传感器的应用论文

合集下载

关于传感器的论文

关于传感器的论文

传感器关键字:光电效应 光电元件 光电特性 传感器分类 传感器应用 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。

由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。

这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。

正文:一、理论基础——光电效应光电效应一般有外光电效应、光导效应、光生伏特效应。

光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数,h =6.63*10-34 J/HZ),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。

假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。

根据能量守恒定律:式中,m 为电子质量,v 为电子逸出的初速度,A 微电子所做的功。

由上式可知,要使光电子逸出阴极表面的必要条件是h>A 。

由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称为“红限”。

相应的波长为 式中,c 为光速,A 为逸出功。

当受到光照射时,吸收电子能量,其电阻率降低的导电现象称为光导效应。

它属于内光电效应。

当光照在半导体上是,若电子的能量大与半导体禁带的能级宽度,则电子从价带跃迁到导带,形成电子,同时,价带留下相应的空穴。

力传感器的原理与应用论文

力传感器的原理与应用论文

力传感器的原理与应用论文引言力传感器是一种能够测量物体受力大小的装置,广泛应用于工业自动化、机器人技术、航空航天等领域。

本文将介绍力传感器的基本原理、分类和应用,以及一些相关技术的发展。

一、力传感器的基本原理力传感器基于哈克定律,通过测量物体所受力的大小来获得相关数据。

其基本原理可归纳为以下几点: 1. 应变测量原理:力传感器利用物体受力时产生的应变量来测量力的大小。

当物体受到力的作用时,传感器内部的应变片会发生形变,可通过电桥电路来测量应变片的变化,从而计算出物体所受的力。

2. 压电效应原理:压电力传感器通过压电效应将受力转换为电压输出。

压电材料在受到外力作用时会产生电荷,通过测量电荷的大小可以得知物体所受的力。

3. 感应原理:感应力传感器利用感应原理将受力转化为电磁感应信号。

当物体受到力的作用时,感应力传感器内部的电磁感应元件会产生感应电流,通过测量感应电流的大小可以得知物体所受的力。

二、力传感器的分类根据原理和结构的不同,力传感器可以分为以下几种类型: 1. 压阻式力传感器:利用应变片的变化来测量受力物体的压力大小,并将其转化为电阻值的变化。

2.压电式力传感器:使用压电材料将受力转换为电压输出,具有灵敏度高、频率响应范围广的特点。

3. 容积式力传感器:通过测量气体或液体在封闭空间中产生的压力变化,间接计算物体所受的力。

4. 振荡式力传感器:利用物体受力时产生的振动变化,通过测量频率或振幅的变化来计算力的大小。

5. 电容式力传感器:根据电容变化来测量力的大小,具有高精度、灵敏度高的优点。

三、力传感器的应用力传感器在许多领域都有广泛的应用,下面列举了几个典型的应用场景: - 工业自动化:力传感器可用于测量机械臂、自动生产线等设备所受的力,用于控制装置和设备的运行状态,实现自动化生产。

- 机器人技术:力传感器可用于机器人手臂的控制,通过测量机器人手臂在抓取物体时的力度,实现精确的操作和控制。

传感器应用与原理论文

传感器应用与原理论文

传感器一、传感器分类在高中物理选修3—2第六章中,介绍了关于传感器方面的知识。

我们通过学习并发现生活中的传感器的种类有很多,比如:光敏传感器—视觉,声敏传感器—听觉,气敏传感器—嗅觉,化学传感器—味觉,压敏、温敏、流体传感器—触觉等。

传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。

根据传感器工作原理,可分为物理传感器和化学传感器二大类传感器。

随着社会的进步,时代的发展,科技的创新,传感器已经步入人类的生活中。

在家庭中所具有的电视遥控器、空调遥控器、声控灯等的内部构造都具有不同形式的传感器。

它们都在随着人类的需要不断的在更新,在创新!在学习中,我们了解到,传感器是的原理大多数是将被测量的非电学量转换成模拟电信号,从而达到人们所需要的效果。

传感器使能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换成为电压、电流等电学量,或转换成为电路的通断这样一类的元件。

在课本中介绍了光敏电阻,热敏电阻,金属热电阻等传感器。

二、传感器的原理角度位移速度电压压力 传感器 电流温度 电阻湿度 电容声强光照非电学量→敏感元件→转换器件→转换电路→电学量生活中力传感器的工作电路简图:测物体质量 应变式加速度计电饭锅的结构 话筒构造及原理四、霍尔元件1、霍尔元件的工作原理: 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。

