求出劣弧所对的圆周角∠ACB的度数即为弦所对的一个圆周角度数;然后根据圆内接四边形的对角互补,由∠ACB的度数求出∠ADB的度数,为优弧所对的圆周角,即为弦所对的另一个圆周角,综上,得到弦所对的两个圆周角的度数.解答:解:根据题意画出图形,如图所示:由弦AB分圆为1:5两部分,得到与所对的圆心角度数之比为5:1,∴劣弧所对的圆心角∠AOB=×360°=60°,又圆周角∠ACB和圆心角∠AOB都对,∴∠ACB=∠AADBC为圆O的圆内接四边形,∴∠ACB+∠ADB=180°,∴∠ADB=150°,则弦AB所对的圆周角为30°或150°.故答案为:30°或150°点评:此题考查了圆周角定理,圆心角、弧及弦的关系,以及圆内接四边形的性质.对圆周角及圆心角进行相互转换是处理圆周角与圆心角问题时常用的方法,另外要求学生注意一条弦对着两条弧,对着两种圆周角.解答此类题往往借助图形,利用分类讨论的思想解决问题.17.(3分)(2004•大连)如图,⊙O的半径为5cm,圆心O到弦AB的距离OD为3cm,则弦AB的长为8cm.考点:垂径定理;勾股定理.分析:作辅助线,连接OA,根据勾股定理可将AD的长求出,再根据垂径定理可将AB的长求出.解答:解:连接OA,在Rt△AOD中,AD===4cm∵OD⊥AB,∴AB=2AD=8cm.点评:本题综合考查垂径定理和勾股定理的运用.18.(3分)若正六边形的边长为2,则它的外接圆的半径是2,内接圆的半径为.考点:正多边形和圆.分析:利用正六边形的概念以及正六边形外接圆和内切圆的性质进而计算.解答:解:边长为2的正六边形可以分成六而正多边形的内切圆的半径即为每个边长为2的正三角形的高,所以正多边形的内切圆的半径等于×2=,外接圆半径是2,内切圆半径是.故答案为:2,.点评:本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.19.(3分)(2006•威海)如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为20.考点:坐标与图形性质;勾股定分析:过圆心O′作y轴的垂线,垂足为D,连接O′A,由垂径定理可知,D为BC中点,BC=16﹣4=12,OD=6+4=10,由切线性质可知,O′A⊥x轴,四边形OAO′D为矩形,半径O′A=OD=10,故可求得圆的直径.解答:解:过圆心O′作y轴的垂线,垂足为D,连接O′A,∵O′D⊥BC,∴D为BC中点,∴BC=16﹣4=12,OD=6+4=10,∵⊙O′与x轴相切,∴O′A⊥x轴,∴四边形OAO′D为矩形,半径O′A=OD=10,∴直径是20.故本题答案为:20.点评:求某一点的坐标可以过这一点向x轴,y轴作垂线,求这个矩形的长宽,根据点的象限确定点的坐标,由于圆与x轴相切,O′A恰好是半径.20.(3分)(2012•海门市模拟)如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=40°或100°或20°.考点:等腰三角形的性质;三角形内角和定理;圆的认识.专题:动点型.分析:点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在AO延长线上,点P在OA的延长线上.分这三种情况进行讨论即可.解答:解:①根据题意,画出图(1),在△QOC中,OC=OQ,在△OPQ中,QP=QO,∴∠QOP=∠QP O,又∵∠AOC=30°,∴∠QPO=∠OC P+∠AOC=∠O CP+30°,在△OPQ中,∠QOP+∠QPO +∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得,3∠OCP=120°,∴∠OCP=40°.②当P在线段OA的延长线上(如图2)∵OC=OQ,∴∠OQP=(180°﹣∠QOC)×①,∵OQ=PQ,∴∠OPQ=(180°﹣∠OQP)×②,在△OQP中,30°+∠QOC+∠OQP+∠OPQ= 180°③,把①②代入③得:60°+∠QOC=∠OQP,∴∠QOC+2∠O QP=∠QOC+2(60°+∠QOC )=180°,∴∠QOC=20°,则∠OQP=80°∴∠OCP=100°;③当P在线段OA的反向延长线上(如图3),∵OC=OQ,∴∠OCP=∠OQ C=(180°﹣∠COQ)×①,∵OQ=PQ,∴∠P=(180°﹣∠OQP)×②,∵∠AOC=30°,∴∠COQ+∠PO Q=150°③,∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④联立得∠P=10°,∴∠OCP=180°﹣150°﹣10°=20°.故答案为:40°或100°或20°.点评:本题主要考查了圆的认识及等腰三角形等边对等角的性质,先假设存在并进行分类讨论是进行解题的关键.三、解答题21.(16分)解下列方程(1)(x﹣2)2﹣4=0(2)x2﹣4x=0(3)2(x﹣3)2=x(x﹣3)(4)x2﹣2x﹣4=0.考点:解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.分析:(1)利用直接开平方法两边同时平方得出:x﹣2=±2,再解一元一次方程即可;得x(x﹣4)=0,进而得到x=0,x﹣4=0,再解一元一次方程即可;(3)把左边分解因式,可得(x﹣3)(x﹣6)=0,进而得到x﹣3=0,x﹣6=0,再解一元一次方程即可;(4)利用配方法解方程即可.解答:解:(1)(x﹣2)2=4,两边同时平方得出:x﹣2=±2,则:x﹣2=2,x﹣2=﹣2,解得:x1=4,x2=0;(2)x2﹣4x=0x(x﹣4)=0,则:x=0,x﹣4=0,解得:x1=0,x2=4;(3)2(x﹣3)2=x(x﹣3),2(x﹣3)2﹣x(x﹣3)=0,(x﹣3)(x﹣6)=0,则:x﹣3=0,x﹣6=0,解得:x1=3,x2=6;(4)x2﹣2x(x﹣1)2=4,x﹣1=±2,则:x﹣1=2,x﹣1=﹣2,解得:x1=3,x2=﹣1.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.(6分)(2010•吉林)如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:(1)将⊙A向左平移3个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为(2,1),阴影部分的面积S=6;(2)求BC的长.考点:直线与圆的位置关系;勾股定理.分析:(1)根据直线和圆相切,则圆心到直线的距离等于圆的半径,知点A′的坐标是(2,1),从而求得移积即为底3、高2的平行四边形的面积;(2)连接AC,过点A作AD⊥BC于点D.根据垂径定理和勾股定理进行计算.解答:解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点A′的坐标是(2,1);则移动的距离是5﹣2=3;根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×3=6;(2)如图,D,则BC=2DC.由A(5,1)可得AD=1.又∵半径AC=2,∴在Rt△ADC中,DC=∴BC=2.点评:综合考查了平移变换、垂径定理和勾股定理.23.(7分)(2013•荆州)已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0 (1)求证:无论k为任何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.考点:根的判别式;根与系数的关系.分析:(1)确定判别式的范围即可得出结论;(2)根据根与系数的关系表示出x1+x2,x1x2,继而根据题意得出方程,解出即可.解答:(1)证明:①当k=0时,方程是一元一次方程,有实数根;②当k≠0时,方程是一元二次方程,∵△=(3k﹣1)2﹣4k×2(k﹣何实数,方程总有实数根.(2)解:∵此方程有两个实数根x1,x2,∴x1+x2=,x1x2=,∵|x1﹣x2|=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,即﹣4×=4,解得:=±2,即k=1或k=﹣.点评:本题考查了根的判别式及根与系数的关系,属于基础题,这些用到的知识点是需要我们熟练记忆的内容.24.(7分)(2006•中山)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.专题:几何图形问题;压轴题.分析:(1)这段铁丝被分成两段后,围成正方形.其中一个正方形的边长为xcm,则另一个正方形的边长为=(5﹣x),根据“两个正方形的面积之和等于17cm2”作为相等关系列方程,解方程即可求解;(2)设两个正方形的面积和为y,可得二次函数y=x2+(5﹣x)2=2(x﹣)2+,利用二次函数的最值的求法可求得y的最小值是12.5,所以可判断两个正方形的面积之和不可能等于12cm2.解答:解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(5﹣x)cm,﹣x)2=17,整理得:x2﹣5x+4=0,(x﹣4)(x﹣1)=0,解方程得x1=1,x2=4,1×4=4cm,20﹣4=16cm;或4×4=16cm,20﹣16=4cm.因此这段铁丝剪成两段后的长度分别是4cm、16cm;(2)两个正方形的面积之和不可能等于12cm2.理由:设两个正方形的面积和为y,则y=x2+(5﹣x)2=2(x﹣)2+,∵a=2>0,∴当x=时,y的最小值=12.5>12,∴两个正方形的面积之和不可能等于12cm2;(另解:由(1)可知x2+(5﹣x)2=12,化简后得2x2﹣10x+13=0,4<0,∴方程无实数解;所以两个正方形的面积之和不可能等于12cm2.)点评:此题等量关系是:两个正方形的面积之和=17或12.读懂题意,找到等量关系准确的列出方程是解题的关键.25.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F (1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.考点:垂径定理;勾股定理.专题:计算题;证明题.分析:(1)根据两平行弦所夹的弧相等,得到=,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计解答:(1)证明:∵PD∥CB,∴=,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r2=(r﹣8)2+122,解方程得:r=13.所以⊙O的直径为26.点评:本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.26.(8分)如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.考点:切线的性质;扇形面积的计算.分析:(1)首先连接OD,由⊙O与BC相切于点D,在Rt△ABC中,∠C=90°,易证得OD∥AC,又由OA=OD,则可证得AD平分∠BAC;(2)首先连接DE,由AE为直径,易得∠ADE=90°,然后由勾股定理,求得DE的长,继而求得AD的长,然后由S=S扇形AOD阴影﹣S△AOD求得答案.解答:(1)证明:连接OD,则OA=OD,∴∠DAO=∠ODA.∵BC是⊙O的切线,∴OD⊥BC,∵∠C=90°,即AC⊥BC,∴OD∥AC,∴∠CAD=∠ODD,∴AD平分∠BAC;(2)解:连接ED,∵AE为直径,∴∠ADE=∠C=90°,∵DE2=AE2﹣AD2=4,∴DE=2,在Rt△ADE中,∵AE=4,AD=2,∴DE=2,∴∠DAE=30°,∠AOD=120°,∴S△AOD=S△ADE=×AD•DE=××2×2=,∵S扇形AOD==π,∴S阴影=S扇形AOD﹣S△AOD=π﹣.点评:此题考查了切线的性质、勾股定理、等形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.27.(8分)张家港永安旅行社为吸引市民组团去普陀山风景区旅游,推出了如下收费标准:(1)现有一个35人的团队准备去旅游,人均旅游费为800元.(2)某单位组织员工去普陀山风景区旅游,共支付给永安旅行社旅游费用27000元,请问:该单位这次共有多少员工去普陀山风景区旅游?考点:一元二次方程的应用.专题:经济问题.分析:(1)人均旅游费=1000﹣超过25的人数×20;(2)应先判断出人数是否超过25人,等量关系为:人均旅游费用×人数=27000,把相关数值代入计算后根据人均费用不得低于700元舍去不合题意的解即可.解答:解:(1)人均旅游费=1000﹣(35﹣25)×20=800,故答案为800;位这次共有x名员工去普陀山风景区旅游,∵27000>25×1000,∴x>25;∴[1000﹣20(x﹣25)]x=27000,解得:x1=45,x2=30,∵1000﹣20(x﹣25)≥700∴x1=45(不符合题意,舍去),x2=30.答:该单位这次共有30名员工去普陀山风景区旅游.点评:考查一元二次方程的应用;得到是否得到优惠的人均费用的人数及舍去不合题意的解是解决本题的易错点.28.(10分)已知:如图,点D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,过C作CE∥AB,交AD或其延长线于E,连结B交AC于G.(1)求证:AE=CE;(2)若过点C作CM⊥AD交AD的延长线于点M.试说明:MC与⊙O相切;(3)若CE=7,CD=6,求CG的长.考点:圆的综合题.专题:综合题.分析:(1)由于弧CB=弧CD,根据圆周角定理得∠CAB=∠CAD;再根据平行线的性质由CE∥AB得∠ACE=∠CAB,则∠ACE=∠CAD,于是根据等腰三角形的判定定理有AE=CE;(2)连接OC,如图,由于∠OAC=∠OCA,∠OAC=∠CAD,则∠OCA=∠CAD,根据平行线的判定得到OC∥AD,而CM⊥AD,于是根据平行线的性质得CM⊥OC,然后根据切线的判定定理即可得到MC与⊙O相切;(3)由弧CB=弧CD得到CB=CD=6,再由OC∥AE,CE∥OA可判断四边形OAEC为平OA=CE=7,则AB=14,然后根据圆周角定理由AB为⊙O的直径得∠ACB=90°,则根据勾股定理可计算出AC=4,接着证明△GCE∽△GAB,利用相似比得到=,于是可利用CG=AC进行计算..解答:(1)证明:∵点C是弧BD的中点,∴弧CB=弧CD,∴∠CAB=∠CAD,∵CE∥AB,∴∠ACE=∠CAB,∴∠ACE=∠CAD,∴AE=CE;(2)解:连接OC,如图,∵OA=OC,∴∠OAC=∠OCA,而∠OAC=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,切;(3)解:∵弧CB=弧CD,∴CB=CD=6,∵OC∥AE,CE∥OA,∴四边形OAEC为平行四边形,∴OA=CE=7,∴AB=14,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=6,AB=14,∴AC==4,∵CE∥AB,∴△GCE∽△GAB,∴===,∴CG=AC=.点评:本题考查了圆的综合题:熟练掌握平三角形的判定、圆周角定理和切线的判定定理;会运用勾股定理和相似比进行几何计算.参与本试卷答题和审题的老师有:wdxwzk;zhjh;gbl210;wdxwwzy;2300680618;zzz;sjzx;zcx;haoyujun;zhehe;算术;开心;gsls;疯跑的蜗牛;CJX;lk;Liuzhx;张长洪;sks;星期八;ljj;sd2011;zhangCF;Linaliu;nhx600;kuaile;caicl;zhqd;lf2-9;WWF;lanchong(排名不分先后)菁优网2014年11月7日。

