a纯弯曲正应力公式推导

合集下载

纯弯曲时的正应力

纯弯曲时的正应力
空心轴内外径比为0.6。求空心轴和实心轴的重量比。
D=200
D1 d1
解:(1)确定空心轴尺寸

max
M W
32
D13 (1
0.64
)
7.9
104
D1 210 mm
(2)比较两种情况下的重量比(面积比):
A空 A实
4
D12 (1 D2
2)
2102 (1 0.62 ) 2002
0.7
4
由此可见,载荷相同、 max要求相等的条件
M z ydA M
A
纯弯曲时的正应力:公式推导
E y
N dA 0
1
A
M y zdA 0 2 M z ydA M 3
A
A
将应力表达式代入(1)式,得
N
A
dA
E
A
ydA
0
Sz ydA 0
A
上式表明中性轴通过横截面形心。
将应力表达式代入(2)式,得
A z
dA
E
yzdA
2. 纯弯曲时的变形特征
(1)各纵向线段弯成弧线,且部分纵向线段伸长, 部分纵向线段缩短。
(2)各横向线相对转过了一个角度,仍保持为直线。 (3)变形后的横向线仍与纵向弧线垂直。
纯弯曲时的正应力:概述
3. 纯弯曲时的基本假设
(1)平截面假设( Plane Assumption )
(a) 变形前为平面的横截面变形后仍为面上无剪应力
(2)纵向纤维间无正应力
纵向纤维无挤压
横截面上只有轴向正应力
纯弯曲时的正应力:公式推导
1. 变形几何关系
M
M
z x
y
中性轴(Neutral Axis)

6第六章-梁的应力详解精选全文完整版

6第六章-梁的应力详解精选全文完整版
等直梁横截面上的最大正应力发生在最大弯矩所在横 截面上距中性轴最远的边缘处,而且在这些边缘处,即使 是横力弯曲情况,由剪力引起的切应力也等于零或其值很 小(详见下节),至于由横向力引起的挤压应力可以忽略不 计。因此可以认为梁的危险截面上最大正应力所在各点处 于单向应力状态。于是可按单向应力状态下的强度条件形 式来建立梁的正应力强度条件:
需要注意的是,型钢规格表中所示的x轴是我们所标示 的z轴。
Ⅱ. 纯弯曲理论的推广
工程中实际的梁大多发生横力弯曲,此时梁的横截面
由于切应力的存在而发生翘曲。此外,横向力还使各纵向
线之间发生挤压。因此,对于梁在纯弯曲时所作的平面假
设和纵向线之间无挤压的假设实际上都不再成立。但弹性
力学的分析结果表明,受分布荷载的矩形截面简支梁,当
A

E
y
r
代入上述三个静力学条件,有
FN
dA E
A
r
y d A ESz
A
r
0
(a)
M y
z d A E
A
r
yz d A EIyz
A
r
0
(b)
M z
y d A E
A
r
y2 d A EIz
A
r
M
(c)
以上三式中的Sz,Iyz,Iz都是只与截面的形状和尺寸相 关的几何量,统称为截面的几何性质,而
图b所示的简支梁。钢的许用弯曲正应力[]=152 MPa 。试
选择工字钢的号码。
(a)
(b)
解:在不计梁的自重的情况下,弯矩图如图所示 Mmax 375kN m
强度条件 Mmax 要求:
Wz
Wz
M max

纯弯曲梁的正应力实验参考书报告

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺3、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,I z为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

实验采用半桥单臂、公共补偿、多点测量方法。

加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。

四、实验步骤1.设计好本实验所需的各类数据表格。

2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。

见附表13.拟订加载方案。

先选取适当的初载荷P0(一般取P0 =10%P max左右),估算P max(该实验载荷范围P max≤4000N),分4~6级加载。

4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。

6.加载。

均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。

实验至少重复两次。

见附表27.作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

附表1 (试件相关数据)附表2 (实验数据)P 50010001500200025003000载荷N △P 500500500500500εP -33-66-99-133-166△εP -33-33-34-334平均值-33.25εP -16-33-50-67-83△εP -17-17-17-162平均值16.75εP 00000△εP 00001平均值0εP 1532476379△εP 171516163平均值16εP 326597130163△εP 33323333 各 测点电阻应变仪读数µε5平均值32.75五、实验结果处理1.实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算应变片至中性层距离(mm )梁的尺寸和有关参数Y 1-20宽 度 b = 20 mm Y 2-10高 度 h = 40 mm Y 30跨 度 L = 620mm (新700 mm )Y 410载荷距离 a = 150 mm Y 520弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4。

