数形结合思想论文
论文浅析数形结合思想在小学科学课堂中的应用

论文浅析数形结合思想在小学科学课堂中的应用摘要本论文旨在探讨如何将数学和几何知识结合起来,在小学科学教学中发挥更好的作用。
研究发现,通过数学和几何的结合,可以增强学生对科学知识的理解和掌握,同时也利于培养学生的创新思维能力和实际应用能力。
导入数学和几何是小学阶段比较重要的学科,它们不仅是科学知识体系中重要的组成部分,也对学生的综合素质有着重要影响。
但是,单独的数学或几何知识在教学中却往往难以引起学生足够的兴趣,教学效果也容易受到限制。
因此,如何结合数学和几何知识,创学方式,提高科学教学效果,已经成为当前教育领域研究的热点问题之一。
数形结合在小学科学教学中,数形结合思想的应用是一种非常好的教学方式。
数学和几何的结合可以减少学科之间的隔阂,增强学生的科学素养,同时还有以下几个好处:- 增加学生的学科交叉研究量,提高了跨学科思维能力- 对研究具有更普遍性的科学知识提供了创新的视角,激发学生研究兴趣- 培养学生的实际应用能力,提高学生的动手创新能力应用分析数形结合思想在小学科学课堂中的应用可以从多个方面进行分析:1. 数学与物理的结合:通过结合数学和物理的知识,可以加深学生对物理知识的理解,提高学生的掌握能力。
2. 数学与化学的结合:通过结合数学和化学的知识,可以提高学生的化学实验分析能力,从而更好地理解化学反应的过程。
3. 模型设计:通过数学和几何知识的结合,设计不同的模型,有助于学生了解模型的构建、运算和应用等方面,提高学生的实际应用能力。
结论数形结合思想是小学科学教学中必不可少的一种教学方式。
通过结合数学和几何知识,在学习科学知识的同时,还能够培养学生的创新思维能力和实际应用能力,为学生的未来发展打下了良好的基础。
数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。
数形结合毕业论文

数形结合思想在解题中的应用摘要:数学是研究数量关系和空间形式的科学,数和形的关系是非常密切的。
把数和形结合起来,能够使抽象的数学知识形象化,把数学题目中的一些抽象的数量关系转化为适当的几何图形,在具体的几何图形中寻找数量之间的联系,由此可以达到化难为简、化繁为易的目的。
关键词:数形结合解题应用数形结合是一种极富数字特点的信息转换方法,数学上总是用数的抽象性质说明形的事实,同时又用图形的性质来说明数的事实。
应用数形结合法,通过图形性质的的分析,使数学中的许多抽象的概念及定理直观化、形象化、简单化,并借助代数的计算和分析得以严谨化。
下面,我将从3个方面来说明数形结合思想在解题中的应用(一)、解决集合问题在集合运算中常常借助于数轴、韦恩图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
例 1: 已知集合 A=[0,4],B=[-2,3], 求 A∩B。
分析: 对于这两个有限集合, 我们可以将它们在数轴上表示出来, 就可以很清楚的知道结果。
如图 1, 由图我们不难得出A∩B=[0,3]。
图1例2:某校高二年级参加市级数学竞赛,已知共有40个学生参加第二试(第二试共3道题),参赛情况如下:① 40个学生每人都至少解出一道题②在没有解出第一道题的学生中,图2解出第二道题的人数是解出第三道题人数的2倍③仅解出第一道题的人数比余下的学生中解出第一道题的人数多1个④ 仅解出一道题的学生中有一半没有解出第一道题试问:(1)仅解出第二道题的学生有几个?(2)解出第一道题的学生有几个?分析 本题数量关系错综复杂,似乎与集合无关,但若把“解出第一道题”、“解出第二道题”和“解出第三道题”的学生分别看作一个集合,则可利用韦恩图直观求解.解答 设集合A ={解出第一道题的学生数},集合B ={解出第二道题的学生数},集合C ={解出第三道题的学生数},如图2,可得⎪⎪⎩⎪⎪⎨⎧+=+++=+=+=++++++cb a g e d a fc f b g f ed c b a 1)(240 解之得a =11,b =10,c =1,d+e+g =10所以仅解出第二道题的学生有10个,解出第一道题学生有21个.(二)、解决函数问题利用图形的直观性来讨论函数的值域(或最值),求解变量的取值范围,运用数形结合思想考查化归转化能力、逻辑思维能力,是函数教学中的一项重要内容。
数形结合思想方法论文

数形结合的思想方法数形结合思想是高考必考的七大数学思想之一,是数学研究对象的数量关系和空间形式,即数与形两个方面,把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。
数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。