苏科版九年级(上)数学期中测试试卷

苏科版九年级(上)数学期中测试试卷

苏科版九年级(上)数学期中测试试卷(测试内容:九(上)全册;测试时间:120分钟;满分:120分)一、填空题:(每题2分,共计16分) 1、直接写出答案:_____32=;()()2121+-=2、当x 时,4-x 在实数范围内有意义,当x 时,322-x 在实数范围内有意义。

3、实数a 在数轴上的位置如图所示,化简:()2|1|2a a -+-=_______.4、如图,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=___ __.5、如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积是___。

第5题图 第6题图 第7题图6、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面至管道顶部距离为10cm ,修理人员应准备半径为 cm 的管道.7、如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm ,则此光盘的直径是_________cm.8、以(-3,4)为圆心,5为半径画圆,则圆与坐标轴交点坐标是____________________ ____________________ 二、选择题:(每题2分,共计16分)924 )。

A 1830485410、已知0xy >,化简二次根式2yx x-的正确结果为( ) A 、y B 、 y - C 、y - D 、y --11、下列一元二次方程中,两根之和为2的是( )A 、022=+-x x B 、0222=+-x x C 、01422=+-x x D 、022=--x x 12、若从一块正方形的木板上锯掉一块2cm 宽的长方形木条,剩下部分的面积是48cm 2,则这块正方形木板原来的面积是( )A 、81cm 2B 、81cm 2或36cm 2C 、64cm 2D 、36cm 213、若等腰梯形两底之差等于一腰的长,那么这个梯形一内角是( ) A 、︒90 B 、︒60 C 、︒45 D 、︒3014、已知点P 是半径为5的⊙O 内一定点,且OP =4,则过点P 的所有弦中,弦长可能取到的整数值为( )A. 5,4,3B. 10,9,8,7,6,5,4,3C. 10,9,8,7,6D. 12,11,10,9,8,7,615、若两圆的圆心距等于7,半径分别是R 、r ,且R 、r 是关于x 的方程0652=+-x x 的两个根,则这两圆的位置关系是( )A. 相离B. 相交C. 内切D. 外切16、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的 边长均为1厘米,则这个圆锥的底面半径为( )厘米. A .21B .22C .2D .22三、解答题:(本大题共计88分) 17、(每题2分,共计8分)计算下列各式:⑴、7548103+- ⑵、5.081232+-⑶、2)13()53)(53(---+ ⑷、63145520•-+ 18、(每题2分,共计12分)解下列一元二次方程:⑴、02522=-+)(x (直接开平方法) ⑵、01522=--x x (配方法)⑶、025)2(10)2(2=++-+x x (因式分解法) ⑷、03722=+-x x (公式法)⑸、0223)12(22=-+-+x x ⑹、0)4()52(22=+--x x19、(本题5分)如图,秋千拉绳长AB 为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长(结果保留π)20、(本题6分)如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G 是CD与EF的交点.⑴、求证:△BCF≌△DCE.⑵、若BC=5,CF=3,∠BFC=900,求DG:GC的值.21、(本题6分)如图,平行四边形ABCD纸片中,,AC⊥AB,AC与BD交于点O,沿对角线AC对折后,E与B对应.⑴、试问:四边形ACDE是什么形状的四边形?请加以证明。