金属的霍尔效应是1879年被美国物理学家霍尔发现的。

当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。

半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。

UH=KIB/d其中,d为薄片的厚度,k为霍尔系数,它的大小与薄片的材料有关。

一个霍尔元件的d、k 为定值,再保持I恒定,则UH的变化就与B成正比。

传感器的原理及其应用论文范文

传感器的原理及其应用论文范文

传感器的原理及其应用1. 介绍本文将介绍传感器的原理和其在各个领域的应用。

传感器是一种用于检测和测量环境中各种物理量的设备。

它们广泛应用于工业、医疗、环境保护、军事等领域。

本文将首先介绍传感器的工作原理,然后详细讨论传感器在不同领域的应用。

2. 传感器的工作原理传感器的工作原理基于各种物理现象,如光电效应、热敏效应、压电效应等。

以下是几种常见的传感器工作原理:2.1 光电传感器光电传感器利用光电效应测量光的强度和特性。

当光照射到光电传感器上时,光会激发光电元件内的电子,产生电流。

通过测量电流的大小,可以得知光的强度和特性。

光电传感器广泛应用于自动化控制、安防和光通信等领域。

2.2 温度传感器温度传感器根据物质的热敏性质来测量温度。

常见的温度传感器包括热电偶和热电阻。

热电偶利用两种不同金属的电极在不同温度下产生电势差,从而测量温度。

热电阻则根据电阻值随温度变化的特性来测量温度。

温度传感器广泛应用于气象、工业过程控制和家用电器等领域。

2.3 压力传感器压力传感器用于测量压力的大小。

它们通过将压力转化为力或位移,再测量这些参数来得知压力。

常见的压力传感器包括电阻应变式传感器和压电传感器。

电阻应变式传感器根据压力引起的电阻变化来测量压力。

压电传感器则利用压电效应,将压力转化为电荷来测量压力。

压力传感器广泛应用于工业自动化、汽车、航空航天等领域。

2.4 气体传感器气体传感器用于检测环境中的气体浓度。

常见的气体传感器包括气敏传感器和红外线传感器。

气敏传感器基于物质与气体之间的化学反应来测量气体浓度。

红外线传感器利用气体对红外线的吸收特性来测量气体浓度。

气体传感器广泛应用于空气质量监测、工业过程控制和燃气检测等领域。

3. 传感器的应用传感器在各个领域都有广泛的应用。

以下是几个领域中传感器的应用示例:3.1 工业控制在工业控制中,传感器被用于监测和控制生产过程中的各种参数。

例如,温度传感器可用于监测设备和物料的温度,以确保生产过程的稳定性。

温度传感器应用及发展论文

温度传感器应用及发展论文

温度传感器应用及发展论文温度传感器是一种用于测量环境温度的设备,广泛应用于工业、农业、医疗、航空航天等领域。

本文将探讨温度传感器的应用及其发展趋势。

首先,温度传感器在工业领域的应用非常广泛。

工业生产过程中,许多设备和材料的性能受温度影响较大,因此需要实时监测和控制温度。

温度传感器可以用于监测炉温、冷却水温度、液体流体温度等,以确保工业生产的稳定性和安全性。

此外,温度传感器还可以用于监测电子设备的温度,防止过热导致设备损坏。

其次,温度传感器在农业领域也有重要的应用。

农作物的生长和发育受温度影响较大,因此需要实时监测和控制温度,以提供适宜的生长环境。

温度传感器可以用于监测温室内外的温度,帮助农民调节温室内的温度,提高农作物的产量和质量。