弯曲应力及强度计算

弯曲应力及强度计算
桥梁的受弯破坏问题
工程背景
第2页/共32页
1999年1月4日,我国重庆市綦江县彩虹
桥发生垮塌,造成:
40人死亡;
14人受伤;
直接经济损失631万元。
第3页/共32页
由工程实例可知:
工程中存在大量与弯曲强度有关的问题。
弯曲强度问题的研究对避免受弯结构的破坏 具有十分重要的意义。
研究弯曲强度问题
受弯构件内 应力的分布规律
12.75103 139103 403107
43.98MPa
如果T截面倒置会如何???
第19页/共32页
* 梁的剪应力强度条件
一、梁横截面上的剪应力
Q—横截面上的剪力
QS
* z
IZb
IZ—横截面对中性轴的惯性矩
S*Z—所求应力点以上或以下部分截面对中性轴的静矩 b—所求应力点的截面宽度
剪应力沿截面高度呈抛物线分布,在中性轴处最 大,在上下边缘处为零。
成变截面的。横截面沿梁轴变化的梁,称为变截面梁。
F A
F A
h(x) B
z
b
B
各个横截面具有同样强度的梁称为等强度梁,等强度梁是一种
理想的变截面梁。但是,考虑到加工制造以及构造上的需要等,实际 构件往往设计成近似等强的。
第29页/共32页
小结:
一、梁的应力:
横截面上的正应力: M y ; Iz
等直梁 max
Mmax所在横截面 离中性轴最远处
max
Mmax IZ
ymax
等直梁的最大弯曲正应力公式
第12页/共32页
* 梁的正应力强度计算
max
M max IZ
ymax
设 ymax为到中性轴的最远距离

怎样推导梁的应力公式、变形公式

怎样推导梁的应力公式、变形公式

05、基本知识 怎样推导梁的应力公式、变形公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@ ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。

回信请注明班级和学号的后面三位数。

1 * 问题的提出 ........................................................................................................................... 12 下面就用统一的步骤,研究梁的应力公式和变形公式。

................................................... 23 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导 ................................. 24 1.2 梁弯曲的变形公式推导(仅研究纯弯曲) ....................................................................5 5 1.3 弯曲应力公式和变形公式的简要推导 ............................................................................6 6 1.4 梁弯曲的正应力强度条件和刚度条件的建立 ................................................................7 7 2.1 梁剪切的应力公式推导 ....................................................................................................8 8 2.2 梁弯曲的剪应力强度条件的建立 ....................................................................................9 93. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。

材料力学——弯曲应力

材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式

12第十二讲(弯曲正应力)

12第十二讲(弯曲正应力)

材料力学教案
M z y d A
A
第十二讲:弯曲正应力计算
E
r
A
y dA
2
EI z
r
M
(c)
由式(c)可知,直梁纯弯曲时中性层的曲率为
M r EI z 上式中的EIz称为梁的弯曲刚度。显然,由于纯弯曲时,
梁横截面上的弯矩M 不随截面位置变化。故对于等截面的
1
直梁,包含在中性层内的那根轴线将弯成圆弧。
3、纵向线应变在横截面范围内的变化规律
图c为由相距d x的两横截面取出的梁段在梁弯曲后的情
况,两个原来平行的横截面绕中性轴相对转动了角d。梁的 横截面上距中性轴 z为任意距离 y 处的纵向线应变由图c可知 为
B1B B1 B y d AB1 O1O2 dx
令中性层的曲率半径为r(如图c),则根 1 d 据曲率的定义 有 r dx
材料力学教案
第十二讲:弯曲正应力计算
根据表面变形情况,并设想梁的侧面上的横向线mm和nn是
梁的横截面与侧表面的交线(由表及里),可作出如下推论
(假设):
平面假设
梁在纯弯曲时,其原来的横截面仍保持为平面,
只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。 此假设已为弹性力学的理论分析结果所证实。 三峡大学 工程力学系
将 E 代入,即得弯曲正应力计算公式:
r
y
My Iz
三峡大学 工程力学系
材料力学教案
第十二讲:弯曲正应力计算
二. 纯弯曲理论的推广-横力弯曲中正应力的计算
工程中实际的梁大多发生横力弯曲,此时,对于梁在
纯弯曲时所作的假设不再成立。

