黄金分割 优秀教学设计
教案 北师大版 初中数学 八年级下册《黄金分割》教案

教案北师大版初中数学八年级下册《黄金分割》教案一. 教材分析北师大版初中数学八年级下册《黄金分割》教案旨在让学生理解黄金分割的概念,掌握黄金分割的应用。
通过本节课的学习,学生能够了解黄金分割的历史背景,熟悉黄金分割的基本性质,并能够运用黄金分割解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,具备了一定的观察、分析、解决问题的能力。
但部分学生可能对黄金分割的概念和应用存在理解上的困难,需要教师在教学中给予关注和引导。
三. 教学目标1.知识与技能:让学生掌握黄金分割的概念,了解黄金分割的基本性质,能够运用黄金分割解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生独立思考和合作解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和审美观念。
四. 教学重难点1.重点:黄金分割的概念及其应用。
2.难点:黄金分割性质的证明和运用。
五. 教学方法1.情境教学法:通过设置情境,引导学生主动参与学习,提高学生的学习兴趣。
2.启发式教学法:引导学生独立思考,发现问题,解决问题。
3.合作学习法:鼓励学生之间相互讨论、交流,共同提高。
六. 教学准备1.准备相关图片、实例等教学资源。
2.设计好课堂练习题和作业。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的黄金分割实例,如建筑、艺术品等,引导学生观察、思考,引出黄金分割的概念。
2.呈现(10分钟)教师简要介绍黄金分割的历史背景,讲解黄金分割的定义和性质,引导学生通过观察、操作,理解黄金分割的特点。
3.操练(10分钟)学生分组进行实践活动,运用黄金分割的知识解决实际问题。
教师巡回指导,帮助学生克服困难,提高解决问题的能力。
4.巩固(10分钟)教师出示一些练习题,让学生在课堂上完成。
通过练习,巩固所学知识,提高学生的应用能力。
5.拓展(10分钟)教师引导学生思考黄金分割在实际生活中的应用,如设计、建筑等领域。
《黄金分割》教学设计

1、教学重点:黄金分割的定义以及应用。
2、教学难点:黄金分割的引入以及学生对黄金分割的价值的理解。
三、学习者特征分析
学生在活动经验上经过七、八年的学习,学生初步养成自主探究的意识,有了一定的说理和作图能力;通过比和成比例的学习之后有了一定的基础,增强了学生学习数学的信心。通过比例线段的学习发展了的逻辑推理能力。
学生在尝试知识应用的过程中,体会到了知识的应用价值,感受到数学存在于身边,来源于生活,应用于生活,从而知识得到升华。
六、教学板书
黄金分割
黄金分割的定义 以埃菲尔铁塔为例,将它抽象为一条线段,塔尖和塔座的连接处抽象成一个点。 给出埃菲尔铁塔的高度数据。 引入黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。
教学课例研究
课题名称:《黄金分割》教学设计
一、教学内容分析
《黄金分割》是人教版版数学八年级下册的一节内容。在以往的教学中,大都将“黄金分割”作为比例线段的应用来处理,学生学过以后,丝毫感受不到“黄金分割”的实用价值,体会不到“黄金分割”所带来的美的享受。因此,本节课除了讲授黄金分割的定义及其作图方法之外,让学生阅读有关资料,从日常生活中找出一些黄金分割的例子,使学生亲身感到数学知识的作用,从而更促进对知识的理解,体会黄金分割的文化价值以及在人类历史上的作用和影响。
对问题进行思考、猜想并进行回答。
问题的提出,激发学生学习本节课的兴趣,为本节课的内容进行了铺垫。
让学生进行投票——在给出的一组矩形选出一个自己心目中觉得漂亮的矩形(如图2)。
(工具:教学平台中的投票系统。)
北师大版八下《黄金分割》word教案3篇

