弯曲应力

合集下载

弯曲应力公式

弯曲应力公式

弯曲应力公式
弯曲应力公式是用于计算材料在受到弯曲力作用时所产生的应力的公式。

弯曲应力是指材料在弯曲变形时内部产生的应力。

在工程实践中,了解材料的弯曲应力是设计和评估结构和构件强度的重要基础。

根据弯曲应力公式,弯曲应力可以通过以下公式计算:
σ = (M * c) / I
其中,σ是弯曲应力,M是作用于材料的弯曲力矩,c是截面和材料最远点之间的距离(也称为材料的离心距),而I是截面的惯性矩。

弯曲应力公式反映了弯曲力和材料断面之间的关系。

公式中的离心距和惯性矩可以描述结构材料的几何特性和材料的物理特性。

弯曲应力正比于弯曲力矩并反比于截面的惯性矩。

这意味着对于相同的弯曲力矩,当截面的惯性矩越大时,材料的弯曲应力越小。

弯曲应力的计算对于工程设计和工程结构的安全性至关重要。

通过了解材料的弯曲应力,工程师可以确定材料是否足够强大,以承受特定的弯曲力矩。

此外,在材料设计中,可以通过调整截面形状、尺寸和材料的选择来减小或优化弯曲应力。

总结而言,弯曲应力公式是工程实践中用于计算弯曲应力的重要工具。

它通过考虑弯曲力矩、离心距和截面的惯性矩等因素,为工程师提供了评估结构和构件强度的基础,并为设计和优化工程材料提供了指导。

第6章 弯曲应力

第6章  弯曲应力

称为抗弯截面系数
只有一根对称轴的横截面形状: yt,max yc,max O y
O y
z
t,max
My t ,max Iz
c,max
Myc,max Iz
z
简单截面的弯曲截面系数 b h ⑴ 矩形截面
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy 源自/2 63()
Ⅱ .纯弯曲理论的推广 对于细长梁( l/h > 5 ),纯弯曲时的正应力计算 公式用于横力弯曲情况,其结果仍足够精确。 F
l
M ( x) y Iz
Fl
4
max
M ( x) Wz
解:
由弯曲曲率公式 可得:
M EIz
M EI z
1
代入弯曲正应力公式:
M EIZ Ed 533.3MPa WZ WZ 2
3.正应力的正负号与弯矩 及点的坐标 y的正负号有关。实际计算中,可根 据截面上弯矩的方向,直接判断中性 轴的哪一侧产生拉应力,哪一侧产生 压应力,而不必计及M和y的正负。
三、最大弯曲正应力 有两根对称轴的横截面形状: b h
z
y y
z
max
M M Mymax I z Wz Iz y max

基本假设2:
梁内各纵向纤维无挤压 假设,纵向纤维间无正应 力。

中性层与中性轴
纵向对称面 中性层 Z 中性轴
中性层 根据变形的连续性 可知,梁弯曲时从其凹 入一侧的纵向线缩短区 到其凸出一侧的纵向线 伸长区,中间必有一层 纵向无长度改变的过渡 层,称为中性层 。 中性轴: 中性层与横截面的交 线就是中性轴。

弯曲应力计算公式圆柱

弯曲应力计算公式圆柱

弯曲应力计算公式圆柱在工程力学中,弯曲应力是指在受力作用下,材料内部产生的应力状态。

在工程设计和结构分析中,对于圆柱体的弯曲应力计算是非常重要的。

本文将介绍圆柱体的弯曲应力计算公式,并对其进行详细解析。

首先,我们来看一下圆柱体的弯曲应力计算公式。

对于圆柱体的弯曲应力,其计算公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,σ为圆柱体在受力作用下的弯曲应力,M为作用力矩,c为圆柱体截面内部的距离,I为截面惯性矩。

