第五章特征选择与特征提取
特征选择和特征提取

在这个例子里,用LLE 进行降维成功的体现了数 据内在的局部分布结构,而用PCA 映射则会将高维空 间里的远点映射到低维空间后变成了近邻点。
四、特征的选择
特征选择:=从原始特征中挑选出一些最有代表性、 分类性能最好的特征进行分类。
从-D典个型特的征组中合选优取化d个问,共题CdCD种Dd 组合。 特征选择的方法大体可分两大类:
u2
x2
u1 x1
主成分是这个椭圆的「长轴」方 向。短轴的方向和长轴垂直,是 「第二个」主成分的方向。变换 后的各分量,它们所包括的信息 量不同,呈逐渐减少趋势。事实 上,第一主分量集中了最大的信 息量,常常占80%以上。第二、 三主分量的信息量依次很快递减, 到了第n分量,信息几乎为零。
从几何意义来看,变换后的主分量空间坐标系与变
➢ 等距映射(Isomap).
J.B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, vol. 290, pp. 2319--2323, 2000.
• LDA的思想: 寻找最能把两类样本分开的投影直线. • LDA的目标: 使投影后两类样本的均值之差与投影
样本的总类散布的比值最大 . • LDA的求解: 经过推导把原问题转化为关于样本集
总类内散布矩阵和总类间散布矩阵的广义特征值 问题.
Best projection direction for classification
y
2 j
E
uTj
xxT
特征的提取和选择

特征的提取和选择
特征提取和选择是机器学习中非常重要的环节,它既可以减少计算量,又可以提高模型的性能。
选择较好的特征可以让模型更加简单,更加容易
和快速的训练出最佳参数,从而使得模型更加精确、效果更好。
一般来说,特征提取和选择有以下几步:
1.特征提取。
特征提取关注的是利用现有特征生成新的特征。
它可以
是特征融合(如结合多个特征生成更强大的特征),也可以是特征变换
(如离散特征变换成连续特征)。
2.无关特征删除。
把没有帮助的特征删除,有助于减少模型的运行时间,提高模型的效果。
3.有关特征选择。
把与目标值有很强关联的特征选择出来,这些特征
被称为有关特征,它们可以帮助模型训练出更好的结果。
4.特征降维。
为了减少特征之间的相关性,减少计算量,与有关特征
相关性比较低的特征可以被删除。
5.特征加权。
调整特征的权重,使得有关特征拥有更大的影响力,从
而帮助模型更好的进行预测。
通过这种特征提取和选择的过程,可以把训练集中拥有相关性比较高
的有用特征保留下来,把没用的特征抛弃,有效的提高模型的性能。
第五讲特征提取和特征选择

第五讲特征提取和特征选择
**特征提取和特征选择**
特征提取和特征选择是机器学习的重要组成部分,它们既可以提高机
器学习算法的性能、训练速度,也可以帮助研究者了解数据。
特征提取和
特征选择的目的是最大限度地挖掘数据中的有用信息,并创建出一组有意
义的特征,以便进一步的分析和模型建立。
特征提取是指从原始数据中提取出具有含义的特征,一般情况下,特
征提取过程中会涉及到一定的数据预处理、特征提取算法和特征可视化等
步骤。
常见的特征提取方法有主成分分析(PCA)、独立成分分析(ICA)、因子分析(FA)、降维分析(DA)、线性判别分析(LDA)等。
特征选择是从特征矩阵中选择最有效的特征,可以提高模型的准确率,减少模型的运行时间,同时可以更加深入地了解数据。
常见的特征选择方
法有过滤法(Filter)、包裹法(Wrapper)和嵌入法(Embedded)。
特征提取和特征选择非常重要,可以在机器学习的各个阶段发挥重要
作用,比如,可以在训练数据集合的构建阶段快速提取有效特征,以减少
数据集的维度;可以在模型训练阶段和测试阶段选择最优特征,以提高模
型性能,减少运算负担;还可以在结果分析和结论阶段。
特征选择和特征提取