苏科版九年级上册数学期中考试试卷带答案

苏科版九年级上册数学期中考试试卷带答案

苏科版九年级上册数学期中考试试题一、单选题1.已知⊙O 的半径为3cm ,若OP=2cm ,那么点P 与⊙O 的位置关系是()A .点P 在圆内B .点P 在圆上C .点P 在圆外D .都有可能2.下列方程一定是一元二次方程的是()A .1xy x y +=+B .22x =-C .20ax bx c ++=D .()2321x x x x -=--3.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A .众数改变,方差改变B .众数不变,平均数改变C .中位数改变,方差不变D .中位数不变,平均数不变4.若关于x 的一元二次方程k 2x -6x+9=0有两个不相等的实数根,则k 的取值范围是()A .k<1B .k<1且k ≠0C .k ≠1D .k>15.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A .5B .6C .7D .86.如图,AB 是O 的直径,点C ,D 为O 上的点.若20CAB ∠=︒,则D ∠的度数为()A .70°B .100°C .110°D .140°7.如图,四边形ABCD 是半径为2的O 的内接四边形,连接,OA OC .若:4:3AOC ABC ∠∠=,则 AC 的长为()A .35πB .45πC .65πD .85π8.如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的()A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点9.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为()A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=100010.如图,M 的半径为4,圆心M 的坐标为(6,8),P 是M 上的任意一点,PA PB ⊥,且PA 、PB 与x 轴分别交于A 、B 两点.若点A 、B 关于原点O 对称,则AB 长的最小值为()A .6B .8C .12D .16二、填空题11.方程x (x+1)=0的解是_______________.12.一元二次方程2x -4x-3=0配方可化为_______________.13.一组数据5、8、6、7、4的方差为____________.14.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是8.9环,方差分别是S 甲2=1.7,S 乙2=1.2,则关于甲、乙两人在这次射击训练中成绩稳定是___________.(填“甲”或“乙”)15.圆锥的高为4,底面圆的半径为3,则该圆锥侧面积为_____.16.若1x +2x =3,12x x =1,则以1x ,2x 为根,且二次项系数为1的一元二次方程是________.17.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为弧AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E .若∠CDE=40°,则图中阴影部分的面积为_____________.18.半径为2cm 的⊙O 中,弦长为的弦所对的圆心角度数为____.19.如图,⊙O 为△ABC 的内切圆,NC=5.5,点D ,E 分别为BC ,AC 上的点,且DE 为⊙O 的切线,切点为Q ,则△CDE 的周长为___________.20.如图所示,AB 为⊙O 的直径,AB=2,OC 是⊙O 的半径,OC ⊥AB ,点D 在弧AC 上, 2,AD CD点P 是O C 上一动点,则阴影部分周长的最小值为___________.三、解答题21.计算(1)2 x +4x-3=0(2)x (x-1)=2(x-1)22.先化简,再求值:2221121x x xx x x--⋅+-+,其中x满足x2-3x+2=0.23.如图,△ABC中,∠C=90°,点O在AB上,⊙O与BC相切于D点,连AD,求证:AD平分∠BAC.24.某校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为______,图1中m的值是______.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.25.某商店销售一款口罩,每袋的进价为12元.当售价为每袋18元时,日均销售量为100袋.经市场调查发现,每袋售价涨价1元,日均销售量减少5袋.设口罩每袋涨价为:x元(1)当x=3时,销售量是___________.(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋涨价多少元时,商店销售该款口罩所得的日均利润为720元?26.在平面直角坐标系中,已知点A(0,4),B(4,4),C(6,2)(1)请确定经过点A,B,C的圆弧所在圆的圆心M的位置,并写出点M的坐标;(2)若一个点D(7,0),试判断直线CD与圆M的位置关系,并说明理由.27.如图,AB是⊙O的直径,BD平分∠ABC,DE⊥BC(1)求证:DE是⊙O的切线:(2)若CE=2,DE=4,求⊙O的半径.28.如图,AB为⊙O的直径,且AO=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM(1)求∠OMP的度数;(2)随着点P在半圆上位置的改变,∠CMO的大小是否改变,说明理由;(3)当点P在半圆上从点B运动到点C时,直接写出内心M所经过的路径长.参考答案1.A【解析】【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵2<3,即点P到圆心的距离小于圆的半径,∴点P与⊙O内.故选:A.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.2.B【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数2的整式方程,逐一进行判断即可.【详解】A.含有两个未知数,故A不是一元二次方程;B.只含一个未知数,且未知数最高次数为2次,故B是一元二次方程;C.若a≠0则20ax bx c++=不是一元二次方程,++=是一元二次方程;若a=0则20ax bx c故C不一定是一元二次方程;x-=-,方程中不含有二次项,故D不是一元二次方程;D.方程整理后是1故选B.【点睛】本题考查了一元二次方程的定义,熟悉一元二次方程的定义是解决本题的关键.3.C【解析】【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.【详解】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.【点评】本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义.4.B【解析】【分析】根据一元二次方程的定义和判别式的意义得到k≠0且Δ=(-6)2-4×k×9>0,然后求出两不等式的公共部分即可.【详解】解:根据题意得k≠0且Δ=(-6)2-4×k×9>0,解得k<1且k≠0.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.B【解析】【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了1(1)2x x 场比赛,即可列出方程,求解即可.【详解】解:设有x个班级参加比赛,1x(x 1)152-=,2300x x --=,解得:126,5x x ==-(舍),则共有6个班级参加比赛,故选:B .【点睛】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系.6.C【解析】【分析】先得出∠ACB=90°,再计算出∠B,根据圆内接四边形对角互补得出结果【详解】解:∵AB 是直径∴∠ACB=90°,∠CAB=20°∴∠B=70°∵四边形ADCB 是圆内接四边形∴∠B+∠D=180°∴∠D=110°故选:C【点睛】本题考查圆周角定理、圆内接四边的性质.熟练记忆定理、性质是关键.灵活使用相应的定理性质是重点.7.D【解析】【分析】设4AOC x ∠=,则3ABC x =∠,122ADC AOC x ∠=∠=,利用圆内接四边形的性质得180ADC ABC ∠+∠=︒,进而可求得144AOC ∠=︒,最后再结合弧长公式进行解答即可.【详解】解:∵:4:3AOC ABC ∠∠=,∴设4AOC x ∠=,则3ABC x =∠,∴122ADC AOC x ∠=∠=, 四边形ABCD 内接于O ,180ADC ABC ∴∠+∠=︒,23180x x ∴+=︒,解得:36x =︒,∴4144AOC x ∠==︒,又O 的半径为2,∴ AC 的长为144281805ππ︒⨯=︒.故选:D .【点睛】本题考查了圆周角定理、圆的内接四边形的性质以及弧长的计算,熟练掌握圆周角定理以及圆的内接四边形的性质是解决本题的关键.8.B【解析】【分析】根据三角形的内切圆得出点O 到三边的距离相等,即可得出结论.【详解】解:O 是ABC ∆的内切圆,则点O 到三边的距离相等,∴点O 是ABC ∆的三条角平分线的交点;故选:B .【点睛】本题考查了三角形的内切圆与内心,解题的关键是熟练掌握三角形的内切圆的圆心性质.9.D【解析】【分析】根据增长率问题公式即可解决此题,二月为200(1+x ),三月为200(1+x )2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选D.【点睛】此题考查增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.10.C【解析】【分析】根据直角三角形斜边中线的性质得到AB=2OP,若要使AB取得最小值,则OP需取最小值,于N,当点P位于点N时,OP取得最小值,过点M作MQ⊥x轴于点Q,连接OM,交M求出OM得到ON即可.【详解】解:∵PA⊥PB,∴∠APB=90°,∵OA=OB,∴AB=2OP,若要使AB取得最小值,则OP需取最小值,于N,当点P位于点N时,OP取得最小值,连接OM,交M过点M作MQ⊥x轴于点Q,则OQ=6,MQ=8,∴OM=10,又∵MN=4,∴ON=6,∴AB=2ON=12,故选:C.【点睛】此题考查了直角三角形斜边中线的性质,最短路径问题,勾股定理,正确理解最短路径问题是解题的关键.11.x1=0,x2=-1【解析】【分析】方程的左边为两个一次因式相乘,右边为0,所以可化为两个一次方程:x=0,x+1=0,解此两个一次方程即可求得.【详解】解:x(x+1)=0x=0或x+1=0x1=0,x2=-1.故答案为x1=0,x2=-1.【点睛】本题考查解一元二次方程-因式分解法,因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.12.(x-2)2=7【解析】【分析】移项后,两边都加上一次项系数一半的平方即可.【详解】解:∵x2-4x-3=0,∴x2-4x=3,则x2-4x+4=3+4,即(x-2)2=7,故答案为:(x-2)2=7.【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.13.2【解析】【分析】先计算出这组数据的平均数,再根据方差的定义列式计算即可.【详解】解:这组数据的平均数为456785++++=6,∴这组数据的方差为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,故答案为:2.