在使用的过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。
在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。
特别是在集合、函数、不等式、数列、向量、解析几何、导数与积分等能够用图形表述的知识点,就要用数形结合形象化,高考在选择题、填空题侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。
1.集合问题中的数形结合例1.已知全集u=r,集合a=x|-2≤x≤3,b=x|x4,那么集合ai(c∪b)等于()a.x|-2≤x0)时f’(x0),函数y=f(x)的图象过原点,所以顶点在第一象限评注:要熟悉导函数与原函数之间的关系,对一次、二次函数关系及其图象的特点要很熟悉。
4.利用不等式表示的平面区域解答问题例4.若m为不等式组x≤0y≥0y-x≤2表示的平面区域,则当 a 从-2连续变化到1时,动直线x+y=a扫过m中的那部分区域的面积为分析:作出不等式表示的平面区域,然后再作平行线x+y=-2 和x+y=1 则夹在两平行线之间的部分即为所求。
解:如图知δaob是直角边为2 的等腰直角三角形,δbcd是斜边为1等腰直角三角形,则所求区域的面积为s=sδaob-sδbcd=■×2×2-■×1×■=■评注:涉及到不等式表示的平面区域问题时常常要画出图形数形结合解答问题。
数形结合毕业论文

数形结合毕业论文数形结合毕业论文在数学和几何学领域中,数形结合是一种强大的方法,它将数学和几何学的概念相结合,以解决各种问题。
本文将探讨数形结合在毕业论文中的应用,并介绍一些相关的案例研究。
第一部分:数形结合的概念和原理数形结合是指将数学中的抽象概念与几何学中的图形相结合,以帮助解决问题。
通过将数学问题可视化为几何图形,我们能够更直观地理解问题的本质,并找到解决问题的方法。
数形结合的原理是将数学中的符号和公式转化为几何图形,以便更好地理解和分析。
第二部分:数形结合在毕业论文中的应用数形结合在毕业论文中有广泛的应用。
它可以用于解决各种数学和几何学问题,并提供更深入的分析和解释。
以下是一些数形结合在毕业论文中的应用案例:1. 几何图形的分析:通过将几何图形转化为数学符号和公式,我们可以更好地分析几何图形的性质和特征。
例如,在研究三角形的性质时,我们可以使用角度和边长的关系来推导出一些重要的结论。
2. 数据可视化:数形结合还可以用于将数据可视化为几何图形,以便更好地理解和分析数据。
例如,在统计学中,我们可以使用柱状图或折线图来表示数据的分布和趋势。
3. 几何模型的建立:数形结合可以帮助我们建立几何模型,以解决实际问题。
例如,在工程学中,我们可以使用几何模型来分析和设计建筑结构或机械装置。
第三部分:数形结合的案例研究以下是一些关于数形结合的案例研究,展示了它在毕业论文中的应用:1. 数学建模:一个学生在毕业论文中使用数形结合的方法建立了一个数学模型,以解决城市交通流量的问题。
通过将交通流量转化为几何图形,该学生能够更好地分析和预测交通拥堵的情况,并提出了一些改进交通流量的建议。
2. 几何优化:另一个学生在毕业论文中使用数形结合的方法,优化了一个建筑结构的设计。
通过将建筑结构转化为几何图形,并使用数学公式和算法进行分析,该学生能够找到最优的结构设计,以提高建筑的稳定性和效率。
3. 数据分析:还有一个学生在毕业论文中使用数形结合的方法,分析了一组市场数据。
数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板

数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板数形结合思想数学论文1400字(一):小学数学数形结合教学思想论文一、数形结合教学思想在小学数学教学中的运用数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。
下面介绍这两个方面的内容在小学数学教学中的运用。
(一)以形助数所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。
学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。
如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。
请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。
变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。
而不变量就是这两个路程汽车行驶的速度都是始终不变的。
那么在解决问题的时候,就可以直观地展现出来。
