九年级数学导学案

合集下载

人教版数学九年级(下)第二十六章《反比例函数》导学案

人教版数学九年级(下)第二十六章《反比例函数》导学案

人教版数学九年级(下)第二十六章《反比例函数》导学案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如kyx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔kyx=(k≠0)⇔xy=k(k≠0) ⇔变量y与x成反比例,比例系数为k.拓展 (1)在反比例函数kyx=(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如1yx=,312yx=等都是反比例函数,但21yx=+就不是关于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k 的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数kyx=中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式kyx=(k≠0).(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y 的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反比例函数kyx=(k≠0)的性质难点;灵活应用(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

2023年人教版九年级数学下册第二十七章《位似的基本概念》导学案

2023年人教版九年级数学下册第二十七章《位似的基本概念》导学案

新人教版九年级数学下册第二十七章《位似的基本概念》导学案【明确目标】1.掌握位似图形的定义、性质、画法.2.使学生经历对位似图形的观察、画图、分析、交流,体验探索得出数学结论的过程.3.通过经历对位似图形的认识、操作、归纳等过程,激发学生探究问题的兴趣,得到解决问题的成功体验,培养同学们之间的合作交流意识.【自主预习】1.以前我们学习了解平移、对称、旋转变换,它们的特点是什么?2.展示一组图片,提出问题:其形状、大小是否发生变化?图形位置有什么关系?阅读教材P47—48,自学“思考”与“探究”,理解位似的概念,会找出位似图形的位似中心,并能按要求将图形进行放大或缩小的位似变换.并完成自主预习区.1.如果两个图形不仅是相似图形,而且对应顶点的连线__________,对应边互相__________,这样的图形叫做位似图形,这个点叫做__________.2.如下图所示,下列图形中不是位似图形的是( )【合作探究】活动1 探究新知:(一)位似图形的定义(1)观察与思考:学生完成教材P47“思考”.(2)理解位似图形的定义:①两个图形相似;②对应点的连线交于一点;③对应边互相平行.(3)强化概念的理解.①下图是否是位似图形?如果是位似图形,请指出位似中心;如果不是,请说明理由.②下图中是位似图形的是( )③下列说法正确的是( )A.位似图形必须是两个直角三角形B.全等图形必是位似图形C.位似图形对应点的连线必相交于一点D.相似图形一定是位似图形④下列说法正确的是( )A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似⑤用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在( )A.原图形的外部B.原图形的内部C。

原图形的边上D.任意位置活动2 新知应用:(二)利用位似图形可以将一个图形放大或缩小例如图所示,作出一个新图形,使新图形与原图形对应线段的比为2:1.【当堂反馈】完成教材P48练习第1、2题.知识点一位似图形的概念1.下列各组图形中,不是位似图形的是( )2.图中两个四边形是位似图形,它们的位似中心是( )A.点M B.点N C.点O D.点P3.下列是△ABC位似图形的几种画法,其中正确的个数有( )A.1个B.2个C.3个D.4个4.按如下方法将△ABC缩小为原来的12.如图,任取一点O,连接AO,BO,CO. 并取它们的中点D,E,F,连接DE,EF,DF,得到△DEF,则下列说法正确的有( )①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF周长的比为2:1;④△ABC与△DEF面积的比为4:1.A.1个B.2个C.3个D.4个知识点二位似图形的性质5.两个图形中,对应点到位似中心线段的比为3:2,则这两个图形的位似比为( )A.3:2 B.9:4 C.3:2D.2:16.关于对位似图形的表述,下列命题正确的是__________.(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在直线都经过同一点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.7.如图,△ABC与△A'B'C'是位似图形,点O是位似中心,且OA=2AA',S△ABC =8,则S△A'B'C'=________.【拓展提升】如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A'B'C'和△ABC位似,且位似比为1:2;(2)连接(1)中的AA',求四边形AA'C'C的周长.(结果保留根号)【课后检测】一、选择题1.下列各组图形中,是位似图形的有( )A.2对B.3对C.4对D.5对2.已知点E是□ABCD中BC边延长线上的一点,连接AE交CD于点0,则图中的位似图形有( )A.1对B.2对C.3对D.4对二、填空题3.已知△ABC,点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这样的图形可以作__________个,它们之间的关系是_________________________________.4.如图,以点O为位似中心,将五边形ABCDE放大后,得到五边形A'B'C'D'E'.已知OA=10cm,OA'=20cm,则五边形ABCDE的周长与五边形A'B'C'D'E'的周长的比值是__________.三、解答题5.用直尺画出下面位似图形的位似中心点O.6.如图,△OAB与△ODC是位似图形,试问:(1)AB与CD平行吗?请说明理由;(2)如果OB=3,OC=4,OD=3.5,试求△0AB与△ODC的位似比及OA 的长.7.如图,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A'B'C'的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于l:2.5.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。