此外,温度传感器还可以用于监测土壤温度,帮助农民合理安排灌溉和施肥,提高农作物的生长效率。

此外,温度传感器在医疗领域也有重要的应用。

医疗设备和药品的存储和运输过程中,温度的控制非常重要。

温度传感器可以用于监测药品和疫苗的温度,确保其在适宜的温度范围内保存和运输,以保证其有效性和安全性。

此外,温度传感器还可以用于监测患者的体温,帮助医生及时发现和处理患者的疾病。

最后,温度传感器的发展趋势主要体现在以下几个方面。

首先,随着物联网技术的发展,温度传感器将更加智能化和网络化。

传感器可以通过无线网络与其他设备进行通信,实现远程监测和控制。

其次,温度传感器将更加小型化和集成化。

传感器的体积将更小,功耗更低,可以更方便地嵌入到各种设备中。

再次,温度传感器的精度和稳定性将得到进一步提高。

传感器的测量精度将更高,能够更准确地反映温度变化。

此外,传感器的稳定性也将得到提高,能够在恶劣环境下长时间稳定工作。

最后,温度传感器将更加多样化和多功能化。

传感器将具备多种测量模式和功能,以满足不同领域的需求。

综上所述,温度传感器在工业、农业、医疗等领域有着广泛的应用。

随着物联网技术的发展,温度传感器将更加智能化、小型化、精确化和多功能化。

传感器原理以及应用的论文

传感器原理以及应用的论文

传感器原理以及应用1. 介绍传感器是一种能够感知和测量环境中各种物理量和化学量的设备或装置,广泛应用于工业、农业、医疗和消费电子等领域。

本文将介绍传感器的工作原理以及其在不同领域的应用。

2. 传感器的工作原理传感器的工作原理基于不同的物理效应,常见的工作原理包括电阻、电容、电感、磁阻、热敏、光敏、声敏和化学敏感等。

2.1 电阻传感器电阻传感器是基于材料的电阻随外界物理量变化而变化的原理工作的。

常见的电阻传感器包括压力传感器、温度传感器和光敏电阻等。

2.2 电容传感器电容传感器是基于材料的电容随外界物理量变化而变化的原理工作的。

常见的电容传感器包括湿度传感器和接近传感器等。

2.3 电感传感器电感传感器是基于材料的电感随外界物理量变化而变化的原理工作的。

常见的电感传感器包括接近传感器和速度传感器等。

2.4 磁阻传感器磁阻传感器是基于材料的磁阻随外界物理量变化而变化的原理工作的。

常见的磁阻传感器包括磁力传感器和角度传感器等。

2.5 热敏传感器热敏传感器是基于材料的电阻随温度变化而变化的原理工作的。

常见的热敏传感器包括温度传感器和热流量传感器等。

2.6 光敏传感器光敏传感器是基于材料的电阻或电压随光线强度变化而变化的原理工作的。

常见的光敏传感器包括光电传感器和光纤传感器等。

2.7 声敏传感器声敏传感器是基于材料的电阻或电压随声音强度变化而变化的原理工作的。

常见的声敏传感器包括声压传感器和声音传感器等。

2.8 化学敏感传感器化学敏感传感器是基于材料的电阻或电压随化学物质浓度变化而变化的原理工作的。

常见的化学敏感传感器包括气体传感器和化学传感器等。

3. 传感器的应用传感器在各个领域都有广泛的应用,以下列举了一些常见的应用场景。

3.1 工业自动化•温度传感器用于监测和控制工业过程中的温度变化。

•压力传感器用于测量液体或气体的压力,用于流量控制和工艺控制。

•光电传感器用于检测和计数生产线上的物体,实现自动包装和分拣。

温度传感器论文 (2)

温度传感器论文 (2)