先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。
在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。
(二)以数解形虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。
小学数学数形结合论文

小学数学数形结合论文浅析小学数学课堂中数形结合思想的运用一、数形结合思想的由来。
华罗庚先生在《谈谈与蜂房结构有关的数学问题》中首次提出“数形结合”思想,强调数与形的对应关系和相互转化,以几何与代数统一为核心。
数形结合思想能将抽象的数学问题直观化,使复杂问题简明化,有助于抽象思维与形象思维的协调发展。
小学中的数形结合思想主要借助实物和直观性活动,如摆、数、画等,使抽象的数与现实生活相联系,培养学生的数学思维和感知能力,为未来的数学学习打下基础。
二、小学教学中运用数形结合思想的必要性。
在小学课堂中用好数形结合思想,对于老师教学和学生成长都大有裨益。
(一)对于教师而言。
“双减”背景下,教师应遵循科学原则布置作业,特别是对于小学一、二年级的学生,不应布置书面作业。
这一政策的实施对传统教学模式产生了深远影响,促使教师们积极转变观念,重新审视并调整自己的教育实践。
基于小学低年级学生的认知特点,数学教师需更深入地解读教材,有效融入数形结合等数学思想,以激发低年级学生的数学兴趣,努力提升课堂教学质量,为国家教育改革做贡献。
(二)对于学生而言。
数形结合思想在小学数学低年级教学中的应用,可以有助于学生获得“四能”,即从生活中发现并提出数学问题、分析并解决问题。
数形结合思想增强了学生学习数学的主动性和自觉性,丰富了学生对于数学意义的理解,对于培养小学生数学素养和创新能力有很大的帮助。
三、如何在课堂上用好数形结合的思想。
下面通过一些教学案例,具体阐释如何把数形结合思想融入小学课堂当中。
在小学数学中,数形结合思想的具体运用主要有“以形助数”和“以数解形”两类。
“以形助数”是借助形的几何直观性来阐明某些概念及数之间的关系。
例如可以借助形来认识数、掌握加减法、掌握乘除法并解决数学问题。
在理解乘法的意义时,教师可以先提问几?然后展示一张有3排,每排5张桌子的图片,引导学生理解其中的联系。
“以数解形”是借助于数的精确性、程序性和可操作性来阐明形的某些属性。
数形结合参考论文

浅谈数形结合思想在解题中的应用摘要:数形结合思想是初中数学中很重要的一种思想方法,它主要是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。
关键词:数形结合思想以形助数以数解形“数形结合”是初中数学中的一种重要的思想方法,“数”和“形”是数学中两个最基本的概念。
数是数量关系的体现,形是空间形式的体现,两者是对立统一的,我们在探讨数量关系时常常借助于图形直观地去研究;而在研究图形时,又常借助于图形间隐含的数量关系去求解。
即将数与形灵活地转换,运用彼此间的相互联系和作用,去有效地探求问题的解答,我认为这就是数形结合的思想方法。
我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事非”,“数”与“形”反映了事物两个方面的属性。
我认为,数形结合主要指的是数与形之间的一一对应关系。
数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
因此在数学教学中,注意渗透这方面的思想,引导学生要善于将两者巧妙地结合起来分析问题,让学生在不断感悟中开阔和发展思维,为达到快速、有效地解决问题奠定良好的基础。
一、解决实数问题数轴的引入是实数内容体现数形结合思想的有力证明,因为数轴上的点与实数是一一对应关系。
因此两个实数大小的比较,可以通过它们在数轴上对应的点的位置进行判断,相反数与绝对值则可通过相应的数轴上的点与原点的位置关系来刻划。
例1:在数轴上的位置如图,化简:|a-b|-|b-c|+2|a+c|。
解:∵b<0,c<0,b>c,a>b,|c|>|a|∴a-b>0,b-c>0,a+c<0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想
前言
人们在不断应用数形结合思想的过程中,普遍认识到加强数学思想方法教学的重要性.因为数学思想方法不像解题方法那样具体和便于操作,但对数学知识和数学基本方法却有绝对的指导作用,是对数学知识更高层次的概括和提炼,也是培养学生能力的重要环节[1].数形结合作为一种数学思维方法的应用大致又可分为两种情况:或借助于数的精确性来阐明形的某些属性;或借助形的几何直观性来阐明数之间某种关系.数形结合包括两个方面:第一种情形是“以数促形”,而第二种情形是“借形辅数”.