原始测量:(正常与异常)细胞的数字图像 原始特征(特征的形成,找到一组代表细胞性质
的特征):细胞面积,胞核面积,形状系数,光 密度,核内纹理,核浆比
压缩特征:原始特征的维数仍很高,需压缩以便 于分类
• 特征选择:挑选最有分类信息的特征 • 特征提取:数学变换
– 傅立叶变换或小波变换 – 用PCA方法作特征压缩
– 特征值
对于一个N N的矩阵A,有N个标量k,k 1, N,满足 A k I 0 k 称为矩阵的一组特征值。
如果给定的矩阵是奇异的,那么N个特征值中至
少有一个为0。
矩阵的秩
定义为矩阵非零特征值的个数。
矩阵的条件数 定义为最大特征值与最小特征值
的比值的绝对值。
病态矩阵
条件数很大。
jd1
jd1
因为uj是确定性向量,所以有
u T jE x xT uj u T jR uj
j d 1
j d 1
R r ij E (x ix j) E x x T
求解最小均方误差正交基
特征 提取
用Lagrange乘子法,可以求出满足正交条件下的ε 取极值时 的坐标系统:
特征形成 (acquisition): 信号获取或测量→原始测量 原始特征
实例: 数字图象中的各像素灰度值 人体的各种生理指标
原始特征分析: 原始测量很大程度上不能反映对象本质
高维原始特征不利于分类器设计:计算量大, 冗余,样本分布十分稀疏。
二、特征的选择与提取
两类提取有效信息、压缩特征空间的方法: 特征提取和特征选择
PCA的求解:特征向量常被叫做“主分量”,每个样 本被它在前几个主分量上的投影近似表示,U张成的空 间称为原空间的子空间,PCA实际上就是在子空间上的 投影.
特征提取与特征选择的区别与联系(七)

特征提取与特征选择的区别与联系特征提取和特征选择是机器学习和模式识别领域中常用的两种特征处理方法。
它们都是在原始特征空间中对特征进行加工和处理,以便更好地应用于后续的分类、聚类或回归任务。
虽然它们都是对特征进行处理,但是它们的目的和方法却有很大的不同。
下面我们将详细探讨特征提取与特征选择的区别与联系。
特征提取是指从原始特征中抽取出新的特征表示。
在实际应用中,原始特征往往具有冗余和噪声,通过特征提取可以将原始特征进行变换,得到更具有辨识度和可分性的特征表示。
常见的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、独立成分分析(ICA)等。
这些方法通过线性或非线性的变换,将原始特征映射到一个新的特征空间中,以便更好地进行后续的分类或聚类任务。
特征选择则是从原始特征中选择出子集,以降低维度、提高模型的泛化能力和减少计算复杂度。
特征选择方法包括过滤式、包裹式和嵌入式三种。
过滤式方法通过对特征进行打分或排序,然后选择得分高的特征作为子集;包裹式方法则是将特征选择看作一个搜索问题,针对具体的学习算法进行搜索;嵌入式方法则是将特征选择融入到学习器的训练过程中。
这些方法都是通过评估特征子集的质量,选择对模型性能影响最大的特征子集。
特征提取和特征选择在目的和方法上存在着很大的不同。
特征提取的目的是通过变换原始特征,得到更具有可分性和辨识度的新特征表示,从而提高模型的性能;而特征选择的目的则是通过选择出对模型性能影响最大的特征子集,降低维度、提高泛化能力和减少计算复杂度。
从方法上看,特征提取是通过线性或非线性的变换,将原始特征映射到一个新的特征空间中;而特征选择则是在原始特征空间中进行子集选择,保留对模型性能影响最大的特征子集。
特征提取和特征选择虽然在目的和方法上有很大的不同,但是它们之间也存在着联系。
首先,特征提取可以看作是一种特殊的特征选择,它通过对原始特征进行变换和映射,得到一个新的特征表示,实质上也是在选择对模型性能影响最大的特征子集。
特征提取与特征选择的区别与联系

特征提取与特征选择的区别与联系在机器学习和数据挖掘领域,特征提取和特征选择是两个重要的概念。
它们在数据预处理和模型构建中起着至关重要的作用。