在这个公式中,作用力矩M是指作用在圆柱体上的力矩,它是由外部作用力和圆柱体自身的惯性力共同作用而产生的。

圆柱体截面内部的距离c是指作用力矩M的作用点到截面内部某一点的距离。

而截面惯性矩I则是描述了圆柱体截面形状和大小对于其抗弯刚度的影响。

接下来,我们将对圆柱体弯曲应力计算公式进行详细解析。

首先,我们来看一下作用力矩M。

作用力矩M是由外部作用力和圆柱体自身的惯性力共同作用而产生的。

在实际工程中,作用力矩可以通过外部作用力乘以作用点到圆柱体重心的距离来计算。

作用力矩的大小和方向对于圆柱体的弯曲应力具有重要影响。

其次,我们来看一下截面内部的距离c。

对于圆柱体截面内部的距离c,它是指作用力矩M的作用点到截面内部某一点的距离。

在实际计算中,我们需要根据具体的受力情况来确定截面内部的距离c。

通常情况下,我们可以通过几何分析或者实验测量来确定截面内部的距离c。

最后,我们来看一下截面惯性矩I。

截面惯性矩I描述了圆柱体截面形状和大小对于其抗弯刚度的影响。

在实际计算中,我们可以通过几何分析或者使用相关的公式来计算圆柱体截面的惯性矩。

在工程设计和结构分析中,截面惯性矩是一个非常重要的参数,它直接影响着圆柱体的弯曲应力大小。

综上所述,圆柱体的弯曲应力计算公式是一个非常重要的工程力学公式。

通过对该公式的详细解析,我们可以更好地理解圆柱体在受力作用下的弯曲应力状态,并且可以在工程设计和结构分析中更好地应用该公式。

材料力学-弯曲应力

材料力学-弯曲应力

对于宽为b高为h的矩形截面:
W
bh3 12
bh2
h
6
2
对于直径为d的圆形截面:
W d 4 64 d 3
d
32
2
限定最大弯曲正应力不得超过许用应力,于是强度条件为:
max
M max W
设σt 表示拉应力,σc 表示压应力,则:
t max t
cmax c
塑性材料, [σt]= [σc]= [σ];
所以由(1)式:
A
d
A
A E
y
d
A
E
A y d
A
E
Sz
0
由(2)式:
说明中性轴过形心
A z
d
A
A zE
y
d
A
E
A
yz d
A
E
I yz
0
由于y轴是对称轴,此 式自然满足。
由(3)式:
A
y
d
A
A
yE
y
d
A
E
A
y2
d
A
E
Iz
M
1 M
EI z
1 为梁轴线变形后的曲率 ;
由变形几何关系得到 y
由物理关系得到
bh2 2b3 W
63
故: b 121.6 mm
h 2b 243.2 mm
选取截面为: 125 250 mm 2
e.g.3 已知:l=1.2m,[σ]=170MPa, 18号工字钢,不计自重。
求:P 的最大许可值。
P A
解:作弯矩图, 由图可得:
M
| M |max Pl 1.2P N m