大路中学数学讲学稿1、掌握黄金分割的含义.2、能通过作图找到一条线段的黄金分割点.学习重点能通过作图找到一条线段的黄金分割点.学习难点掌握黄金分割的含义并能进行简单运用.一、学前准备1.填空(1)四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =(或a:b=c:d )那么这四条线段a,b,c,d 叫做,简称.反过来,如果四条线段a,b,c,d 成比例线段,则可以记作.(2)已知a=2,b=4,c=6;若a ,b ,c ,x 是成比例线段,则x=;若a ,x ,b ,c 是成比例线段,则x=.(3)若=y x 25则=x y ;=+y y x ;=-yy x ; (4)小明的身高为1.6m ,测得他的影长为1m ,在同一时刻,旗杆的影长为5m ,则旗杆的实际高度是. 2.选择(1)已知cd ab =,则把它改写成比例式后错误的是 ( ) Ab dc a = Bd a b c = C d c b a = D ad c b = (2)一个矩形的长为2cm ,宽为1cm ,则它的长、宽及对角线的比为 ( ) A 4:2:5 B 4:2:10 C 2:1:5 D 2:1:25 3.已知a ∶b ∶c =4∶3∶2,且a +2b -4c =24.求2a -3b +c 的值4.已知:d c b a ==f e=3(b +d +f ≠0),求f d b e c a 3232+-+-的值二、探究活动1、自主探究·解决问题五角星是我们常见的图形.在下图中,度量点C 到点A ,B 的距离,AB AC 和ACBC相等吗?2、师生探究·合作交流如图,在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的,AC 与AB 的比叫做.其中ABAC =≈,=2AC . 3、学以致用·牛刀小试作一条线段的黄金分割点.如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB . (3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.你知道为什么吗?线段AB 有没有除点C 以外的黄金分割点呢?如果有应满足怎样的条件?三、自我测验1、选择(1)已知线段AB 的黄金分割点是C ,且AC >BC ,则下列各式正确的是 ( )A . AB 2=AC ·CB B . CB 2=AC ·AB C . AC 2=CB ·ABD . AC 2=2AB ·BC(2)若AB=a ,C 点是AB 上的黄金分割点,且AC >BC ,则BC 等于 ( )A.a 215- B.a 253- C. 1 D. 无法判断 ACB(3)若点C 为线段AB 的黄金分割点,则ABAC等于 ( ) A.215- B.215+ C.215-或253- D.253-2、填空(1)已知点C 为线段AB 的黄金分割点,且AB AC =215-,则ACCB 的近似值为(2)点C 是线段AB 上的一个黄金分割点,且AC>BC ,若AB =5cm ,则AC =_____,BC=____. (3)若点C 是线段AB 上一点,AB =1,AC =215- ,则AC :BC =______. (4)把长为10cm 的线段黄金分割,则较长的线段长为;较短的线段长为.(结果精确到0.01)四、学习收获1、通过今天的学习,你有何收获?2、预习中遇到困惑解决了吗?3、你还有哪些疑惑?五、应用与拓展1、如图,点C,D 是线段AB 的两个黄金分割点,已知AB=1,试求CD 的长2、作图(1)宽与长的比等于黄金比的矩形称为黄金矩形.设法做出一个黄金矩形(2)底边与腰的比等于黄金比的等腰三角形称为黄金三角形,设法做出一个黄金三角形3、收集一些有关黄金分割的数学知识,例如黄金分割的由来、黄金分割在实际生活中的运用等等,介绍给你的同伴.北师大版八年级数学第四章相似图形第二节黄金分割教案1、课题§4.2 黄金分割2、教学目标:知识技能目标:(1)掌握黄金分割的定义及黄金分割点的作法;(2)会进行黄金分割的有关计算。
4.4.4黄金分割(教案)

1.在实践活动前,先进行一些简单的实例分析,让学生对黄金分割在实际问题中的应用有更直观的认识,降低实践活动的难度。
2.在小组讨论时,鼓励学生多发表自己的观点,充分调动他们的积极性。同时,作为教师,我要密切关注每个小组的讨论进度,及时提供必要的引导和帮助。
详细列明每个细节:
1.教学重点:
-黄金分割概念:解释什么是黄金分割,如何表示黄金分割比(1:0.618或0.618:1)。
-应用实例:分析教材中提到的黄金分割应用案例,如古希腊建筑、著名画作等,让学生直观感受黄金分割的美。
2.教学难点:
-推导过程:指导学生通过画图、测量等方法,发现并理解黄金分割比的数学原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“黄金分割在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解黄金分割的基本概念。黄金分割是一种特殊的比例关系,即一条线段被分割成两部分,使其中一部分与全长之比等于另一部分与这部分之比,约为0.618。它在艺术、建筑、自然界等领域具有广泛应用,被认为是美的象征。