数形结合思想的由来、形成和发展
早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了.在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特征,把图形中的几何关系描述成代数关系.17世纪上半叶,法国数学家笛卡尔通过坐标系建立了数与形之间的联系,创立了解析几何学.后来,几何学中许多长期不得解决的问题,如尺规作图“三大不能”问题等,最终也是借助于代数方法得到圆满解决.说明了“数形结合”思想有着悠久的历史.在小学数学教学中,我们虽还用不到这种高深的数学知识,却也在低年级“数的认识”中就接触到了数形结合这个思想.以形助数——借助形的生动和直观来阐明数与数之间的联系,以形为手段,数为目的。
十七世纪初期,由于资本主义生产的发展,相应地提出了许多数学问题,在天文学方面,开普勒发现行星沿椭圆轨道绕太阳运行;在力学方面,伽利略发现抛射体沿抛物线轨迹运动;科学和技术的发展所产生的许多问题都需要人们对曲线进行研究和计算.只用初等数学的方法,已无能为力,要求突破常量数学的范围和方法,而提供用以描述和研究物体运动变化过程所需的新的数学工具:变量数学,从而导致数形结合思想的产生和发展.
利用数形结合思想解答中学数学中的几类常见问题
集合问题
利用韦恩图法解决集合之间的关系问题[2].
一般用圆来表示集合,两圆相交则表示两集合有公共元素,两圆相离则表示两个集合没有公共元素.若利用韦恩图法则能直观地解答有关集合之间的关系的问题.
例1有48名学生,每人至少参加一个活动小组,参加数、理、化小组的人数分别为28,25,15同时参加数、理小组的8人,同时参加数、化小组的6人,同时参加理、化小组的7人,问:同时参加数、理、化小组的有多少人?
分析我们可用圆a、b、c分别表示参加数理化小组的人数(如图1),则三圆的公共部分正好表示同时参加数理化小组的人数.用n表示集合的元素,则有:n(a)+ n(b)+ n(c)-n(ab)-n(ac)-n(bc)+n(abc)=48 ,即:
28+25+15-8-6-7+n(abc)=48,∴n(abc)=1,
即同时参加数理化小组的有1人.
图1
不等式问题:
不等式是中学教学中极为重要的基础知识,不等式是等式的扩展,这就决定了解不等式和证明不等式实质上是解方程和证明恒等式的扩展,不等式灵活变换的特点和广泛应用的价值对培养学生能力,发展学生思维提出了较高的教学要求,具体说,它所涉及的不等式性质常附有特定的前提条件和技能要求,结合图形研究,可以避免复杂的讨论,化繁为简[4].
如果不等式两边的表达式有明显的几何意义或通过某种方式可以与图形建立联系,则可设法构造图形,将不等式所表达的抽象数量关系转化为图形的位置或度量关系加以解决[5].通过观察等式两边的表达式发现有明显的几何意义或者通过某种方式可以与图形建立联系,则可设法构造图形,将不等式所表达的抽象数量关系转化为图形的位置或度量关系加以解决,灵活运用了数形结合的思想,巧妙的运用了三角形的几何意义[5].
函数问题:
三角函数问题:
近几年高考加强了对三角函数的图像与性质的考查,因为函数
的性质是研究函数的一个的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图像,这样既有利于掌握函数的图像与性质,又能熟练地运用数重要内容,是学习高考数学和应用技术学科的基础,又是解决生产实际问题的工具.在复习时要充分运用数形结合的的思想,把图像与性质结合起来,即利用图像的直观性得出函数形结合的思想方法.
例2 解不等式|cosx|>|sinx|,x∈[0,2π].
分析从不等式的两边表达式我们可以看成两个函数在[0,2π]上做出它们的图像,得到四个不同的交点,横坐标分别为: ,而当在区间内时,的图像都在的图像上方.所以可得到原不等式的解集为:
.
二次函数求最值问题
例3求函数的最小值.
分析考察式子特点,从代数的角度求解,学生的思维受阻,这时利用数形结合为转化手段,引导学生探索函数背后的几何背景,巧用两点间距离公式,可化为
令,,,则问题转化为在轴上求一点,
使有最小值.如下图所示,由于在轴同侧,故取关于轴的对
称点,故 .