【点睛】本题主要考查方差,解题的关键是掌握方差的定义与计算公式.14.乙【解析】【分析】根据方差的定义,方差越小数据越稳定即可求解.【详解】解:因为S甲2=1.7>S乙2=1.2,方差小的为乙,所以关于甲、乙两人在这次射击训练中成绩稳定是乙.故答案为乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.15π【解析】【分析】首先根据底面半径和圆锥的高利用勾股定理求母线长,然后直接利用圆锥的侧面积公式代入求出即可.【详解】解: 圆锥的高为4,底面圆的半径为3∴=5∴圆锥侧面积为3515rl πππ=⨯⨯=故答案为:15π.【点睛】本题主要考查圆锥的侧面积,解题的关键是熟练掌握侧面积公式:122S r l rl ππ=⋅⋅=及求出母线长.16.x 2-3x+1=0【解析】【分析】由于二次项系数为1,所以可设方程为x 2+bx+c=0(b ,c 是常数),再根据两根之和与两根之积公式分别求出b 、c 的值,代入数值即可得到方程.【详解】解:设二次项系数为1的一元二次方程为x 2+bx+c=0(b ,c 是常数).∵x 1+x 2=3,x 1x 2=1,∴-b=3,c=1,∴b=-3,c=1.故所求方程为x 2-3x+1=0.故答案为:x 2-3x+1=0.【点睛】本题主要考查了一元二次方程的根与系数的关系及一般形式.正确求出b 、c 的值是解题的关键.17.1009π【解析】【分析】连接OC ,易证得四边形CDOE 是矩形,则△DOE ≌△CEO ,得到∠COB=∠DEO=40°,图中阴影部分的面积=扇形OBC 的面积,利用扇形的面积公式即可求得.【详解】解:连接OC,∵∠AOB=90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴OD=CE ,DE=OC ,CD ∥OE ,∵∠CDE=40°,∴∠DEO=∠CDE=40°,在△DOE 和△CEO 中,OD EC DE CO OE EO =⎧⎪=⎨⎪=⎩,∴△DOE ≌△CEO (SSS ),∴∠COB=∠DEO=40°,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC=24010360π⨯=1009π,∴图中阴影部分的面积=1009π,故答案为:1009π.【点睛】本题考查了扇形面积的计算,矩形的判定与性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.18.120°【解析】【分析】作OD ⊥AB ,由垂径定理知,点D 是AB 的中点,在直角三角形中,利用cos AD A OA=,根据比值求得A ∠的度数,从而知道AOD ∠的度数,即可进一步求得最后答案.【详解】如图,作OD ⊥AB ,由垂径定理知,点D 是AB 的中点,∴AD =12AB cm ),∵cos A =AD OA =∴∠A =30︒,∴∠AOD =60°,∴∠AOB =2∠AOD =120°,故答案为:120°.【点睛】本题考查特殊角的三角函数值、垂径定理等相关知识点,牢记知识点是解题关键.19.11【解析】【分析】根据切线长定理得到CN=CM=5.5,EN=EQ ,DQ=DM ,根据三角形的周长公式即可得到结论.【详解】解:∵⊙O 为△ABC 的内切圆,∴CN=CM=5.5,∵DE 为⊙O 的切线,切点为Q ,∴EN=EQ ,DQ=DM ,∴△CDE 的周长=CE+CD+DE=CE+EQ+DQ+CD=CE+EN+CD+DM=CN+CM=11,故答案为:11.【点睛】此题主要是考查了切线长定理.掌握圆中的有关定理是解题的关键.203π+【解析】【分析】B 是A 关于OC 的对称点,连接BD 则就是AP+PD 的最小值.根据已知条件可以知道∠ABD=30°,由于AB 是直径,所以∠ADB=90°,解直角三角形求出BD ,利用弧长公式求出 AD 的长即可.【详解】解:如图,连接BD ,AD ,PB .根据已知得B 是A 关于OC 的对称点,∴BD 就是AP+PD 的最小值,∵ 2AD CD=,而弧AC 的度数是90°的弧,∴ AD 的度数是60°,∴∠ABD=30°,∵AB 是直径,∴∠ADB=90°,而AB=2,∴∵ AD =6011803ππ⋅⋅=,∴AP+PD3π+,3π+.【点睛】本题考查轴对称最短问题,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(1)x1=2-x 2=2-(2)x 1=1,x 2=2【解析】【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可.(1)解:∵x 2+4x-3=0∴x 2+4x=3则x 2+4x+4=3+4,即(x+2)2=7∴x+2=∴x 1=2-x 2=2-(2)∵x (x-1)=2(x-1)∴x (x-1)-2(x-1)=0∴(x-1)(x-2)=0则x-1=0或x-2=0解得x 1=1,x 2=2【点睛】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.22.x ,2【解析】【详解】解:由()()()()2222111112111x x x x x x x x x x x x x --+--⋅=⋅=+-++-,此处1x ≠±又2320x x -+=得(2)(1)0x x --=,解得2x =或1x =(舍)故原式的值为2x =23.见解析【解析】【分析】连接OD ,根据切线的性质得到OD ⊥BC ,进而证明OD ∥AC ,得到∠CAD=∠ODA ,根据等腰三角形的性质的得到∠OAD=∠ODA ,根据角平分线的定义证明结论.【详解】解:证明:连接OD ,∵BC 是⊙O 的切线,∴OD ⊥BC ,∵∠C=90°,∴OD ∥AC ,∴∠CAD=∠ODA ,∵OA=OD ,∴∠OAD=∠ODA ,∴∠CAD=∠OAD ,即AD 平分∠BAC .24.(1)50人,32;(2)平均数是15元,众数是10元,中位数是15元;(3)960人【分析】(1)根据条形图中捐款5元的人数是4人,占总比的8%,将4除以8%即可得到总人数,再用捐款10元的是16人,除以总人数,即可求得m 的值;(2)先计算所有人的捐款总额,再除以总人数即可解得平均数;所有数据中,出现的次数最多的那个数据即是众数;将各数据按大小顺序排列,处于正中间的第25,26个数据的平均值即是中位数,据此解题;(3)先计算捐款10元的16人在50人中的占比,再将比值乘以3000即可解题.【详解】(1)本次接受随机调查的学生人数为48%50÷=(人),故答案为:50人,32;(2)本次调查获取的样本数据的平均数是:()1451610121510208301650⨯⨯+⨯+⨯+⨯+⨯=(元),本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(3)估计该校本次活动捐款金额为10元的学生人数为16300096050⨯=(人).【点睛】本题考查条形图、扇形图、平均数、众数、中位数、用样本估计总体等知识,是重要考点,难度较易,掌握相关知识是解题关键.25.(1)85袋(2)2元【分析】(1)利用销售量=100-5×上涨价格,即可求出结论;(2)若设口罩每袋涨价为x 元,则每袋的销售利润为(18+x-12)元,日销售量为(100-5x )袋,利用商店销售该款口罩获得的日均利润=每袋的销售利润×日销售量,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合该款口罩的每袋售价不得高于22元,即可得出每袋涨价2元.(1)解:当x=3时,销售量是100-5×3=85(袋).故答案为:85袋;(2)若设口罩每袋涨价为x元,则每袋的销售利润为(18+x-12)元,日销售量为(100-5x)袋,依题意得:(18+x-12)(100-5x)=720,整理得:x2-14x+24=0,解得:x1=2,x2=12,当x=2时,18+x=18+2=20<22,符合题意;当x=12时,18+x=18+12=30>22,不合题意,舍去,答:当每袋涨价2元时,商店销售该款口罩所得的日均利润为720元.26.(1)(2,0)(2)直线CD与圆M相切,理由见解析【分析】(1)作AB和BC的垂直平分线,两线交于一点M,点M即为所求,由图形可知:这点的坐标是(2,0);(2)利用勾股定理和勾股定理的逆定理求解即可.(1)解:如图,点M即为所求.M(2,0);(2)直线CD与圆M相切,理由:连接CM圆M 的半径22245+=∵D (7,0),M (2,0),∴OD=7,OM=2,∴DM=7-2=5,()226725-+,∵CM 2+CD 2=20+5=25=52=DM 2,∴∠MCD=90°,∴MC ⊥CD ,∵MC 是圆M 的半径,∴直线CD 与圆M 相切.【点睛】本题考查直线与圆的位置关系,作图-复杂作图,垂径定理,勾股定理,线段的垂直平分线的性质等知识,解题的关键是学会利用线段的垂直平分线的性质确定圆心.27.(1)见解析(2)5【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线得出OD ∥BE ,再根据垂线和平行线的性质得出OD ⊥DE ,进而得出DE 是⊙O 的切线;(2)根据圆周角定理和垂径定理得出AF=FC=DE=4,在Rt △OAF 中,由勾股定理列方程求解即可.(1)解:如图,连接OD ,∵BD 平分∠ABC ,∴∠ABD=∠DBC ,又∵OB=OD ,∴∠ABD=∠ODB ,∴∠ODB=∠DBC ,∴OD ∥BE ,∵DE ⊥BE ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)如图,连接AC ,交OD 于F ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵∠FDE=90°,∠DEC=90°,∴四边形FDEC 是矩形,∴DF=CE=2,FC=DE=4.由垂径定理可知4AF CF ==设⊙O 的半径为r ,在Rt △OAF 中,由勾股定理得,222OF AF OA +=即(r-2)2+42=r 2,解得r=5.即半径为5.28.(1)135°(2)不改变,理由见解析【解析】(1)由内心的定义可知∠MOP=∠MOC=12∠EOP,∠MPO=∠MPE=12∠EPO,求出∠MOP与∠MPO的和为45°,利用三角形的内角和定理即可求出∠OMP的度数;(2)连接CM,证△COM≌△POM,即得出∠CMO=∠OMP=135°,可知∠CMO的大小不改变,为135°;(3)连接AC,证明△ACO为分别为等腰直角三角形,求出CQ=,∠CQO=90°,分析得出当点Q在半径OC的右侧的半圆上时,点M的轨迹在以AC为直径的圆弧上,根据弧长公式即可求出M所经过的路径长.(1)解:∵OC⊥AB,∴∠OEP=90°,∴∠EOP+∠EPO=90°,∵M为△OPE的内心,∴∠MOP=∠MOC=12∠EOP,∠MPO=∠MPE=12∠EPO,∴∠MOP+∠MPO=12(∠EOP+∠EPO)=45°,∴∠OMP=180°-(∠MOP+∠MPO)=135°;(2)∠CMO的大小不改变,理由如下:如图2,连接CM,在△COM和△POM中,CO PO COM POM OM OM =⎧⎪∠=∠⎨⎪=⎩,∴△COM ≌△POM (SAS ),∴∠CMO=∠OMP=135°,∴∠CMO 的大小不改变,为135°;(3)如图3,连接AC ,CM,∵CO ⊥AB ,∴OA=OC ,∴△ACO 为等腰直角三角形,∴AO=取AC 中点Q ,连接OQ ,则∠CQO=90°,∴CQ=12AC=∴当点P 在半径OC 的右侧的半圆上时,点M 的轨迹在以AC 为直径的圆弧上,所对圆心角为90°,∴90180π⨯,∴内心M.。