2.案例分析:接下来,我们来看一个具体的案例。以古希腊帕特农神庙为例,分析其建筑比例如何体现黄金分割,以及黄金分割如何使其成为经典之作。
4.培养学生的审美观念:引导学生发现生活中的黄金分割美,提高学生的审美鉴赏能力。
《黄金分割》教学设计

《黄金分割》教学设计一、教材分析:黄金分割是线段的比、成比例线段等内容在现实生活中的应用,在建筑、艺术等方面有较多的体现。
同时它也是线段的比、成比例线段等枯燥概念在现实生活中的充分体现。
本节课设置了丰富的问题情境,展现了知识的发生、发展过程。
二、学情分析学生已经学习了线段的比和成比例的线段以后,已经有了一定的基础,但本节课的教学难点的突破对学生来说并不是一件容易的事情。
故采用了分工合作学习的方式,让学生在做中学,再组织学生汇报交流。
教学中要充分利用黄金分割与生活的紧密联系,体会黄金分割的黄金价值。
三、教学目标:知识技能目标:在应用中进一步理解线段的比、成比例线段等相关内容,在实际操作、思考、交流等过程中增强学生的实践意识和自信心。
过程方法目标:(1)经过收集素材加强对线段比例关系的认识.(2)在现实情境中了解黄金分割的文化价值,进而由实际问题去探索黄金分割的作图方法,让学生感受到黄金分割在实际生活中的实用性。
情感态度目标:(1)从学生乐于接受的现实背景中学习黄金分割,认识到数学上解决实际问题和进行交流的重要工具。
(2)通过对黄金分割的理解和掌握,明确黄金分割的作图方法,体会数形结合的思想。
(3)通过分组讨论学习,体会在解决实际问题的过程与他人合作的重要性,从而培养学生的团结协作精神。
(4)进行美育渗透,通过对黄金分割的学习,让学生体验数学中的美。
四、教学重点、难点:1、教学重点:黄金分割的定义和简单应用。
2、教学难点:对黄金分割定义中出现的“线段的比”的理解;黄金比是一个无理数,学生无法用已学知识进行直接验证;黄金点的画法和验证。
●教学方法和手段1、采用教师引导,学生自主探索和小组合作相结合的学习方式。
2、利用多媒体教学设备辅助教学,充分调动学生的积极性,创设和谐、轻松的学习氛围。
●学法指导学生通过动手、动口、动脑等活动,主动探索,发现问题,小组之间互相合作,取长补短。
养成自主学习和合作学习相结合的良好习惯。
北师大版初中数学九年级上册《黄金分割》 优质课获奖教案_0

4.4探索三角形相似的条件(4)--黄金分割教案一.教学目标(一)知识与能力1. 知道黄金分割的定义;2.会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点;(二)过程与方法通过找一条线段的黄金分割点,培养学生理解与动手能力及合作交流意识。
(三)情感与价值观1. 能动手找到和制作黄金分割点和图形,让学生认识教学与人类生活的密切联系对人类历史发展的作用;2.在实际操作过程中增强学生的实践意识和自信心。
二.教学重点:了解黄金分割的意义并能运用三.教学难点:找出黄金分割点和黄金矩形四.教法:启发探究法五.教学用具:幻灯片和国旗六.教学过程第一环节创设情境导入新课活动内容:发现美展示课件,提出问题:问题⒈你觉得哪张照片的构图最合理?更能体现小松鼠若有所思的在凝视前方?问题⒉从国旗中找出共同的图案度量点C 到A 、B 的距离,ACBC AB AC 与相等吗?教师操作课件,提出问题与共同学交流、观察学生回答: 五角星, 相等第二环节 合作交流 探索新知活动内容:探索美1.黄金分割点在线段AB 上,点C 把线段分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫黄金比。
其中618.01:215:≈-=AC AB 即618.0≈ABAC 教师讲解,学生观察、思考、交流。
活动目的:利用五角星,创设一个有利于学生探究和综合运用线段比的情境。
引入黄金分割的概念、黄金比约为0.618。
注意事项:学生通过观察、思考、交流,教师引导、回答问题。
因为学生尚未学习一元二次方程,所以无法理解比值为215-的理由,只需让学生了解这一事实即可。
第三环节 动手操作 感知新知B C活动内容:创造美做一做:如果已知线段AB ,按照如下方法画图:(1)经过点B 作BD ⊥AB ,使AB BD 21= (2)连接AD ,在DA 上截取DE=DB(3)在AB 上截取AC=AE ,则点C 为线段AB 的黄金分割点根据上述作图回答下列问题(1) 如果设AB=2,那么BD 、AD 、AC 、BC 分别等于多少?(2) 点C 是线段AB 的黄金分割点吗?教师操作课件,提出问题,学生独立思考与同伴交流回答问题:活动目的:在于向学生介绍一种作黄金分割点的方法,同时巩固学生对黄金分割的认识。