温度传感器论文摘要本论文研究了温度传感器在工业自动化领域中的应用。

首先介绍了温度传感器的原理和分类。

然后详细讨论了温度传感器在自动化控制系统中的作用。

接着探讨了温度传感器的性能指标以及影响温度传感器精度的因素。

最后,通过实验验证了温度传感器的可靠性和精度。

引言温度是一个重要的物理量,在工业生产和实验研究中具有广泛的应用。

温度传感器作为测量温度的主要工具,其在工业自动化领域中起到了至关重要的作用。

本论文旨在研究温度传感器的原理和应用,以及其在自动化控制系统中的作用。

温度传感器的原理和分类温度传感器是一种能够将物理量(温度)转换成电信号的装置。

根据原理的不同,温度传感器可以分为电阻式温度传感器、热电偶和热敏电阻等多种类型。

电阻式温度传感器电阻式温度传感器是利用材料的温度对电阻值产生影响的原理来测量温度的。

常见的电阻式温度传感器有铂电阻温度传感器(PT100)、铜电阻温度传感器(CT100)等。

其中,PT100是一种常用的高精度温度传感器,广泛应用于温度测量领域。

热电偶热电偶是利用两种不同金属的热电效应来测量温度的。

它由两段不同金属的导线组成,两段导线的接触处称为冷端,另一端则称为热端。

当热电偶的热端与被测温度相接触时,产生的温差会在电压表上显示出热电动势,进而推算出温度。

热敏电阻热敏电阻是指在不同温度下电阻值发生变化的电阻。

常见的热敏电阻有二极管热敏电阻和热敏电阻。

热敏电阻的工作原理是基于半导体材料的特性,通过测量电阻值来间接反映温度。

温度传感器在自动化控制系统中的作用温度传感器在自动化控制系统中扮演着非常重要的角色。

它可以实时感知环境温度,并将温度信号转换为电信号输送给控制器。

控制器根据温度传感器的反馈信号来调整系统的工作状态,以达到设定温度的目标。

温度传感器的准确性和稳定性对系统的控制精度至关重要,因此选择合适的温度传感器对系统性能至关重要。

温度传感器的性能指标精度精度是指温度传感器输出值与真实温度之间的误差。

传感器的基本原理及应用领域论文

传感器的基本原理及应用领域论文

传感器的基本原理及应用领域一、传感器的基本原理传感器是一种能够感知和测量某种物理量并将其转化为可用信号的设备。

传感器的工作原理通常基于不同的物理现象,如电磁感应、压力变化、声波传播等。

以下是几种常见的传感器工作原理:1. 光电传感器光电传感器利用物体对光的反射、散射或吸收的变化来检测物体的存在、位置或其他属性。

光电传感器包括光敏电阻、光电二极管和光电晶体管等。

它们通过光敏元件的电阻、电流或电压的变化来感知光的强度或改变。

2. 温度传感器温度传感器是测量物体的温度变化的设备。

常用的温度传感器有热电偶、热电阻和半导体温度传感器。

热电偶通过两个不同金属的焊接点之间产生的温差来测量温度变化。

热电阻则是通过材料的电阻随温度变化而产生的变化来测量温度。

半导体温度传感器利用半导体材料的电阻随温度的变化来测量温度。

3. 压力传感器压力传感器是测量物体受力或气体液体压力的设备。

它们根据物体受力或压力改变导致的变形或变量来测量压力。

常见的压力传感器有电阻式、电容式和压阻式传感器。

电阻式传感器是将变形或变量转化为电阻改变来测量压力。

电容式传感器则是将变形或变量转化为电容改变来测量压力。

压阻式传感器则是测量物体受力产生的压阻值来获得压力信息。

二、传感器的应用领域传感器在各个领域都有广泛的应用,以下列举了几个常见的应用领域:1. 工业自动化传感器在工业自动化中发挥着关键作用。

例如,温度传感器可以用于监测和控制工业过程中的温度变化。

压力传感器可以用于监测液体或气体管道中的压力变化。

光电传感器可以用于检测物体的存在和位置,实现自动化的装配和分拣。

2. 医疗健康传感器在医疗健康领域的应用越来越广泛。

例如,心率传感器可以测量人体的心跳情况,用于心率监测和心脏疾病检测。

血压传感器可以测量人体的血压水平,用于高血压和低血压的监测和治疗。

体温传感器可以测量人体的体温,用于发热疾病的检测和监测。

3. 环境监测传感器在环境监测中发挥着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器的应用高二(11)陈远杰指导老师:【关键字】传感器原理应用【摘要】对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

1传感器及其工作原理1.1什么是传感器1.1.1传感器的定义英文名称:transducer / sensor国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。

根据这个定义,传感器的作用是将一种能量转换成另一种能量形式,所以不少学者也用“换能器-Transducer”来称谓“传感器-Sensor”。

1.2功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、流体传感器——触觉1.2.1敏感元件的分类:①物理类,基于力、热、光、电、磁和声等物理效应。

②化学类,基于化学反应的原理。

③生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。

1.2.2常见的元件光敏电阻光敏电阻又称光导管,常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。

这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。

这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。

热敏电阻和金属热电阻除了光照以外,温度也能明显地影响金属导体和半导体材料的导电性能。

金属的电阻率随温度的升高而增大。

用金属丝可以制作温度传感器,称为热电阻。

常用的一种热电阻是用铂制作的。

与金属不同,有些半导体在温度上升时导电能力增强,因此可以用半导体材料制作热敏电阻。

有一种热敏电阻是用氧化锰等金属氧化物烧结而成的,它的电阻随温度的变化非常明显。

与热敏电阻相比,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。

霍尔元件详见人教版高中物理选修3-22传感器的应用传感器输出的电信号相当微弱,难以带动执行机构去控制动作,因此要把这个电信号放大。

如果需要远距离传送,可能还要把它转换成其他电信号一抵御外界干扰。

从传感器获得信号后,可以用指针式电表或液晶板等显示测量的数据;也可以用来驱动继电器或其他元件,来执行诸如打开管道的阀门,开通或关闭电动机等动作;还可以由计算机对获得的数据进行处理,发出更复杂的指令。