新苏科版九年级上期中考试数学试题(苏教版九年级数学上册期中考试测试题)

新苏科版九年级上期中考试数学试题(苏教版九年级数学上册期中考试测试题)

学校 班级 姓名 考试号………………………………………………………………………………………………………………………………………………………………(第4题图)(第5题图)(第7题图)(第15题图)(第14题图)(第16题图) (第17题图)苏教版第一学期期中试卷初三数学(考试时间:120分钟 满分:130分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列方程中,一元二次方程的是…………………………………………………( )A .3x -2x =0 B .x (x -1)=1 C .x 2=(x -1)2 D .ax 2+bx +c =02.若△ABC ∽△DEF ,相似比为1:2.若BC =1,则EF 的长是…………………( )A . 12 B . 1 C . 2 D . 43.原价168元的商品连续两次降价a %后售价为128元,下列方程正确的是…( )A . 128(1+a %)2=168B . 168(1-a 2%)=128C . 168(1-2a %)=128D . 168(1-a %)2=1284.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .2 B .4 C .6 D .85.如图,在⊙O 中,AB 是直径,BC 是弦,点P 是 ⌒BC上任意一点.若AB =5,BC =3,则AP 的长不可能为………………………………………………………………( ) A . 3 B . 4 C . 4.5 D . 56.已知扇形的圆心角为45º,半径长为12,则该扇形的弧长为…………………( )A . 34π B . 2π C . 3π D . 12π7.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD , ∠C =40º,则∠ABD 的度数是……………………………………………………( ) A . 25º B . 20º C .30º D .15º8.如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白的值为……( )A . 3B . 4C . 5D . 69.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于…………………………………………………………( ) A . 1 B . 2 C . 3 D . 410.如图,Rt △ABC 中,AC ⊥BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AD 交AB 于点E ,M 为AE的中点,BF ⊥BC 交CM 的延长线于点F ,BD =4,CD =3.下列结论:①∠AED =∠ADC ;②DEDA=12;③AC ·BE =12;④3BF =4AC .其中正确结论的个数有( ) A .1个 B .2个 C .3个 D .4个二.填空题(本大题共10小题,每题2分,共20分.)11.方程x 2=0的解是 .12.一元二次方程(a +1)x 2-ax +a 2=1的一个根为0,则a = .13.若一元二次方程mx 2=n (mn >0)的两个根分别是k +1与2k -4,则nm = .14.如图,已知AB 是△ABC 外接圆的直径,∠A =35º,则∠B 的度数是 . 15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD =4,DB =2,则DEBC的值为 .16.如图,AB 、AC 、BD 是⊙O 的切线,P 、C 、D 为切点,如果AB =5,AC =3,则BD 的长为 . 17.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD :DE =3:5,AE =8,BD =4,则DC 的长等于 .18.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于点D ,P 是 ⌒CD上的一个动点,连接AP ,则AP 的最小值是 .19.如图,A 、B 、C 、D 依次为一直线上4个点,BC =2,△BCE 为等边三角形,⊙O 过A 、D 、E 3点,且∠AOD =120º.设AB =x ,CD =y ,则y 与x 的函数关系式为 .20.如图,在矩形ABCD 中,AD =8,E 是边AB 上一点,且AE =14AB .⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线交于另一点F ,且 EG :EF =5:2.当边AD 或BC 所在的直线与⊙O 相切时,AB 的长是 .(第8题图)(第9题图)FB A CD E M(第10题图)(第19题图)(第18题图)(第20题图)CBF EADG O·三.解答题(本大题共8小题,共80分. 解答需写出必要的文字说明或演算步骤)21.(16分)解方程:(1)x 2-5x -6=0 (2)2x 2-4x -1=0(3)(x -7)2+2(x -7)=0 (4)(3x +2)2=4(x -3)222.(8分)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值.23.(8分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D =2∠A .(1)求∠D 的度数;(2)若CD =2,求BD 的长.24.(10分)如图,在□ABCD 中,过点B 作BE ⊥CD 于E ,F 为AE 上一点,且∠BFE =∠C . (1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30º,求AE 的长; (3)在(1)(2)的条件下,若AD =3,求BF 的长.25.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?26.(10分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A 、B 、C . (1)画出该圆弧所在圆的圆心D 的位置(不用写作法,保留作图痕迹),并连接AD 、CD . (2)请在(1)的基础上,完成下列问题:①以点O 为原点、水平方向所在直线为x 轴、竖直方向所在直线为y 轴,建立平面直角坐标系,写出点的坐标:C 、D ; ②⊙D 的半径为 (结果保留根号);③若用扇形ADC 围成一个圆锥的侧面,则该圆锥的底面圆半径是 ; ④若E (7,0),试判断直线EC 与⊙D 的位置关系并说明你的理由.AEF DBOABCDP27.(10分)如图,在锐角△ABC 中,AC 是最短边,以AC 中点O 为圆心,12AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC .(1)求证:D 是 ⌒AE的中点; (2)求证:∠DAO =∠B +∠BAD ;(3)若S △CEFS △OCD=12,且AC =4,求CF 的长.28.(10分)在□ABOC 中,AO ⊥BO ,且AO =BO .以AO 、BO 所在直线为坐标轴建立如图所示的平面直角坐标系,已知B (-6,0),直线y =3x +b 过点C 且与x 轴交于点D . (1)求点D 的坐标;(2)点E 为y 轴正半轴上一点,当∠BED =45°时,求直线EC 的解析式;(3)在(2)的条件下,设直线EC 与x 轴交于点F ,ED 与AC 交于点G .点P 从点O 出发沿折线OF -FE 运动,在OF 上的速度是每秒2个单位,在FE 上的速度是每秒2个单位.在运动过程中直线PA 交BE 于H ,设运动时间为t .当以E 、H 、A 为顶点的三角形与△EGC 相似时,求t 的值.备用图。