本文将探讨特征提取与特征选择的区别与联系,并从理论和实践角度进行深入分析。
1. 特征提取的定义与意义首先,我们来看看特征提取的定义与意义。
特征提取是指从原始数据中提取出具有代表性的特征,以便进行后续的数据分析和建模。
在实际应用中,原始数据往往包含大量的冗余信息和噪声,特征提取的目的就是通过某种算法或方法,对原始数据进行转换或映射,得到更加有用和有效的特征表示。
这样可以提高模型的准确性和泛化能力,同时减少计算复杂度和存储空间的消耗。
特征提取的方法有很多种,比如主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)等。
这些方法都是通过对原始数据进行变换,得到新的特征表示,从而达到降维、去噪或增强特征的目的。
2. 特征选择的定义与意义接下来,我们再来看看特征选择的定义与意义。
特征选择是指从原始特征中选择出最具有代表性和重要性的特征子集,以用于后续的建模和预测。
在实际应用中,原始特征往往包含很多冗余和无关的信息,特征选择的目的就是找出对目标变量影响最大的特征,从而简化模型、提高预测性能和可解释性。
特征选择的方法有很多种,比如过滤式、包裹式和嵌入式等。
过滤式方法是直接对特征进行评估和排序,选择最高分的特征子集;包裹式方法是把特征选择看作一个搜索问题,通过试验不同的特征子集来找到最佳组合;嵌入式方法则是在模型训练过程中,通过正则化或增加惩罚项的方式来选择特征。
3. 特征提取与特征选择的区别特征提取与特征选择虽然都是对原始数据或特征进行处理,但它们在目的和方法上有着明显的区别。
首先,特征提取是通过某种变换或映射,得到新的特征表示,目的是降维、去噪或增强特征;而特征选择是从原始特征中选择出最具有代表性和重要性的特征子集,目的是简化模型、提高预测性能和可解释性。
特征提取与特征选择的区别与联系(Ⅲ)

特征提取和特征选择是机器学习和数据挖掘领域中常用的两个概念。
虽然它们都是为了从原始数据中提取出有用的特征以便进行进一步的分析和建模,但是它们之间有着明显的区别和联系。
首先我们来看看特征提取,特征提取是指从原始数据中提取出一些能够代表数据特征的特征。
这些特征可以是原始数据中的某些属性,也可以是对原始数据进行某种变换得到的新的特征。
特征提取的目的是将原始数据转化为更容易被机器学习算法处理的形式,同时保持数据的最重要的特征。
特征提取的方法有很多种,比如说主成分分析(PCA)、线性判别分析(LDA)、小波变换等。
这些方法可以将高维度的数据降维到低维度,从而减小了数据的复杂度,提高了机器学习的效率。
特征提取的过程可以看成是对数据的一种抽象和概括,它的目的是提取出对于目标任务最有用的信息。
而特征选择则是在特征提取的基础上进行的一个步骤。
特征选择是指从已有的特征中选择出对目标任务最有用的特征。
在特征提取的过程中,可能会产生大量的特征,有些特征可能对于目标任务没有太大的作用,甚至会影响到机器学习算法的性能。
因此需要进行特征选择,选择出对目标任务最有用的特征,去除那些冗余或者无关的特征。
特征选择的方法也有很多种,比如说过滤式特征选择、包裹式特征选择、嵌入式特征选择等。
过滤式特征选择是指通过对特征进行评估,选择出对目标任务最有用的特征,比如说使用相关系数或者信息增益进行特征评估。
包裹式特征选择是指在特征子集上训练出一个机器学习模型,通过模型的性能来评估特征的重要性。
嵌入式特征选择则是指在模型训练的过程中自动选择出对目标任务最有用的特征,比如说使用正则化方法。
特征提取和特征选择在实际应用中经常会同时进行,它们之间有着很大的联系。
特征提取会产生大量的特征,在特征选择的过程中,有时候也需要对特征进行一些变换和组合。
比如说,在包裹式特征选择的过程中,需要对特征子集进行训练,可能需要将特征进行某种组合,而这个过程有点类似于特征提取。
特征选择与特征提取

特征选择与特征提取特征选择主要是从原始特征集中选择出一部分最具有代表性的特征,以减少数据维度和消除冗余信息,同时提高模型的泛化性能和可解释性。