弯曲应力和扭转应力

弯曲应力和扭转应力

《弯曲应力和扭转应力》嘿,咱今天来唠唠弯曲应力和扭转应力这俩听起来有点高深的玩意儿。

先说说弯曲应力哈。

你想啊,咱平时生活里也能见到不少有弯曲应力的情况呢。

就好比那树枝,风一吹,树枝就弯了,这时候树枝里面就有弯曲应力啦。

要是树枝太细,或者风太大,那树枝说不定就咔嚓一下断了。

这就是弯曲应力太大,树枝承受不住了。

再比如说,咱家里的扁担,挑东西的时候也是弯弯的吧。

这扁担要是质量不好,挑重了东西也会断掉,这也是弯曲应力在作怪呢。

弯曲应力到底是啥呢?简单来说,就是一个东西被弯的时候产生的力。

这个力要是太大了,东西就容易坏。

那咱怎么对付弯曲应力呢?要是造东西的时候,就得考虑用结实点的材料,让这个东西能承受更大的弯曲应力。

比如说造大桥的时候,那钢材可都得是好钢材,不然大桥被车压得弯弯的,说不定啥时候就出问题了。

再讲讲扭转应力。

这个扭转应力也挺常见的。

就像咱拧螺丝的时候,螺丝就会受到扭转应力。

要是螺丝质量不好,拧得太紧了,螺丝就可能会断掉。

还有那自行车的链条,骑的时候链条一直在转动,这也有扭转应力呢。

扭转应力就是一个东西被扭的时候产生的力。

这个力要是大了,东西也容易坏。

那咱要是想让东西不容易被扭转应力弄坏,就得想办法让它更结实。

比如说造机器的时候,那些轴啊什么的,都得用好材料,还得设计得合理,这样才能承受更大的扭转应力。

这弯曲应力和扭转应力虽然听起来有点复杂,但是咱生活里到处都能碰到。

咱了解了它们,就能更好地理解为啥有些东西会坏,也能在造东西的时候做得更好。

咱可不能小瞧了这两个应力,要是不注意,说不定啥时候就会给咱带来麻烦呢。

嘿嘿,所以啊,咱可得好好研究研究这弯曲应力和扭转应力,让咱的生活更安全,更美好。

弯曲强度和弯曲应力的关系

弯曲强度和弯曲应力的关系

弯曲强度和弯曲应力的关系
弯曲强度是指材料在受弯曲载荷时能够抵抗变形和破坏的能力。

弯曲应力是指材料在受弯曲载荷时受到的内部应力。

弯曲强度和弯曲应力之间存在着密切的关系。

在弯曲加载下,材料的顶部受到压力,底部受到拉力,从而在材料内部产生一个弯曲应力分布。

这个应力分布的最大值被称为弯曲应力,通常会出现在截面的最外侧纤维。

弯曲应力的大小取决于弯曲力的大小、材料的几何形状以及材料的弯曲模量。

弯曲强度则是材料能够承受的最大弯曲应力。

它是一个用于描述材料抵抗弯曲载荷的关键参数。

不同材料拥有不同的弯曲强度。

弯曲强度与材料的化学成分、晶体结构、热处理状态以及微观缺陷有关。

弯曲强度和弯曲应力之间的关系可以通过材料的应力-应变曲线来理解。

在弯曲加载下,材料会发生弯曲变形,直至达到破坏点。

弯曲强度可以被认为是材料的应力-应变曲线中的最高点,即破坏点。

因此,弯曲强度与弯曲应力的大小直接相关。

然而,需要注意的是,弯曲强度并不是材料的固有属性,它还受到其他因素的影响,如试样的几何形状、加载速率以及试验条
件等。

因此,当比较不同材料的弯曲强度时,需要进行标准化的试验和参数处理。

总之,弯曲强度和弯曲应力之间存在着密切的关系。

弯曲强度是材料能够抵抗弯曲载荷的能力,而弯曲应力是材料在受到弯曲载荷时受到的内部应力。

了解和掌握这两个参数之间的关系,对于材料的设计和应用具有重要的意义。

工程力学-弯曲应力

工程力学-弯曲应力

6 弯曲应力1、平面弯曲梁横截面上的正应力计算。

正应力公式是在梁纯弯曲情况下导出的,并被 推广到横力弯曲的场合。

横截面上正应力公式为j zM y I σ=横截面上最大正应力公式为 max zM W σ=2、横力弯曲梁横截面上的切应力计算,计算公式为*2z QS I bτ= 该公式是从矩形截面梁导出的,原则上也适用于槽形、圆形、工字形、圆环形截面梁横截面切应力的计算。

3、非对称截面梁的平面弯曲问题,开口薄壁杆的弯曲中心。

4、梁的正应力强度条件和切应力强度条件为[]max σσ≤[]max ττ≤根据上述条件,可以对梁进行强度校核、截面设计和容许荷载的计算,与此相关的还要考虑梁的合理截面问题。