苏科版九年级上册数学期中考试试卷带答案

苏科版九年级上册数学期中考试试卷带答案

苏科版九年级上册数学期中考试试题一、单选题1.下列方程中,是一元二次方程是()A .234x y +=B .210x +=C .2210x x -+>D .12x x=+2.如图,点A ,B ,C 在⊙O 上,∠AOB=72°,则∠ACB 等于()A .36°B .54°C .18°D .28°3.利用配方法解方程2450x x -=+,经过配方,得到()A .2(2)9x +=B .2(2)9x -=C .2(4)9x +=D .2(4)9x -=4.O 的半径为5cm ,点A 到圆心O 的距离3cm OA =,则点A 与O 的位置关系为()A .点A 在O 上B .点A 在O 内C .点A 在O 外D .无法确定5.如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的()A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点6.一元二次方程4x 2﹣2x+14=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为()A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=10008.如图,M 的半径为4,圆心M 的坐标为(6,8),P 是M 上的任意一点,PA PB ⊥,且PA 、PB 与x 轴分别交于A 、B 两点.若点A 、B 关于原点O 对称,则AB 长的最小值为A .6B .8C .12D .16二、填空题9.将方程(1)(5)2x x -+=化为一般形式得________.10.已知扇形的圆心角为120︒,半径为3,则扇形的面积为________.11.当a =________时,关于x 的一元二次方程a 2x 2+(2a -1)x +1=0有一根为1.12.正六边形的边长为4,则它的外接圆半径是_____________.13.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =10,AE =1,则弦CD 的长是_____.14.若m 是方程2x 2﹣3x ﹣1=0的一个根,则4m 2﹣6m +2019的值为________.15.在实数范围内定义运算“☆”和“★”,其规则为:a ☆b =a 2+b 2,a ★b 2ab=,则方程3☆x =x ★12的解为___.16.如图,某小区有一块长为30m 、宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为2480m ,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .三、解答题17.解方程:(1)2220x x --=(2)2(3)4(3)x x x -=-18.如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若50C ∠︒=,求P ∠的度数.19.若关于x 的一元二次方程22(1)5340m x x m m +++--=的常数项为0,求m 的值.20.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标为;(2)这个圆的半径为;(3)直接判断点D(5,﹣2)与⊙M 的位置关系,点D(5,﹣2)在⊙M(填内、外、上).21.已知关于x 的方程24310x x a -+-=有两个实数根.(1)求实数a 的取值范围;(2)若a 为正整数,求方程的根.22.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为4,求图中阴影部分(弧BC 、线段BD 及CD 围成的图形)的面积.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价4元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,有一点到终点运动即停止.问几秒后PDQ 的面积等于228cm25.如图,O 是ABC 的内切圆,切点分别是D 、E 、F .已知100A ∠︒=,20C ∠︒=,(1)则DFE ∠的度数=__________°.(2)连接OA 、OC ,则AOC ∠的度数=__________°.(3)连接DE ,若ABC 的周长为20cm 6cm AC ,=,求DE 的长.26.阅读下面的材料,回答问题:解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =.当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±;∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+.27.如图,在平面直角坐标系中,⊙A 的半径为1,圆心A 点的坐标为(0),直线OB 是一次函数y =x 的图象,让⊙A 沿x 轴负方向以每秒1个单位长度移动,移动时间为t 秒.(1)直线OB 与x 轴所夹的锐角度数为°;(2)求出运动过程中⊙A 与直线OB 相切时的t 的值;(3)运动过程中,当⊙A 与直线OB 相交所得的弦长为1时,直接写出t =.参考答案1.B 2.A 3.A 4.B 5.B 6.B 7.D 8.C9.2470x x +-=【详解】解:(1)(5)2x x -+=化为一般形式为:2470x x +-=.故答案为:2470x x +-=.10.3π【详解】解:扇形的面积212033360S ππ⨯==,故答案为:3π.11.-2【详解】解:将x=1代入22(21)10a x a x +-+=,得:a 2+2a=0,解得:a 1=-2,a 2=0.∵a 2≠0,∴a≠0,∴a=-2.故答案为:-2.12.4【分析】先画出图形,再连接OA 、OB ,求出∠AOB 的度数,根据等边三角形的判定得出△AOB 是等边三角形,根据等边三角形的性质得出OA=AB=4,即可得出选项.【详解】解:连接OA 、OB ,∵六边形ABCDEF 是⊙O 的内接正六边形,∴∠AOB==60°,∵OA=OB ,∴△AOB 是等边三角形,∵AB=4,∴OA=OB=AB=4,即正六边形ABCDEF 的外接圆的半径是4,故答案为4.13.6【分析】连接OC ,根据勾股定理求出CE ,根据垂径定理计算即可.【详解】连接OC ,∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CD =2CE ,∠OEC =90°,∵AB =10,AE =1,∴OC =5,OE =5﹣1=4,在Rt △COE 中,CE =3,∴CD =2CE =6,故答案为6.14.2021【分析】根据一元二次方程的解的定义,将m 代入方程中,再计算求解即可.【详解】解:由题意可知:22310m m --=,∴2231m m -=.∵()224620192232019m m m m -+=⨯-+,∴24620192120192021m m -+=⨯+=.故答案为:2021.15.x=3【分析】根据新定义运算列式,对方程进行变形,由此求得方程的解;【详解】解:由题意得:3☆x =x ★12即,32+x 2=122x 9+x 2=6x x 2-6x+9=0(x-3)2=0∴x 1=x 2=3故答案为:x=316.2【分析】设人行通道的宽度为xm ,由题意得(30-3x )(24-2x )=480,解方程即可.【详解】解:设人行通道的宽度为xm ,由题意得(30-3x )(24-2x )=480,解得x 1=2,x 2=20(舍去),∴人行通道的宽度为2m ,故答案为:2.17.(1)11x =21x =(2)13x =,21x =-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.(1)解:2220x x --=x 2-2x=2x 2-2x+1=3(x-1)2=3∴x1x 2(2)2(3)4(3)x x x -=-(x-3)2-4x (x-3)=0(x-3)(x-3-4x )=0∴x-3=0或-3-3x=0,∴13x =,21x =-.18.80°【分析】利用切线的性质连接OA 与OB ,如图(见详解),可知90∠=∠=︒PAO PBO ,再利用圆周角定理可求得AOB ∠的度数,最后利用四边形的内角和定理即可求得答案.【详解】解:连接OA 、OB ,如图所示,∵PA 、PB 是⊙O 切线,∴PA OA ⊥,PB OB ⊥,∴90∠=∠=︒PAO PBO .∵50C ∠=︒,∴2100AOB C ∠=∠=︒.∵360P PAO AOB PBO ∠+∠+∠+∠=︒,∴180********P AOB ∠=︒-∠=︒-︒=︒.19.4【分析】根据关于x 的一元二次方程22(1)5340m x x m m +++--=的常数项为0,得到m 2-3m-4=0,m+1≠0,解得m 值即可.【详解】解:∵关于x 的一元二次方程22(1)5340m x x m m +++--=的常数项为0,∴m 2-3m-4=0且m+1≠0,∴(m-4)(m+1)=0,且m≠-1,解得m=4或m=-1,且m≠-1,∴m=4.20.(1)(2,0);(2)(3)内【详解】解:(1)如图,圆心M 的坐标为(2,0);(2)(0,4)A ,(2,0)M ,MA ∴==,即M 的半径为(3)(5,2)D - ,(2,0)M ,DM ∴==,∴点D 在M 内.21.(1)53a ≤;(2)1222x x =+=-.【分析】(1)由关于x 的方程x 2-4x+3a-1=0有两个实数根,根据判别式得到关于a 的不等式,然后解不等式即可求出a 的取值范围;(2)根据(1)的结果和a 为正整数可求特殊的a 值,然后方程的解就可以求出.【详解】解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.解得53a ≤.∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x =+=-.22.(1)见解析(2)83π-【解析】(1)(1)连接OC ,求出∠A =∠D =30°,由OA =OC 可得∠ACO =∠A =30°,从而可知∠OCD =90°,问题得证;(2)首先求出∠COD =60°,即可求出扇形BOC 的面积,然后解直角三角形求出CD ,再计算出△OCD 的面积即可求出阴影部分面积.(2)证明:连接OC ,∵AC =CD ,∠ACD =120°,∴∠A =∠D =30°,∵OA =OC ,∴∠ACO =∠A =30°,∴∠OCD =∠ACD −∠ACO =90°,∴OC ⊥CD ,∴CD 是⊙O 的切线;(2)由(1)可知:∠OCD =90°,∵∠D =30°,∴∠COD =60°,∵⊙O 的半径为4,∴S 扇形BOC =260483603ππ⋅=,在Rt △OCD 中,tan60°=4CDCDOC ==,∴CD =∴S △OCD =12OC×CD =12×4×∴阴影部分面积为:83π.23.(1)28(2)10元【分析】(1)根据题意“发现销售单价每降低1元,平均每天可多售出2件”即可求解;(2)根据题意列出一元二次方程,解方程即可求解,根据每件盈利不少于25元取舍.(1)解: 销售单价每降低1元,平均每天可多售出2件∴降价4元,则平均每天销售数量为202428+⨯=,故答案为:28;(2)解:设每件商品降价x 元时,该商店每天销售利润为1200元,根据题意得,()()402021200x x -+=,解得1210,20x x ==,4025x -≥,解得15x ≤,∴10x =.答:当每件商品降价10元时,该商店每天销售利润为1200元.24.2秒或4秒【分析】可先设出未知数,△PDQ 的面积可由矩形与几个小三角形的面积之差表示,所以求出几个小三角形的面积,进而即可求解结论.【详解】解:存在,t=2s 或4s .理由如下:可设t 秒后其面积为28cm 2,即S 矩形ABCD-S △ADP-S △BPQ-S △DCQ=12×6-12×12t-12(6-t )·2t-12×6×(12-2t )=28,解得t 1=2,t 2=4,当其运动2秒或4秒时均符合题意,所以2秒或4秒时面积为28cm 2.25.(1)60(2)120(3)4cm【分析】(1)由已知中∠A=100°,∠C=20°,根据三角形内角和定理,可得∠B 的大小,结合切线的性质,可得∠DOE 的度数,再由圆周角定理即可得到∠DFE 的度数.(2)根据切线长定理,可得∠FAO=∠DAO=12∠DAF=50°,∠FCO=∠ECO=12∠ECF=10°,根据三角形内角和定理即可求解;(3)根据题意以及切线长定理求得4BE ,证明BDE 是等边三角形即可求解.(1)解:∵O 是ABC 的内切圆,切点分别是D 、E 、F∴∠BDO=∠BEO=90°∴∠BDO+∠BEO=180°∵∠B=180°-∠A-∠C=180-100°-20°=60°,∴∠DOE=180°-∠B=180°-60°=120°,∴∠DFE=12∠DOE=60°,故答案为:60;(2)如图,连接,,OA OC OF ,∵O 是ABC 的内切圆,切点分别是D 、E 、F ,∴CE=CF ,AD=AF ,∴∠FAO=∠DAO=12∠DAF=50°,∠FCO=∠ECO=12∠ECF=10°,∴∠AOC=180°-∠FAO-∠FCO=120°,故答案为:120;(3)如图,连接DE ,∵O 是ABC 的内切圆,切点分别是D 、E 、F ,∴CE=CF ,AD=AF ,BD=BE ,设AD=AF=a ,BD=BE=b ,CE=CF=c ,∵ABC 的周长为20cm 6cm AC ,=,∴()220a b c ++=cm ,a+c=6cm ,∴b=4cm ,即BD=BE=4cm ,∵BD=BE ,∠B=60°,∴BDE 是等边三角形,DE BD ∴==4cm .26.1352x -+=,2352x --=.【解析】设x 2+3x=y ,则原方程变为y 2+4y+3=0,求出y=-1,或y=-3,再分别解方程即可.【详解】解:设x 2+3x=y ,则原方程变为y 2+4y+3=0,∴(y+1)(y+3)=0,解得y=-1,或y=-3,当y=-1时,x 2+3x=-1,即x 2+3x+1=0,解得x=12x x =当y=-3时,x 2+3x=-3,即x 2+3x+3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去;∴原方程有两个根:132x -+=,232x -=.27.(1)45°(2)(3)2或2【分析】(1)过B 点作BH ⊥x 轴于H ,设B (t ,t ),则BH =OH =t ,于是可判断△OBH 为等腰直角三角形,所以∠BOH =45°;(2)当⊙A 与直线OB 相切时,有⊙A′与OB 相切,⊙A″与OB 相切,作A′M′⊥OB 于M′,A″M″⊥OB 于M″,利用等腰直角三角形的性质得OA′=OA″,则AA′=AA″=A 与直线OB 相切时t 的值;(3)如图3,设⊙A′交直线OB 于C 、D ,则CD =1,作A′E ⊥OB 于E ,连接A′C ,根据垂径定理得CE =DE =12,在Rt △A′CE 中,利用勾股定理得AE =2,在Rt △OA′E 中解直角三角形得OA′A′E =2OA″=2,所以AA′=2,AA″=(1)解:如图,过B 点作BH ⊥x 轴于H ,设B (t ,t ),则BH =OH =t ,∴△OBH 为等腰直角三角形,∴∠BOH =45°,即直线OB 与x 轴所夹的锐角度数为45°,故答案为:45;(2)如图2,当⊙A 与直线OB 相切时,有⊙A′与OB 相切,⊙A″与OB 相切,作A′M′⊥OB 于M′,A″M″⊥OB 于M″,则A′M′=A″M″=1,∵直线OB 与x 轴所夹的锐角度数为45°,∴△OA′M′和△OA″M″是等腰直角三角形,∴OA′=OA″AA′==AA″==A 的移动速度为每秒1个单位长度,∴运动过程中⊙A 与直线OB 相切时t 的值为:(3)如图3,设⊙A′交直线OB 于C 、D ,则CD =1,作A′E ⊥OB 于E ,连接A′C ,∴CE=DE =12,在Rt △A′CE 中,A′E 2==,在Rt △OA′E 中,OA′OA″AA′=AA″=A 的移动速度为每秒1个单位长度,∴当⊙A 与直线OB 相交所得的弦长为1时,t 的值为2.故答案为:2或2+.。