2.1 常见传感器的应用2.1.1 力传感器的应用——电子称我们经常见到的电子称,小的用来称量食物的重量,大的可以称量汽车、火车的重量。

它所使用的测力装置是力传感器。

常用的一种力传感器是由金属梁和应变片组成。

应变片是一种敏感元件,现在多用半导体材料制成。

详见人教版高中物理选修3-22.1.2 温度传感器的应用——电熨斗电熨斗在到达设定温度后就不再升温,当温度降低时又会继续加热,使它总与设定温度相差不多。

在熨烫不同的织物时,设定的温度可以不同。

进行这样的控制,靠的是温度传感器。

详见人教版高中物理选修3-22.1.3 光传感器的应用——火灾报警器许多会议室和宾馆房间的天花板上都装有火灾报警器。

有一种火灾报警器是利用烟雾对光的散射来工作的。

如图带孔的罩子内装有发光二极管LED、光电三极管和不透明的挡板。

平时,光电三极管收不到LED发出的光,呈高电阻状态。

烟雾进入罩内后对光有散射作用,使部分光线照射到光电三级板上,其电阻变小。

与传感器连接的电路检测出这种变化,就会发出警报。

2.2 各种传感器及其原理电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。

主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。

称重传感器引称重传感器是一种能够将重力转变为电信号的力--电转换装置,是电子衡器的一个关键部件。

能够实现力--电转换的传感器有多种,常见的有电阻应变式、电磁力式和电容式等。

电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用的还是电阻应变式称重传感器。

电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。

因此电阻应变式称重传感器在衡器中得到了广泛地运用。

电阻应变式传感器传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。

电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。

半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。

压阻式传感器压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。

其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。

当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。

用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。

热电阻传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。

在温度检测精度要求比较高的场合,这种传感器比较适用。

目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。

用于测量-200℃~+500℃范围内的温度。

激光传感器利用激光技术进行测量的传感器。

它由激光器、激光检测器和测量电路组成。

激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。

激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。

经目标反射后激光向各方向散射。

部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。

雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。

利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。

激光传感器常用于长度(ZLS-Px)、距离(LDM4x)、振动(ZLDS10X)、速度(LDM30x)、方位等物理量的测量,还可用于探伤和大气污染物的监测等。

霍尔传感器是根据霍尔效应制作的一种磁场传感器,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔效应是研究半导体材料性能的基本方法。

通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。

(一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。

(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。

霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。

若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。

下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。

这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。

霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。

温度传感器1.室温管温传感器:室温传感器用于测量室内和室外的环境温度,管温传感器用于测量蒸发器和冷凝器的管壁温度。

室温传感器和管温传感器的形状不同,但温度特性基本一致。

按温度特性划分,目前美的使用的室温管温传感器有二种类型:1.常数B值为4100K±3%,基准电阻为25℃对应电阻10KΩ±3%。

温度越高,阻值越小;温度越低,阻值越大。

离25℃越远,对应电阻公差范围越大;在0℃和55℃对应电阻公差约为±7%;而0℃以下及55℃以上,对于不同的供应商,电阻公差会有一定的差别。

温度越高,阻值越小;温度越低,阻值越大。

离25℃越远,对应电阻公差范围越大。

2.排气温度传感器:排气温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。

3.、模块温度传感器:模块温度传感器用于测量变频模块(IGBT或IPM)的温度,目前用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻6KΩ±1%。

几个典型温度的对应阻值分别是:-10℃→(25.897─28.623)KΩ;0℃→(16.3248─17.7164)KΩ;50℃→(2.3262─2.5153)KΩ;90℃→(0.6671─0.7565)KΩ。

无线温度传感器无线温度传感器将控制对象的温度参数变成电信号,并对接收终端发送无线信号,对系统实行检测、调节和控制。

可直接安装在一般工业热电阻、热电偶的接线盒内,与现场传感元件构成一体化结构。

通常和无线中继、接收终端、通信串口、电子计算机等配套使用,这样不仅节省了补偿导线和电缆,而且减少了信号传递失真和干扰,从而获的了高精度的测量结果。

无线温度传感器广泛应用于化工、冶金、石油、电力、水处理、制药、食品等自动化行业。

例如:高压电缆上的温度采集;水下等恶劣环境的温度采集;运动物体上的温度采集;不易连线通过的空间传输传感器数据;单纯为降低布线成本选用的数据采集方案;没有交流电源的工作场合的数据测量;便携式非固定场所数据测量。

智能传感器智能传感器的功能是通过模拟人的感官和大脑的协调动作,结合长期以来测试技术的研究和实际经验而提出来的。

是一个相对独立的智能单元,它的出现对原来硬件性能苛刻要求有所减轻,而靠软件帮助可以使传感器的性能大幅度提高。

光敏传感器光敏传感器是最常见的传感器之一,它的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、CCD和CMOS图像传感器等。

相关文档
最新文档