5、梁的极限弯矩6.1图6-6所示简支梁用其56a 号工字钢制成,试求此梁的最大切应力和同一截面腹板部分在与翼板交界处的切应力。

图 6.1[解] 作剪力图如图(c).由图可知,梁的最大剪力出现在AC 段,其值为max 7575000Q kN N ==利用型钢表查得,56a 号工字钢*247.7310z z S I m -=⨯,最大切应力在中性轴上。

由此得以下求该横截面上腹板与翼板交界处C 的切应力。

此时*z S 是翼板面积对中性轴的面积矩,由横截面尺寸可计算得*3435602116621()9395009.401022z S mm m -=⨯⨯-==⨯ 由型钢表查得465866z I cm =,腹板与翼板交界处的切应力为*max max max max23*max7500012600000126.47.731012.510z a z z z Q S Q MP I I dd S τ--=====⨯⨯⨯⨯a MP 6.12解题范例483750009.40108.6658661012.510fc a MP τ---⨯⨯==⨯⨯⨯6.2长为L 的矩形截面悬臂梁,在自由端作用一集中力F ,已知b =120mm ,h =180mm 、L =2m ,F =1.6kN ,试求B 截面上a 、b 、c 各点的正应力。

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 弯曲应力6.1 钢丝直径d=0.4mm, 弹性模量E=200GPa, 若将钢丝弯成直径D=400mm 的圆弧时,试求钢丝横截面上的最大弯曲正应力。

(200MPa ) 解:钢丝的弯矩和中性层曲率半径之间的关系为:EIM =ρ1则: ρEIM =,由弯曲正应力公式得ρσmaxmax My ==ρmaxEy ,钢丝弯成圆弧后,产生的弯曲变形,其中性层的曲率半径22Dd D ≈+=ρ 2)2(maxD dE =σ==D Ed MPa 2004004.0102003=⨯⨯6.2 矩形截面梁如图所示。

b = 8cm, h =12cm, 试求危险截面上a 、c 、d 三点的弯曲正应力。

(20.8MPa, 10.4MPa, 0) 解:由平衡方程0)(=∑F M A得到: KN F F B A 44221=⨯⨯== 危险截面在梁的中点处:KNm ql M 442818122max =⨯⨯==I z =1212h b ⨯⨯=44310115212080121mm ⨯=⨯⨯MPaI My MPa I My IMy z d d z c c zaa 83.201011526010442.101011523010404646=⨯⨯⨯===⨯⨯⨯====σσσA F BF s F MM机械土木6.3 从直径为d 的圆木中截取一矩形截面梁,试根据强度观点求出所截取的矩形截面的最合理的高h 和宽b 。

(h=d 36, b=d 33) 解:最大弯曲正应力: zz W My I M max max max max ==σ h/b 的最佳值应应使梁的抗弯截面系数为最大。

抗弯截面系数: )(61)(616132222b b d b d b bh W -=-==为b 为自变量的函数。

由 06322=-=b d dt dW 36 333222db d h d d b =-===6.4 图示两根简支梁,其跨度、荷载及截面面积都相同。

一个是整体截面梁,另一个是由两根方木叠置而成(二方木之间不加任何联系),试画出沿截面高度的弯曲正应力分布图,并分别计算梁中的最大弯曲正应力。

(32a 16ql 3,32a 8ql 3)解:做出梁的弯矩图如右所示:(1)对于整体截面梁:32232)2(3161a a a bh W z =⋅==故:3232maxmax 1633281a ql a qlW M z===σ (2)对于两根方木叠置由于这是两个相同的方木叠合而成, 且其之间不加任何的联系,故有323211max 3max 218361)81(21,61,21a ql a ql W M a W M M M z z =⋅=====σ 32163a ql 32163a ql M1机械土木M 86.5 某梁的矩形截面如图,弯曲剪力Q y =40kN ,求截面上a 、b 、c 三点的弯曲剪应力。