苏科版九年级上册数学期中考试试卷含答案

苏科版九年级上册数学期中考试试卷含答案

苏科版九年级上册数学期中考试试题一、单选题1.下列方程是一元二次方程的是()A .x 3+2x+1=0B .x 2+1=2x+1C .21x =1D .x 2+y =12.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.如果一个多边形的每个内角都是144°,那么这个多边形的边数是()A .5B .6C .10D .124.如图,在以点O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切,切点为C ,若大圆的半径是13,小圆的半径是5,则AB 的长为()A .10B .12C .20D .245.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,商场采取降价措施,假设一定范围内,衬衫价格每降低1元,商场平均每天可多售出2件.如果销售这批衬衫每天盈利1250元,设衬衫单价降了x 元,根据题意,可列方程()A .(40)(202)1250x x -+=B .(402)(20)1250x x -+=C .(40)(202)1250x x +-=D .(402)(20)1250x x +-=6.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED =α,∠AOD =β,则()A .3α+β=180°B .2α+β=180°C .3α﹣β=90°D .2α﹣β=90°7.如图,已知AB 是O 的直径,BC 与O 相切于点B ,连接AC ,OC ,若1sin 3BAC ∠=,则tan BOC ∠等于()A BC .23D .438.如图,AB 是O 的弦,点C 在圆上,已知40OBA ∠=︒,则C ∠等于()A .50︒B .60︒C .70︒D .80︒9.下列方程中是关于x 的一元二次方程的是()A .10x x+=B .235x y -=C .2320x x -+=D .13x +=10.如图,四边形ABCD 内接于⊙O ,连接OA ,OC ,若∠AOC :∠ADC =2:3,则∠ABC 的度数为()A .30°B .40°C .45°D .50°二、填空题11.若一个正方形的外接圆的半径为4,则这个正方形的边长是______.12.设x 1,x 2是关于x 的方程x 2﹣3x+m =0的两个根,且2x 1=x 2,则m =___.13.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩/分728096如果将创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,则该应聘者的总成绩是____分.14.如图,点A ,B ,C 在⊙O 上,∠A =50°,∠C =10°,则∠B =_____°.15.如图,ABC 的顶点A 、B 、C 均在⊙O 上,若90ABC AOC ∠+∠=︒,则AOC ∠=__.16.某市2018年投入教育经费3600万元,预计2020年投入4900万元.设这两年投入教育经费的年平均增长百分率为x ,则可列方程___.17.如图,AB 是⊙O 的直径,弦BC=4cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A→B→A 的方向运动,设运动时间为t (s )(0≤t <6),连接EF ,当△BEF 是直角三角形时,t 的值为______.18.如图,点O 是矩形ABCD 的对角线BD 上的一点,O 经过点D ,且与AB 边相切于点E ,若3AB =,4BC =,则该圆半径是__________.三、解答题19.解下列方程:(1)()()5131x x x -=-;(2)22730x x --=.20.已知关于x 的方程x 2+2mx+m 2﹣1=0(m 为常数).(1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是﹣2,求2021﹣m 2+4m 的值.21.如图,O 的弦AB CD 、相交于点P ,且AB CD =.求证PB PD =.22.某校开展了一次数学竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为:767676737275747173747876根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有2000名学生参赛,请估计该校参赛学生成绩不低于80分的人数.23.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=26°,请用两种方法求∠P的度数.24.在一次数学探究活动中,王老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②△ABC面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C >30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,在平面直角坐标系的第一象限内有一点B ,坐标为(2,m ),过点B 作AB ⊥y 轴,BC ⊥x 轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),发现使得∠OPC =45°的位置有两个,则m 的取值范围为.25.如图,已知△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,连结BD ,BC 平分∠ABD .(1)求证:∠CAD=∠ABC ;(2)若AD=6,求 CD的长.26.如图,在Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ,点D 为O 上一点,且CD CB =,连接DO 并延长交CB 的延长线于点E .的位置关系,并说明理由;(1)判断直线CD与O(2)若2BE=,4DE=,求圆的半径及AC的长.27.请用无刻度直尺按要求画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A,B,请画出这个圆的一条直径;(2)如图2,BA,BD是⊙O中的两条弦,C是BD上一点,∠BAC=50°,在图中画一个含有50°角的直角三角形.参考答案1.B2.D3.C 4.D 5.A 6.D 7.B 8.A 9.C 10.C 11.【详解】解:如图所示:∵四边形ABCD 是正方形,∴∠B =90°,AB =BC ,∴AC 是⊙O 的直径,△ABC 是等腰直角三角形,∴AC =8,AB =BC =2AC =,故答案为:.12.2【详解】解:∵1x ,2x 是关于x 的方程x 2﹣3x +m =0的两个根,∴12=-=3b x x a+,12cx x m a == ,又∵21x =2x ,∴12=x x +1123x x +=,解得:11x =,∴212=2x x =,∴122m x x == .故答案为:2.13.78【分析】由创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,可以列式431728096888⨯+⨯+⨯,即可得到答案.【详解】解:∵创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩∴431728096888⨯+⨯+⨯=78(分).则该应聘者的总成绩是78分.故答案为:7814.60【分析】本题首先根据同弧所对的圆心角等于圆周角的二倍求解∠BOC 的度数,继而根据三角形内角和定理求解∠B .∵B A BOC C ∠+∠=∠+∠,故答案为:60.【点睛】本题考查圆与三角形的综合,解题关键在于对相应概念的理解,其次注意计算仔细即可.15.60︒【分析】根据圆周角定理得到同弧所对的圆周角等于圆心角的一半即可解题.【详解】解: AC AC= 12ABC AOC∴∠=∠90ABC AOC ∠+∠=︒1902AOC AOC ∴∠+∠=︒3902AOC ∴∠=︒60AOC ∴∠=︒,故答案为:60︒.16.23600(1)4900x +=.【详解】根据题意可知2019年的教育经费为:3600(1)x ⨯+,2020年的教育经费为:3600(1)(1)x x ⨯+⨯+,即23600(1)x +.那么可得方程:23600(1)4900x +=.故答案为:23600(1)4900x +=.17.2或72或92.【分析】求出E 移动的路程是0≤s <12,求出∠C=90°,求出AB ,分为三种情况:画出图形,根据图形求出移动的距离即可.【详解】解:解:∵0≤t <6,动点E 以2cm/s 的速度从A 点出发沿着A→B→A 的方向运动,∴E 运动的距离小于12cm ,设E 运动的距离是scm ,则0≤s <12,∵AB 是⊙O 直径,∴∠C=90°,∵F 为BC 中点,BC=4cm ,∴BF=CF=2cm ,∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC=8cm ,分为三种情况:①当∠EFB=90°时,∵∠C=90°,∴∠EFB=∠C ,∴AC ∥EF ,∵FC=BF ,∴AE=BE ,即E 和O 重合,AE=4,t=4÷2=2(s );②当∠FEB=90°时,∵∠ABC=60°,∴∠BFE=30°,112BE BF ∴==AE=8-1=7,7722t =÷=(s )③当到达B 后再返回到E 时,∠FEB=90°,此时移动的距离是8+1=9,9922t =÷=(s )故答案为1或72或92.【点睛】本题考查了圆周角定理,含30度角的直角三角形性质,平行线分线段成比例定理等知识点的综合运用,注意要进行分类讨论.18.209【分析】连接OE ,根据勾股定理求出BD ,根据切线的性质得到OE ⊥AB ,证明△BEO ∽△BAD ,根据相似三角形的性质列出比例式,代入已知数据计算,得到答案.【详解】解:连接OE ,∵四边形ABCD 为矩形,∴AD=BC=4,∠A=90°,∴,∵AB 是⊙O 的切线,∴OE ⊥AB ,∴∠OEB=90°,∵四边形ABCD 为矩形,∴∠A=90°,∴∠OEB=∠A ,∴OE//AD ,∴△BEO ∽△BAD ,∴OE BO AD BD =,即545OE OD -=,∵OE=OD ,∴545OE OE -=解得,OE=209,故答案为:209.【点睛】本题考查的是切线的性质、矩形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.(1)x 1=1,x 2=35.(2)1x =2x =【分析】(1)利用因式分解法求解即可;(2)利用公式法求解即可.【详解】解:(1)∵5x (x-1)=3(x-1),∴5x (x-1)-3(x-1)=0∴(x-1)(5x-3)=0,则x-1=0或5x-3=0,解得x 1=1,x 2=35.(1)22730x x --=∵a=2,b=-7,c=-3,∴△=(-7)2-4×2×(-3)=73>0,则724b x a -==,即174x +=,274x =.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)见解析;(2)2024.【分析】(1)根据0 >,一元二次方程有两个不相等的实数根直接进行求解;(2)将方程的根代入方程中,在进行移项即可求解.【详解】(1)证明:∵b 2﹣4ac =(2m )2﹣4(m 2﹣1)=4m 2﹣4m 2+4=4>0,即Δ>0,∴不论m 为何值,该方程都有两个不相等的实数根;(2)解:∵方程有一个根是﹣2,∴4﹣4m+m 2﹣1=0,∴﹣m 2+4m =3,∴2021﹣m 2+4m =2024.【点睛】本题主要考查了一元二次方程根的判别式的运用,以及一元二次方程的解的定义,熟练掌握一元二次方程根的判别式和一元二次方程的解的概念是解答此题的关键.21.证明见解析;【详解】证明:连接BD .AB CD=,D B∴∠=∠.PB PD∴=.22.(1)补全频数分布直方图见解析;(2)76,77;(3)该校2000名学生中成绩不低于80分的大约960人.【分析】(1)用抽取的总人数减去第一组、第三组、第四组与第五组的人数即可得第二组的人数,然后再补全频数分布直方图即可;(2)根据众数和中位数的定义求解即可;(3)样本估计总体,样本中不低于80分的占20450+,进而估计1500名学生中不低于80分的人数.【详解】(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如下:(2)第三组数据中出现次数最多的是76分,共出现4次,因此众数是76分,将抽取的50名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为76782+=77(分),因此中位数是77分,故答案为:76,77;(3)2000×20450+=960(人),答:该校2000名学生中成绩不低于80分的大约960人.【点睛】本题考查了条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.23.∠P =52°.【分析】方法一:根据切线长定理可得PA =PB ,从而得到∠PBA =∠PAB ,根据切线的性质可得∠CAP =90°,则∠PAB =90°﹣26°=64°,进而得出结果;方法二::连接OB ,根据四边形内角和定理可得∠P =∠BOC ,进而得出答案.【详解】方法一:∵PA 、PB 分别是⊙O 的切线,A 、B 为切点,∴OA ⊥PA ,PA =PB ,∴∠CAP =90°,∵∠BAC =26°,∴∠PAB =90°﹣26°=64°,∴∠PBA =∠PAB =64°,∴∠P =180°﹣64°﹣64°=52°;方法二:连接OB ,如图,∵PA 、PB 分别是⊙O 的切线,A 、B 为切点,∴OA ⊥PA ,OB ⊥PB ,∴∠OAP =∠OBP =90°,∴180OAP OBP ∠∠︒+=,∴∠P+∠AOB =180°,∵OA =OB ,∴∠OAB =∠ABO =26°,∴∠BOC =∠OAB+∠ABO =52°,∵∠P+∠AOB =180°,∠BOC+∠AOB =180°,∴∠P =∠BOC =52°.【点睛】本题考查了切线长定理,切线的性质,三角形外角的性质,四边形的内角和问题,等知识点,熟练掌握基础知识是解题的关键.24.(1)①2;(2)见解析;(3)21m ≤<.【分析】(1)①由圆周角定理可得∠BOC =60°,可证△OBC 是等边三角形,即可求解;②由题意可得当点A 到BC 的距离最大时,△ABC 的面积最大,即可求解;(2)由同弧所对的圆周角相等可得∠BHC =∠BAC ,由三角形的外角的性质可得结论;(3)以BC 为边作等腰直角三角形ODC ,以点O 为圆心,OD 为半径作圆D ,可得当点P 在OC 上方的圆D 上时,∠OPC =45°,分别求出点B 在圆D 和线段AB 与圆D 相切时,m 的值,即可求解.【详解】(1)①如图1,设O 为圆心,连接BO ,CO ,∵∠BAC =30°,∴∠BOC =60°,又∵OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =2,即半径为2,故答案为2;②∵△ABC 以BC 为底边,BC =2,∴当点A 到BC 的距离最大时,△ABC 的面积最大,如图1,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,∴BE =CE =1,DO =BO =2,∴OE =∴DE,∴△ABC 的最大面积为12×2×,;(2)如图1﹣1,延长BA',交圆于点H ,连接CH ,∵ BC= BC ,∴∠BHC =∠BAC ,∵∠BA'C =∠BHC+∠A'CH ,∴∠BA'C >∠BHC ,∴∠BA'C >∠BAC ,即∠BA'C >30°;(3)如图2,以OC 为边作等腰直角三角形ODC ,以点O 为圆心,OD 为半径作圆D ,∴OD =CD ODC =90°,∴当点P 在OC 上方的圆D 上时,∠OPC =45°,当点A 或点B 在圆D 上时,BC =OC =2,即m =2,当AB 与圆D 相切时,m =∴21m ≤<.故答案为:21m ≤<.【点睛】本题是圆的综合题,考查了圆周角定理,等边三角形的判定和性质,圆的有关知识,确定点P 的运动轨迹是解题的关键.25.(1)证明见解析;(2)32π.【分析】(1)利用角平分线的性质结合圆周角定理即可证明;(2)可证得 CD = AC ,则 CD 的长为圆周长的14.【详解】(1)证明:∵BC 平分∠ABD ,∴∠DBC=∠ABC ,∵∠CAD=∠DBC ,∴∠CAD=∠ABC ;(2)解:∵∠CAD=∠ABC ,∴ CD= AC ,∵AD 是⊙O 的直径,且AD=6,∴ CD的长=14×π×6=32π.【点睛】本题考查了角平分线的性质以及圆周角定理,证得 CD = AC 是解(2)题的关键.26.(1)DC 是O 的切线;理由见解析;(2)圆的半径为1.5,AC 的长为【分析】(1)欲证明CD 是切线,只要证明OD ⊥CD ,利用全等三角形的性质即可证明;(2)设⊙O 的半径为r .在Rt △OBE 中,根据222OE EB OB =+,可得222(4)2r x -=+,推出r =1.5,由tan OB CD E EB DE∠==,推出1.524CD =,可得CD =BC =3,再利用勾股定理即可解决问题;【详解】(1)证明:连接OC .CB CD = ,CO CO =,OB OD =,()OCB OCD SSS ≌∴∆∆,90ODC OBC ∴∠=∠=︒,OD DC ∴⊥,DC ∴是O 的切线;(2)解:设O 的半径为r .在Rt OBE ∆中,222OE EB OB =+ ,222(4)2r x ∴-=+,1.5r ∴=,tan OB CD E EB DE ∠== ,1.524CD ∴=,3CD BC ∴==,在Rt ABC ∆中,AC ===∴圆的半径为1.5,AC 的长为【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.27.(1)见解析;(2)见解析.【分析】(1)根据垂径定理可得,AB 的垂直平分线过圆心,连接AB ,利用网格找到相应的格点,作出弦AB 的垂直平分线即可;(2)根据直径所对的圆周角是直角,同弧所对的圆周角相等,即可画出一个含有50°角的直角三角形.【详解】解:(1)如图1,线段EF 即为所求;(2)如图2,Rt △BEF 即为所求.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文为自本人珍藏 版权所有 仅供参考
苏科版九年级(上)
数学期中测试试卷
(测试内容:九(上)全册;测试时间:120分钟;满分:120分)
一、填空题:(每题2分,共计16分)
1、直接写出答案:
_____3
2
=;)
1
1=
2、当x 时,4-x 在实数范围内有意义,当x 时,
3
22
-x 在实数范围
内有意义。