特征提取则是从原始数据中提取出一组新的特征集,用于替代原始特征集,以更好地表示数据的内在特点。
特征选择和特征提取可以单独使用,也可以结合使用。
特征选择通常从以下几个方面进行考虑:1. 特征重要性:通过模型训练的过程中,可以计算每个特征在模型中的重要性,根据重要性进行特征选择。
例如,可以使用随机森林、决策树等模型计算特征的Gini指数或信息增益,选择重要性较高的特征。
2.相关性分析:通过计算特征之间的相关性,选择与目标变量相关性较高的特征。
例如,可以使用皮尔森相关系数、互信息等方法进行相关性分析。
3.方差分析:通过计算特征的方差,选择方差较大的特征。
方差较大的特征表示特征值在样本间的差异较大,对于区分不同类别的样本有更好的能力。
4.正则化方法:通过添加正则化项,使得模型选择更少的特征。
例如,LASSO正则化可以使得特征的系数趋向于0,从而实现特征选择。
特征提取主要通过以下几种方法进行:2.独立成分分析(ICA):通过独立地解耦数据的非高斯分布特性,将原始数据分解为独立的子信号,从而实现特征提取。
3.稀疏编码:通过稀疏表示的方式,将原始数据表示为尽可能少的非零元素组成的代码,从而实现特征提取。
4.字典学习:通过学习一个字典,将原始数据表示为字典中原子的线性组合,从而实现特征提取。
特征选择和特征提取的选择与应用主要依赖于具体的数据集和问题。
在选择方法时需要考虑数据的性质、特征与目标变量的相关性、特征的可解释性以及模型的复杂度等因素。
总之,特征选择和特征提取是机器学习领域中常用的数据预处理技术,可以提高模型训练的效果和泛化能力。
在实际应用中,根据不同的需求选择适合的方法,对数据进行处理,提取最有用的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)选择最难分类的类对做出正确分类贡献最大
一、根据类别可分性函数计算每一个类对的可分性, 找出最难分的类对。
二、计算各个特征对于最难分的类对的可分性,选 择可分性最大的特征进入最优子集。
三、增加一个特征,形成新的组合,计算新组合对 于最难分的类对的可分性,选择可分性最大的特 征组合作为新的最优特征子集。
光谱特征选择的策略按照以上选择的方法 来划分类别,我们从以下三个方面的内容 来具体介绍:
一、光谱距离统计
二、光谱特征位置搜索
三、光谱相关性分析
5.1.1 光谱距离统计
光谱距离统计是考虑在进行特征选择时,需要依据一定的 准则进行判断。类别可分性根据这些判据能够反映各类在 特征空间的分布情况,还能刻划各特征分量在分类识别中 的重要性或贡献。
实际的应用当中,要综合两种策略的思想,使 效率和模式分布能够达到平衡。如果模式分布 的比较均匀,选择哪一个策略都是无关紧要的; 但是如果模式分布的不均匀,选择第一个策略 就必须考虑可分性准则的有效性,选择第二个 策略就必须考虑最难分的类别,提高分类精度。
B、选择特征的算法
定义:短时间内找出高光谱数据波段中最 优的一组特征常用算法介绍: (1)单独选择法
第五章 高光谱遥感数据的特征选择与提取
高光谱遥感数据有助于我们完成更加细致的遥感地物分类 和目标识别,然而波段的增多也必然导致信息的冗余和数 据处理复杂性的增加。具体表现在:
(1)数据量急剧增加:波段的增加,使得高光谱数据比传 统数据多1-2个数量级,表现在显示,存储,管理方面相 当繁琐
(2)计算量增大:数据的膨胀导致计算机处理载荷大幅度 增加,寻找有效地降维空间手段是必要的
Jij {[p (X /w i)p (X /w j)]2d} 1 X /2
x
J-M距离的组成成分与离散度是一样的,只是 函数表现形式不一样,因此,把离散度加以改 造,也能够很好的区分类别之间的距离和可分 离性。
(3)统计参数的估计误差增大:利用统计方法为了达到比 较精确的估计,样本个数一般是波段数的100倍以上,这 在高光谱数据中往往无法实现,因此,导致了分类精度的 普遍下降。