九年级 二次函数 导学案17个

九年级  二次函数 导学案17个

1NO.1《函数与它的表示法》导学案学习目标:1.熟练掌握函数表示方法,会求自变量取值范围,并能解决生活中的函数问题。

2.体会函数建模思想在实际生活中的应用,3.感受数学在生活中的魅力.预习案出函数图象. (2).据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?【归纳】__________________________________________叫做函数解析式或______________ _________________________叫做解析法___________________________叫做列表法 __________________________________________叫做图像法 【探究点二】2、如图,一辆汽车在行驶中,速度v 随时间t 变化的情况如图所示.(1)在这个问题中,速度v 与时间t 之间的函数关系是 用哪种方法表示的?_______________(2)时间t 的取值范围是什么?______________________。

(3)当时间t =______,汽车行驶的速度最大,最大速度是______; 当时间t =______时,速度为0?当t__________时,汽车的行驶速度逐渐增加?当t__________时,汽车的行驶速度逐渐减少?当t__________时,按匀速运动行驶?【典型例题】3、一根蜡烛长20cm,每小时燃掉4cm.(1)写出蜡烛剩余的长度y (cm )与燃烧时间x (h )之间的函数解析式.(2)求自变量x 可以取值的范围;(3)蜡烛点燃2h 后还剩多长?4、求下列函数中自变量x 的取值范围(1) y=3x+2 335x -(2)y =(3)4y ()探究案1、等腰三角形ABC 的周长为10cm,底边BC 长为y (cm), 腰AB 长为x (cm ) (1)写出y 与x 之间的函数解析式; (2)指出自变量x 可以取值的范围.2的正方形ABCD 的一边BC 上,有一动点P 从B 点运动到C 点,设PB=x ,四边形APCD 的面积为y 。

最新九年级数学上册全册导学案人教版含答案名师优秀教案

最新九年级数学上册全册导学案人教版含答案名师优秀教案

最新九年级数学上册全册导学案人教版含答案名师优秀教案一、绪论数学是一门抽象而又实用的学科,它在现代社会中扮演着不可或缺的角色。

作为九年级学生,我们即将接触到数学上册的内容,本导学案旨在帮助同学们了解全册的内容安排,为学习做好准备。

二、知识回顾在开始新的学习之前,我们需要回顾一下九年级数学上学期的知识,以便更好地理解新的内容。

1. 整式与分式在九年级上学期,我们学习了整式与分式的基本概念、运算法则以及同类项和合并同类项的方法。

这些概念在本册的学习中会经常出现,建议同学们再次复习并掌握。

2. 一元一次方程与不等式九年级上学期,我们学习了一元一次方程与不等式的解法,包括等式的加减消元法、代入法等,以及不等式的图解法和解集表示法。

这些知识将在本册的学习中得到延伸与应用,需要同学们熟练掌握。

3. 数与式的应用在上学期,我们学习了数与式的应用,包括线性函数与应用、三角形的面积等。

这些内容在本册中也会涉及到,需要同学们掌握并能够灵活运用。

三、本册内容安排本册的内容安排如下:1. 第一章:有理数2. 第二章:代数式3. 第三章:方程与不等式4. 第四章:平面直角坐标系5. 第五章:数与式的应用6. 第六章:平面图形的变换7. 第七章:统计四、学习方法指导为了更好地学习数学,我们需要掌握一些学习方法。