黄金分割(5篇范文)

黄金分割(5篇范文)第一篇:黄金分割黄金分割——设计师的设计利器作者:黄金体验来源: WSD 时间: 2011年3月2日设计师在设计的时候,总会遇到这样那样的问题,和人PK不断,修改不断。
界面区域多大合适呢?ICON多大?颜色区间多少?为什么这么定义?什么是普世的美?很多UIer都说,50%靠设计,50%靠交流,那么在交流的时候如何说服别人呢?ADS定位、用户群、用户环境、调研都可以作为参考的依据,在这里再向大家介绍一下我们身边存在的黄金分割,希望作为设计的利器,或创作或PK。
一.植物“黄金角度”生物学家发现植物种类繁多、叶子形态各异,但是叶子在茎上的排列却有着特殊的规律.我们从某种植物的顶端往下看,便会发现上下层相邻的两片叶子之间所构成的角约为137.50,如果每层叶子只画一片来表示,第一层和第二层的相邻两叶之间的角度约为137.50,以后二层到三层、三层到四层、四层到五层……两叶之间都成这个角度,这个角度对叶子的通风和采光最为有利.这叶子之间的137.50角与黄金数又有什么联系呢?我们知道,一周为3600,137.50:=137.50:222.50≈0.618.也就是说,各种植物叶子的生长规律中自然隐藏着黄金数。
向日葵花有89个花辫,55个朝一方,34个朝向另一方枫叶喷嚏麦1.1.2.3.5.8.13.21.34.55.89.144…后面的数除以前面的树,越往后越趋向于黄金比例。
运用到设计当中,譬如一个齿轮的图标,齿的个数可以参考这组数列。
PK词:这是自然的法则。
二.动物由这组数列引出斐波那契曲线,斐波纳契是在解一道关于兔子繁殖的问题时,得出了这个数列。
假定你有一雄一雌一对刚出生的兔子,它们在长到一个月大小时开始交配,在第二月结束时,雌兔子产下另一对兔子,过了一个月后它们也开始繁殖,如此这般持续下去。
每只雌兔在开始繁殖时每月都产下一对兔子,假定没有兔子死亡,在一年后总共会有多少对兔子?•在一月底,最初的一对兔子交配,但是还只有1对兔子;在二月底,雌兔产下一对兔子,共有2对兔子;在三月底,最老的雌兔产下第二对兔子,共有3对兔子;在四月底,最老的雌兔产下第三对兔子,两个月前生的雌兔产下一对兔子,共有5对兔子;……如此这般计算下去,兔子对数分别是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89, 144, …看出规律了吗?•从第3个数目开始,每个数目都是前面两个数目之和。
九年级数学上册《黄金分割》教案、教学设计

一、教学目标
(一)知识与技能
1.理解黄金分割的定义,掌握黄金分割点的概念,能够运用黄金分割的概念解决实际问题。
2.学会运用黄金分割比计算线段、图形的黄金分割点,并能运用黄金分割的性质分析解决实际问题。
3.掌握黄金分割与相似三角形、三角形面积的关系,能够运用相关知识解决综合问题。
3.教学方法:小组合作法、讨论法。
(四)课堂练习
1.教学内容:设计具有针对性的练习题,检验学生对黄金分割知识的掌握程度。
2.教学过程:首先,设计一些基础题,让学生巩固黄金分割点的计算方法。然后,设计一些综合题,让学生运用黄金分割知识解决实际问题。
3.教学方法:练习法、指导法。
(五)总结归纳
1.教学内容:总结本节课的学习内容,强调黄金分割的重要性,激发学生对数学美的追求。
学生在这个阶段,正处于形象思维向抽象思维过渡的关键时期,他们对新鲜事物充满兴趣,但同时也可能在学习过程中遇到一些困难和挑战。因此,在教学过程中,教师应关注学生的个体差异,充分调动他们的积极性,引导他们通过观察、思考、实践等途径,逐步理解并掌握黄金分割的知识。
此外,学生在小组合作学习中,需要提高沟通与协作能力。教师应关注学生在合作过程中的表现,适时给予指导和鼓励,帮助他们建立自信,培养团队精神。在此基础上,教师还应关注学生的情感态度,激发他们对数学美的追求,使他们在学习过程中体验到数学的魅力和价值。
4.通过课堂练习、课后作业、阶段测试等形式,巩固学生对黄金分割的理解和应用,提高学生的解题技巧。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生对数学美的感知和欣赏能力。
2.培养学生的创新意识,使学生认识到数学在现实生活中的重要作用,增强学生的应用意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.探索三角形相似的条件(四)黄金分割教学设计