(MPa 2a =τ,MPa 5.1b =τ,0c =τ)解:从图形上可以看出截面形心在其对称中心上, 且有483310200150121121mm bh I z =⨯⨯==3510625.57515050mm S z ⨯=⨯⨯=再有矩形截面梁的弯曲正应力bI S F z z S *=τ ,故 ,0=c τ 0.2200150104023233=⨯⨯⨯=⨯=A F S a τ MPa 5.11501010625.51040853=⨯⨯⨯⨯==*b I S F z z S b τ MPa 6.6 图示简支梁由三块木板胶合而成,l=1m, 胶缝的许用剪应力为[]MPa 5.0=τ,木材的许用弯曲正应力为[]MPa 10=σ,许用剪应力为[]MPa 1=τ,试求许可荷载P 。

(P=8.1kN )解:依题给条件,对梁进行受力分析, 由平衡条件,列平衡方程,做出剪力图和弯矩图如右所示 (1)按木材弯曲正应力强度要求确定许可荷载[]101209061141412max max=≤⨯⨯⨯===σσP WPl W MN P 8640≤⇒(2)按木材剪应力强度要求确定许可荷载[]112090212323max =≤⨯⨯=⨯=ττPA F SN P 14400≤⇒(3)按胶合面剪应力强度要求确定许可荷载[]5.09012090121)409040(21'3'=≤⨯⨯⨯⨯⨯⨯==*ττP bI S F z zSN P 8100≤⇒综上所述可知 P=8100N=8.1KNsF 2P Pl 41M2P Pl 41机械土木6.7 在图a 中,若以虚线所示的纵向面和横向面从梁中截出一部分,如图b 所示,试求在纵向面abcd 上由dA τ组成的内力系的合力,并说明它与什么力平衡。

(Q=x )x l (h4q3-) 解:有剪应力互等定律可知,纵向截面 上剪应力与横向截面上剪应力大小相等, 中性层上剪应力变化规律为:()()()Bh x l q Bh qx ql A x F x S 423 221323-=⎪⎭⎫ ⎝⎛-==τ纵截面abcd 上剪应力合力为:()()()hx l qx dx B Bhx l q dx B x F xx 423 4230-=⋅-=⋅=⎰⎰τ6.8 图示梁由两根36a 工字钢铆接而成。

铆钉的间距为s=150mm, 直径d = 20mm, 许用剪应力[]MPa 90=τ。

梁横截面上的剪力F s = 40kN 。

试校核铆钉的剪切强度。

(MPa 2.16=τ) 解:查表可得,36a 工字钢的惯性矩 415800cm Ιz =,截面面积248.76cm =A 截面高度cm h 36=。

组合惯性矩为()()422812004876181580022cm .A d ΙΙz zc =⨯+=+=一根工字钢的截面对中性轴的静面矩为:3138048.7618cmS zc =⨯=*铆钉连接处的纵截面上的剪力流: m KN I S F f zzc/6810812001013801040863=⨯⨯⨯⨯==--* 有铆钉间距 fQ S 铆2=,得每个铆钉承受的剪力为:N sf Q 51002106815.023=⨯⨯==铆 铆钉的剪应力: 2.1614.3412=⨯⨯=d Q 铆τMPa < []τ=90 Mpa故,校核安全。