以下是几点指导:1. 独立思考与解决问题数学是一门注重逻辑推理和解决问题的学科,我们要培养独立思考和解决问题的能力。

在学习过程中遇到难题时,可以先独立思考,尝试寻找解决方法,如果仍然困难,可以寻求帮助。

2. 多做习题与总结数学需要不断的练习与巩固,所以请同学们多做习题,并总结出解题的方法和技巧。

对于一些难点和易错点,可以做一些专项练习,以加深理解。

3. 合理时间规划与集中精力数学的学习需要一定的时间和精力,同学们需要合理规划学习时间,并保证学习时的安静与集中。

避免分散注意力,提高学习效果。

五、答案与教案获取本册的答案和教案可以通过多种渠道获取。

人教版九年级数学导学案全册

人教版九年级数学导学案全册

人教版九年级数学导学案全册九年级数学导学案-全册第一章:有理数导学目标:了解有理数的定义,会对有理数进行加减法运算1. 有理数的定义有理数是指可以表示为两个整数比例的数,包括正整数、负整数、零以及可以表示为分数形式的小数。

2. 有理数的表示有理数可以通过分数、小数和负号表示。

例如:32/5,-1.2,-3。

3. 有理数的比较有理数的大小可以通过数轴进行比较,数轴的左边表示负数,右边表示正数。

例如:-5 < -1 < 0 < 2 < 4。

4. 有理数的加法运算有理数的加法运算遵循以下规则:- 两个正数相加,结果为正数;- 两个负数相加,结果为负数;- 正数加负数时,找到两个数的绝对值中较大的数,并用它的符号作为结果的符号。

5. 有理数的减法运算有理数的减法运算可以转化为加法运算,即求减数的相反数后再进行加法运算。

例如:7-3可以转化为7+(-3)。

第二章:代数基础导学目标:掌握代数基础概念,灵活运用代数式进行计算1. 代数式的定义代数式是由数或运算符号组成的表达式,可以包括数字、字母和运算符号。

2. 代数式的计算代数式可以通过代数运算进行计算,其中常用的运算符号包括加减乘除和指数符号。

3. 代数式的展开和因式分解代数式的展开指的是将括号中的内容按照规则进行计算,例如:(a+b)^2 = a^2 + 2ab + b^2。

代数式的因式分解指的是将代数式分解成乘积的形式,例如:4x^2 + 12x = 4x(x + 3) 。

4. 代数式的简化代数式可以通过合并同类项进行简化,合并同类项是将相同字母的项合并在一起,例如:2x + 3x = 5x。

第三章:图形的认识导学目标:了解几何图形的基本概念和性质,能够进行图形的分类和判断1. 平面图形的分类平面图形包括点、线段、射线、直线和曲线,可以通过形状和大小进行分类,例如:三角形、四边形、圆等。

2. 几何图形的性质几何图形有不同的性质,例如:矩形的对边相等、正方形的对角线相等。

数学九年级上册《用频率估计概率》导学案

数学九年级上册《用频率估计概率》导学案

数学九年级上册《用频率估计概率》导学案设计人:审核人:【学习目标】1、学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力。

2、通过对问题的分析,知道用频率来估计概率的方法,渗透转化和估算的思想方法。

3、通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值。

【学习重点】通过对事件发生的频率的分析来估计事件发生的概率。

【学习难点】大量重复试验得到频率的稳定值的分析和事件的模拟试验。

【学习方法】对学、讨论、展示。

自学1、(1)阅读教材P144.145的相关内容,完成表25-5(2)思考:在实验时为了使实验结果更接近现实情况,需要注意些什么问题?2、在进行移植试验时,移植的总数是越多越好还是越少越好?3、(1)完成课本表25-6.(2)根据表中数据填空:这批柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以1元/千克的成本进了20000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利9000元,那么售价应定为_______元/千克比较合适。