当光谱维数增加的时候,特征组合形式成指数倍 增加,如何优化光谱特征空间,进行光谱选择非 常重要。
5.1 光谱特征的选择
特征选择的方法是根据专家知识来进行挑选或者 是根据类别可分性准则选择。前者由于涉及到人 为的因素比较多,因此不作讨论;后者根据类别 可分性准则,挑选光谱特征。
根据可分性准则函数计算n个特征中每个特征可 分性,然后根据各个特征的可分性大小进行排序, 选择可分性最大的前m(n>m)个特征。
(2)扩充最优特征子集
一、计算每个特征对应的所有类别的可分性,选择 可分性最大的进入到最优子集当中;
二、增加一个特征构成新的特征集,重新计算特征 集合的可分性,选择最大的特征组合作为新的最 优子集。
(3)离散度
相对距离是基于类间距离和类内方差,类内方 差越大,分类误差越大。而离散度则是基于条 件概率之差,表达式为:
D ijE [L 'i(jX )/w i]E [L 'i(jX )/w j]
L ij 代表某一点的似然比
L
' ij
代表似然比的自然对数
E 代表期望值
(4)J-M Байду номын сангаас离
J-M距离也是基于类条件概率之差,与离散度 的评价方式一样,其表达式为:
四、重复执行第三步,直到最优的特征子集达到m。
(4)去掉最难分类正确分类贡献最小
一、根据类别可分性函数计算每一个类对的可分性,找 出最难分的类对。
二、计算各个特征对于最难分的类对的可分性,去掉择 可分性最小的特征,剩下特征作为最优子集。
三、减少一个特征,形成新的组合,计算新组合对于最 难分的类对的可分性,选择可分性最大的特征组合作 为新的最优特征子集。
常用的距离函数有:欧氏距离,马氏距离,明氏距离 等。
p
欧几里德距离: dij (xki xkj)2 kl
需要注意:很多情况下,类别之间的平均距离并不一 定代表了类别之间的可分性。如下图所示
两种分布的可分离性比较
(2)类别间的相对距离
根据费歇尔准则,分类时总是希望类内的离散 度尽量小,类间的离散度尽量大,那么根据这 个定律,可以作为相对距离的一个度量,度量 的公式,都是根据类内和类间离散度矩阵来进 行定义。
选择步骤:
A、选择可分性准则,确定使用策略 B、确定选择特征的算法
A、选择可分性准则
选择可分性准则有两个策略: 一、选择各类平均可分性最大的特征 二、选择最难分的类别具有的可分性最大的特征
第一个策略比较难照顾到分布比较集中的类别,如 果使用这个策略,选用能均衡照顾到各类的可以弥 补其不足;第二个策略能照顾到最难分的类别,但 是可能会漏掉某些可分性最大的特征,从而使分类 精度下降。
满足光谱距离可分性的要求:
设计光谱可分性的准则必须满足三个方面的要 求:
(1)与错误概率具有单调关系,这样准则取最
大值的情况下,所得到的错误概率应该是最小 的。
(2)度量特性。设定两类地物类别i,j的度量特
性为
J
ij
,J
越大,两类特征的分离程度越大。
ij
(3)单调性,新加入的特征,准则函数的值并
不减小。
光谱距离可分性准则
从n个特征中求取最有效的m个特征,相应的 组合方式有:C nm种,主要的考核指标: (1)各样本之间的平均距离; (2)类别间的相对距离; (3)离散度; (4)J-M距离; (5)基于熵函数的可分性准则
(1)各类样本间的平均距离
各类样本之间的距离越大,类别可分性越大,因此可 以利用各类样本之间的距离的平均值作为可分性的准 则。
四、重复执行第三步,直到最优的特征子集达到m。
(5)搜索树 是一种自上而下的搜索方法,具有回溯功
能,使得所有的特征组合都能被考虑到。搜 索树具有最大的特点是所用到的可分性函数 具有单调性,利用单调性的特点,减少对一 些特征组合的搜索。
必须指出的是以上的算法均假设各个特征之 间相互独立,没有考虑特征之间的相关性。 实际上,各个特征之间是存在相关性的,首 先应该剔除一些可分性小,与其他特征相关 性大的特征,选择最优,可分性最大的特征 组。