a 'a 'b 'c c bd2h'b'b ()x σ()x τ6.9 半径为r 的圆形截面梁,切掉画阴影线的部分后,反而有可能使抗弯截面模量增大(何故?)。

试求使W 为极值的α,并问这对梁的抗弯刚度有何影响?(O 78=α)解:切掉阴影部分后剩余的面积,是由4个相同的直角三角形和4个相同的扇形面积组成,一个直角三角形面积对水平直径的惯性矩为:()()a a r a r a r bh I x 33331sin cos 41cos sin 4141⋅===一个扇型面积对水平直径的惯性矩为:()()⎪⎭⎫⎝⎛-=⋅=⋅⋅=⋅=⎰⎰⎰⎰⋅a a r d d d d dAy I rarAx sin 4124sin sin 40023222θθρρρθρθρ因为圆截面在中性轴附近聚集了较多的材料而离中性轴远处的材料却较少,当切掉适当的小弓形面积后,使之离中性轴远处的材料密集度增大,因而抗弯截面系数笔增大。

剩余面积对水平直径的惯性矩为:()a a r a a r a a r I I I xx x 4sin 48sin cos 2sin 41244434421-=⋅+⎪⎭⎫ ⎝⎛-=+= 抗弯截面系数: ()()aa a r a a a y I W xx sin 84sin 4sin 44sin 4813max-=-==()()()()7800cos 4sin 4sin 4cos 440sin cos sin 4sin cos 4482443==⇒=---⇒=⎥⎦⎤⎢⎣⎡---=a a a a a a a a a a a a a r da dW x 或者3max 791.0r W x =, 4774.0r I x =未切前 4433785.014.341785.014.341r r I r r W x x =⨯⨯==⨯⨯=比较后可知,切后抗弯截面系数增大,而抗弯刚度降低,因而使梁的抗断能力提高,抗弯曲变形能力降低6.10 试求图示梁的最大弯曲正应力和最大弯曲剪应力。

(提示:max τ发生在中性轴上。

)(MPa 00.9max =σ, MPa 05.1max =τ)解:KN ql F s 1523102max ,=⨯==KNm ql M 25.118310822max =⨯==2*48448750002550100502001001025.1)100200(121mm S mm I z z =⨯⨯-⨯⨯=⨯=-=MPay I M z 00.91001025.11025.1186max max max =⨯⨯⨯==σMPa bI S F z zs 05.11001025.1875000101583*max ,max =⨯⨯⨯⨯==τ6.11 图示铸铁梁,材料的许用拉应力[]MPa 40t =σ,许用压应力[]MPa 100c =σ,4z cm 5965I =,mm 5.157y C =。

试校核梁的强度。

(MPa 8.52max c =σ,MPa 4.26max t =σ) KN F A 30452104120=⨯⨯+⨯=KN F B 10412104320=⨯⨯-⨯=KNm M KNm M 10,2021== mmy 5.725.1572301=-=MPa y I M MPa y I M MPa y I M MPa y I M c z c z t c z cz t16.125.72105965101040.265.157105965101081.525.157105965102031.245.721059651020461max,24611max,2461max,14611max,1=⨯⨯⨯===⨯⨯⨯===⨯⨯⨯===⨯⨯⨯==σσσσ][40.26][81.52max ,max ,t t c c MPa MPa σσσσ≤=≤=sF M1AF BF 1y sF MM机械土木A F BF6.12 图示一铸铁梁,材料的许用拉应力与许用压应力之比为[][]3/1/c t =σσ,试求水平翼缘板的合理宽度b 。

(b=316mm )170230170303034060)602340(3034030601+⨯+=⨯+⨯+⨯⨯+⨯⨯=b b b b y 1701701703701702301703040040012+⨯+=+⨯+-=-=b b b b y y ][][2max ,1max ,c zc t zt y I My I Mσσσσ====][][21c t y y σσ= mmb b b b b 72.31590370170170690170690170901701703703117017037023017030=-⨯-⨯=⨯+=⨯+=⨯+⨯+6.13 图所示矩形截面悬臂梁,承受载荷 F y 和 F z 作用,且F y = F z = F = 1.0 kN,截面高度h = 80 mm ,宽度b = 40 mm ,许用应力[]MPa 160=σ,a = 800 mm 。

相关文档
最新文档