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。

3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。

二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。

4、温度补偿块一块。

三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。

用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。

根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

由上式可知,沿横截面高度正应力按线性规律变化。

实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。

当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。

为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。

此外,在梁的上表面和下表面也粘贴了应变片。

如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。

将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。

σ实=Eε式中E是梁所用材料的弹性模量。

实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。

??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
中性轴
a5
纯弯曲正应力公式推导
三、静力学关系
FN=∫ AσdA
=
E∫ ρA
ydA
=0

M=∫ AσdA·y
M
z
dA y
=
E∫ ρ
A
y2dA
z σdA
y
E =ρ
Iz
∫ A ydA =0
横截面对中性轴 的面积矩为零, 中性轴过形心。
正应力 公式:
s=
My Iz
1 ρ
=
M E Iz
中性层曲率公式
EIz —— 梁的抗弯刚度
这时
s = M(x)y
Iz
= 1
M(x) =
ρ(x) E Iz
smax
Mmax Wz
公式适用条件:
1. 在线弹性范围; 2. 材料(E)拉压同性; 3. 纯弯曲与横力弯曲; 4. 平面弯曲。
应用于强度校核!
a8
纯弯曲正应力公式推导
一、变形几何关系 试件变形后 横线:保持为一条直线,与变形后的纵线正交,相对原来 位置转过一角度。 纵线:弯成弧线,上部纵线缩短,下部纵线伸长。
x
a1
纯弯曲正应力公式推导
假设: 平面假设:变形后的横截面仍为平面,并仍与弯曲后的纵线正交。 单向受力假设:各纵向纤维间无挤压,每根纵向纤维处于单向 受力状态。 中性层:梁中间有一层既不伸长,也不缩短。 中性轴:中性层与横截面的交线。 中性层
a2
纯弯曲正应力公式推导
横截面绕中性轴转动
找与横截面上的正应力有关的纵向线应变的变
形规律:
dq
取微段梁dx
1
2
1
2
dx
O1
y
O2
O1'
O2'
a
b
1
2
a'
b'
dx
1
2
O1O2变形前后长度不变,ρ为中性层的曲率半径
a3
纯弯曲正应力公式推导
xy平面变形特点
变形前 dx= ab=O1O2
变形后 O'1O'2=ρdθ
=O1O2
a'1b'2=(ρ+y)dθ
ab的纵向线应变
1
2
ε=
a'b'-ab ab
=
(ρ+y)dθ dx
-dx
O1
a
O2
b
(ρ+y)dθ - ρd θ = ρd θ
1
2
dx
y

y
dq
1
2
O1'Leabharlann O2'a'
b'
1
2
dx
a4
纯弯曲正应力公式推导
二、物理关系 胡克定律
y
σ=Eε =E ρ
由此可见,横截面上的正应力分布为
a6
纯弯曲正应力公式推导
正应力性质(正负号))确定:
σ的符号可由M与y的符号确定,也 可由弯曲变形情况确定。
s = My
Iz
最大正应力: smax =

Wz =
Iz ymax
得 M
smax = Wz
Mymax Iz
抗弯截面系数
a7
纯弯曲正应力公式推导
对于剪切弯曲梁,这时两个基本假设并不成立。但实验和理 论分析表明,当l/h(跨高比)较大(>5)时,采用该正应 力公式计算的误差很小,满足工程的精度要求(依然可按照 纯弯曲求解)。
相关文档
最新文档