一、学情分析
学生在学习了本章第一节后,掌握了线段的比、成比例线段的概念,比例的基本性质;也在之前的学习中掌握了一些基本的尺规作图方法。
二、教材分析
教学目标:
1、知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的
黄金分割点;
2、通过找一条线段的黄金分割点,培养学生理解与动手能力。
3、理解黄金分割的现实意义,并能动手找到和制作黄金分割点和图形,让学生认识教学
与人类生活的密切联系。
教学重点:了解黄金分割的意义并能运用。
教学难点:找出黄金分割点。
三、教学过程
本节课设计了六个环节:第一个环节:情境引入;第二个环节:要点呈现;第三个环节:操作感知;第四个环节:熟能生巧;第五个环节:课堂小结;第六个环节:布置作业。
第一环节情境引入
活动内容:展示课件,欣赏图片。
第一组:国旗中的黄金分割
由黄金分割画出的正五角星形,有庄严雄健之美。
第二组:绘画中的黄金分割
世界名画<蒙娜丽莎>之所以有名,也得益于黄金分割,
无论是画面整体还是局部。
第三组:人体与黄金分割
人的俊美,体现在头部及躯干是否符合黄金分割。
活动目的:
1、通过感知国旗中的黄金分割和开学第一课中“白公馆”的故事讲解,让学生接受革命思想的洗礼,感知黄金分割在生活中的重要性。
2、通过摄影、艺术上的实例初步感受黄金分割,体会黄金分割在现实生活中的广泛应用和文化价值。
第二环节要点呈现
活动内容:
在线段AB上,点C把线段分成两条线段AC和BC,如果,那么称线段AB被点C分割,点C叫做线段AB的黄金分割点,AC与AB的比叫黄金比。
其中。
即。
教师讲解,学生观察、思考、交流。
注意事项:学生通过观察、思考、交流,教师引导、回答问题。
因为学生尚未学习一元二次
方程,所以不能轻松地理解比值为的理由,只需让学生了解这一事实即可。
第三环节操作感知
活动内容:
1.提出问题:如何找到一条线段的黄金分割点?
多数学生尝试画出1cm、2cm的线段,通过计算找到黄
金分割点大概的位置。
可以用这种方法大概的找到当线
段长为a时黄金分割点的位置,但不能精确地找到。
2.展示课件,学生跟做。
如果已知线段AB,按照如下方法画图:
(1)经过点B作BD⊥AB,使;
(2)连接AD,在DA上截取DE=DB;
(3)在AB上截取AC=AE,则点C为线段AB的黄金分割点。
3.提出问题:为什么点C为线段AB的黄金分割点?
方法提示:设AB=2,分别求出AC和BC,并计算和,或计算AC2和BC•AB。
活动目的:在于向学生介绍一种作黄金分割点的方法,同时巩固学生对黄金分割的认识。
注意事项:教师操作,学生动手、独立思考,再与同伴交流完成。
由于学生所学过的尺规作图方法有限,作图工具可以用三角尺和刻度尺。
第四环节熟能生巧
活动内容:
1、已知M是线段AB的黄金分割点,且AM>BM。
(1)写出AB,AM,BM之间的比例式;
(2)如果AB=12 cm,求AM与BM的长.
2、如图的五角星中,AD=BC,且C,D两点都是AB的黄金分割点,AB=1,求CD的长.
3、美是一种感觉,当人体下半身长与身高的比值越接近0。
618时,越给人一种美感。
如图,某女士身高165 cm,下半身长x与身高l的比值是0。
60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )
A.4 cm B.6 cm C.8 cm D.10 cm
4、(教材改编题)如图所示,以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.
(1)求AM,DM的长;
(2)点M是AD的黄金分割点吗?为什么?
活动目的:前3个练习与本节课第一环节相呼应,在于展示黄金分割在人类生活中的作用,提高解题问题的能力。
其中练习3还运用比例变形的一些技巧,体会比例基本性质的重要性。
练习4在于向学生介绍另一种可以作黄金分割点的方法,同时进一步巩固黄金分割点的认识。
注意事项:教师充分引导学生观察、思考、交流、讨论、解决问题。
第五环节课堂小结
活动内容:
1。
什么叫做黄金分割?黄金比是多少?
2。
一条线段有几个黄金分割点?
3。
如何用尺规作线段的黄金分割点?
4。
如何说明一个点是一条线段的黄金分割点?
活动目的:鼓励学生结合本节课的学习过程,自觉总结,并自觉地应用到现实之中,逐步形成正确的数学观,培养学生的审美意识。
注意事项:教师鼓励学生畅所欲言自己的感想和收获。
第六环节布置作业
必做作业:习题4.8—1、2
选做作业:习题4.8—4。