复数问题
高考中的复数题,重点考察的是概念与运算.解这类问题,若不加分析就设出复数的代数形式或三角形式,联立方程组去求解,往往运算繁琐,影响到解题的速度和正确性.如果认真研究其结构特征,充分利用复数的几何意义,利用数形结合思想求解,则化难为易,简化解题过程.
例4设, ,,求的值.
分析利用复数模、四则运算的几何意义,将复数问题用几何图形帮助求解.
解如图,设、=后,则=、=如图所示
ya
d
o bx
c
由图可知,| |,,由余弦定理得:
∴( ±)=± .
另解设、如图所示.则| |,且
,,
∴=±,即.
运用“数形结合法”,把共轭复数的性质与复平面上的向量表示、代数运算的几何意义等都表达得淋漓尽致,体现了数形结合的生动活泼.一般地,复数问题可以利用复数的几何意义而将问题变成几何问题,也可利用复数的代数形式、三角形式、复数性质求解.一般地,复数问题可以应用于求解的几种方法是:直接运用复数的性质求解;设复数的三角形式转化为三角问题求解;设复数的代数形式转化为代数问题求解;利用复数的几何意义转化为几何问题求解.
本题设三角形式后转化为三角问题的求解过程是:设,
则,
∴ , ,
.
本题还可以直接利用复数性质求解,其过程是:由得:
,
所以 ,再同除以得,设,解得.
几种解法,各有特点,由于各人的立足点与思维方式不同,所以选择的方法也有别.
几何问题
几何证明(或求解)不仅需要逻辑推理,同时也常常需要计算.对于有些几何问题,代数运算(包括三角运算)在其中起着十分重要的作用,计算的结果往往就是证明(或求解)的终结.一般情况下我们通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.
例5(海南卷,理)已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为.....
分析点到点的距离与点到抛物线焦点的距离之和取得最小值时, 点到点的距离与点到抛物线的准线的距离之和也取得最小值,这样就可以把点到抛物线的焦点的距离转为到准线的距离求出.
解点在抛物线的内部,要使点到
点的距离与点到抛物线焦点的距离之和
取得最小值,根据抛物线的定义知,须使点到
点的距离与点到抛物线准线距离之和
取得最小,即时最小.则故选.
答案: .
对称问题
例6 曲线:上存在关于直线 : 对称两点、,求的取值范
围[10].
解设、,中点,则有
- - ,
- - ,
得,
由题意知,上式两端同除,得
,
,关于对称,
, ,= .
于是以为斜率的平行弦中点轨迹为直线在抛物线内部的一条
射线,不包括端点.
将代入抛物线方程得交点,,
问题转化为l与射线有交点.
将点坐标代入方程得 = ,由图形知,取值范围为 .
评注由例6可以看出,若直线斜率已知,则可以转化为与平行弦中点轨迹相交问题处理,关键是寻求与已知直线垂直的平行弦中点轨迹,然后再利用数形结合求参量范围.那么,这种解法可信度如何呢?例6中当与有交点时,此交点恰是与垂直的弦中点,就保证了该弦两端点关于对称.所以只要与平行弦中点轨迹有交点时,就能保证曲线上存在两点关于对称.
总的说来数形结合是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,发挥数与形两种信息的转换及优
势互补与整合.“数无形时不直观,形无数时难入微”.华罗庚先生恰当地指出了“数”与“形”的相互依赖,相互制约的辩证关系,是对数形结合思想最通俗,最深刻的剖析。
在教学中要注重数形结合思想的培养,正确理解“数”与“形”的相对性,使之有机的结合起来.并且通过组织引导是对解法的简洁性的反思评估,不断优化思维品质,培养思维的严谨性及批判性,丰富的合理的联想,是对知识的深刻理解及类比,转化,数形结合,函数与方程等数学思想运用的必然.在数学教学中突出数形结合的思想方法,就正是充分把握了数学的精髓和灵魂,所以这种方法在数学教学中应给予足够重视。
参考文献
邱海泉.浅谈数形结合思想在高中数学中的几点应用[j].河北理科教学研究,2005(03).40-43.
杨明.浅谈数学思想方法在解题中的应用[j].河北理科教学研究,2008(03).39-40.
王银篷.浅谈数形结合的方法[j].中学数学,2004(12).72-74.王繁.浅谈初等数学教学中的数形结合思想[j].成都教育学院学报,2006(6).13-15.
袁小明.数学思想史导论[m].南宁:广西教育出版社,1991.66-68.。