3、实数a 在数轴上的位置如图所示,化简:
|1|a -4、如图,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=___ __.
5、如图,面积为12cm 2
的△ABC 沿BC 方向平移至△DEF 位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积是___。

第5题图 第6题图 第7题图
6、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面至管道顶部距离为10cm ,修理人员应准备半径为 cm 的管道.
7、如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm ,则此光盘的直径是_________cm.
8、以(-3,4)为圆心,5为半径画圆,则圆与坐标轴交点坐标是____________________ ____________________ 二、选择题:(每题2分,共计16分)
9 )。

A
10、已知0xy >,化简二次根式的正确结果为( )
A B 、、 D 、
11、下列一元二次方程中,两根之和为2的是( ) A 、022
=+-x x
B 、0222=+-x x
C 、01422=+-x x
D 、022=--x x
12、若从一块正方形的木板上锯掉一块2cm 宽的长方形木条,剩下部分的面积是48cm 2
,则这块正方形木板原来的面积是( )
A 、81cm 2
B 、81cm 2
或36cm 2
C 、64cm 2
D 、36cm 2
13、若等腰梯形两底之差等于一腰的长,那么这个梯形一内角是( ) A 、︒
90 B 、︒
60 C 、︒
45 D 、︒
30
14、已知点P 是半径为5的⊙O 内一定点,且OP =4,则过点P 的所有弦中,弦长可能取到的整数值为( )
A. 5,4,3
B. 10,9,8,7,6,5,4,3
C. 10,9,8,7,6
D. 12,11,10,9,8,7,6 15、若两圆的圆心距等于7,半径分别是R 、r ,且R 、r 是关于x 的方程0652
=+-x x 的
两个根,则这两圆的位置关系是( )
A. 相离
B. 相交
C. 内切
D. 外切
16、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的 边长均为1厘米,则这个圆锥的底面半径为( )厘米. A .
21 B .2
2 C .2 D .22
三、解答题:(本大题共计88分) 17、(每题2分,共计8分)计算下列各式:
⑵、5.08
1
2
32+-
⑶、2)13()53)(53(---+ ⑷、
631
45
520∙-+
18、(每题2分,共计12分)解下列一元二次方程: ⑴、02522
=-+)(x (直接开平方法) ⑵、01522=--x x (配方法)
⑶、025)2(10)2(2=++-+x x (因式分解法) ⑷、03722=+-x x (公式法)
⑸、0223)12(22
=-+-+x x
⑹、0)4()52(22=+--x x
19、(本题5分)如图,秋千拉绳长AB 为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长(结果保留π)
20、(本题6分)如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G 是CD与EF的交点.
⑴、求证:△BCF≌△DCE.
⑵、若BC=5,CF=3,∠BFC=900,求DG:GC的值.
21、(本题6分)如图,平行四边形ABCD纸片中,,AC⊥AB,AC与BD交于点O,沿对角线AC对折后,E与B对应.
⑴、试问:四边形ACDE是什么形状的四边形?请加以证明。

⑵、若其他条件不变还应具备一个什么条件时EO平分∠AOD成立?说明其理由.
⑶、若四边形ABCD的面积S=12cm,设CE、AD交于点F,求翻转后纸片重叠部分的面积,即S△ACF.
22、(本题7分)如图,AB是⊙O的直径,CB、CE分别切⊙O于点B、D,CE与BA的延长线交于点E,连结OC、OD.
⑴求证:△OBC≌△ODC;
⑵已知DE=a,AE=b,BC=c,请你思考后,选用以上适当的数(两个或三个)作为已知量,设计出计算⊙O半径r的一种方案:
①你选用的已知数是;
②写出求解过程.(结果用字母表示)
23、(本题8分)如图,正方形网格中的每一个小正方形边长都是1,每个小格的顶点叫做格点.
⑴在图①中以格点为顶点画一个三角形,使三角形的三边长分别为2;
⑵在图②中以格点为顶点画一个面积为10的正方形;
⑶观察图③中带阴影的图形,请你将它适当剪开,重新拼成一个正方形(要求:在图③中用虚线作出,并在图④中画出拼接的正方形);
⑷观察正方体图形,沿着一些棱将它剪开,展开成平面图形. 若正方体的表面积为6,请你在图⑤中以格点为顶点用阴影部分表示出一个正方体的平面展开图. (只需画出一种情形)
24、(本题6分)今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同. ⑴、求降低的百分率;
⑵、若小红家有4人,明年小红家减少多少农业税?
⑶、小红所在的乡约有16000农民,问该乡农民明年减少多少农业税.
25、(本题6分)关于x 的一元二次方程ax 2+bx+c=0中,当b 2
-4a≧0,方程的两个根x 1和x 2不相等或相等,而且有x 1+x 2=-a b ,x 1·x 2=a
c ;当b 2
-4ac<0时,方程无实数解。

比如方程x 2
-7x+12=0的两根x 1=3,x 2=4,则有b 2
-4ac=49-4×1×12=1>0,而且x 1+x 2=7,x 1·x 2=12,
2x 2+x+1=0,b 2
-4ac=1-4×2×1=-7<0,方程无解。

根据以上情况解下列问题。

已知R t△ABC
中,∠C=90o ,BC=a ,AC=b ,a>b ,且a ,b 是关于x 的方程x 2
-(m-1)x+(m+4)=0的两根,当AB=5时:
⑴、求m 的值;⑵、求a 和b
26、(本题7分)如图所示,A 、B 两个旅游点从2001年至2005年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题: ⑴、B 旅游点的旅游人数相对上一年,增长最快的是哪一年?
⑵、求A 、B 两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
⑶、A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100
x
y =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
27、(本题7分)正方形ABCD 和正方形A'B'C'D'边长均为中心O 、各边
都互相重合
⑴、正方形A'B'C'D'绕着中心O,逆时针方向旋转450
时(如图1),求证:△AEF ≌△A'GF
⑵、正方形A'B'C'D'绕着中心O,逆时针方向旋转任意锐角时(如图2),10
、指出△AEF 的
不变量;20、当锐角由300到450
时求△AEF 面积的取值范围.
28、(本题10分)如图1,⊙O的直径AB,过半径OA的中点G作弦CE⊥AB,在上取一点
D,分别作直线CD、ED,交直线AB于点F、M.
⑴、求∠COA和∠FDM的度数;
⑵、求证:△FDM∽△COM;
⑶、如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M. 试判断:此时是否仍有△FDM∽△COM?证明你的结论.。

相关文档
最新文档