4、某公司以1.5元每千克的成本新进了20000千克雪梨,销售人员首先从所有的雪梨中随机抽取若干雪梨,进行了“雪梨损害率”统计,并把获得的数据(2)如果公司希望这些雪梨能够获得税前利润10000元,那么在出售雪梨时(已去掉损害的雪梨),每千克大约定价为多少元比较合适?2、一个密不透风的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球多少个?研学1、两人对学:针对自学成果及自我发现进行交流,把有疑惑的问题记下来带到小组内解决。

2、小组群学:组长负责交流各自的疑惑及重点问题,注意把握好时间,自学中的议一议可能是讨论的要点。

九年级数学《相似三角形的周长与面积》导学案

九年级数学《相似三角形的周长与面积》导学案

《相似三角形的周长与面积》导学案一、教学目标知识与技能1.理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。

2.能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。

过程与方法1.经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。

2.在探索实践中培养学生分析问题、解决问题的能力。

情感态度与价值观1. 在获得知识的过程中培养学习的自信心,知道数学来源于生活有服务于生活。

2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、重点难点重点理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。

难点相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.三、学情分析相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。

学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。

小结:1.本节学习的数学知识:(1)相似三角形(或多边形)长的比等于相似比.(2)相似三角形(或多边形)的面积比等于相似比的平方(3)相似三角形对应高的比、对应中线的比、对应角的平分线的比五、设计思路本节课开始让学生回顾旧内容,再根据提出的问题,让学生对相似三角形的周长、高、中线、角平分线、面积之间的关系进行猜测,然后从理论上,对学生的猜测逐一进行证明。

从两相似三角形周长和面积两方面进行探索,让学生在探索中得出结论,在探索中培养学生初步的发现能力和概括能力。

27.2.3 相似三角形的周长与面积一、自主探究问题一:相似三角形、相似多边形的周长之间的关系 1、已知:△ABC ∽△A'B'C',相似比为k ,求证:'''ABC A B C C k C =V V2、猜想:相似多边形的周长之间有什么关系?3、根据以上两个问题你会得到什么结论?问题二:相似三角形对应高、面积之间的关系1、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:''A D kA D=2、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:'''2ABC A B C S k S =V V .B 'C ''CB 'C ''3、已知:四边形ABCD 相似于四边形A'B'C'D',相似比为k ,它们的面积比是多少?4、根据以上讨论,归纳结论.问题三; 相似三角形对应中线、角的平分线之间的关系已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是中线,则''A D A D的值是多少?若AD ,''A D 分别是角平分线呢?由此你会得到什么结论?二、尝试应用1、(2010福建泉州市惠安县)两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A.9:1B. 3:4C.9:4D.3:16 2、(2010重庆市)已知△ABC 与△DEF 相似且对应中线的比为2:3,则△ABC 与△DEF 的周长比为_____________.3、如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,△ABC 的周长是24,面积是48,求△DEF 的周长和面积.D CB ADC 'D'CE FA 'B 'C 'D '三、补偿提高1、(2010重庆潼南县)△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为.2、(2009年宜宾)若一个图形的面积为2,那么将它与成中心对称的图形放大为原来的两倍后的图形面积为()A.8B. 6C.4D.23、(2009年安顺)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:A.0个B.1个C.2个D3个4、如图,有一块三角形铁片ABC,已知最长边BC=12cm,高AD=8cm要把它加工成一个矩形铁片,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,且矩形的长是宽的2倍,问加工成的铁片的面积是多少?。

人教版九年级数学上册全册导学案

人教版九年级数学上册全册导学案

人教版九年级数学上册全册导学案第22章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。

(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______; 式子)0(0≥≥a a 的意义是 。

(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?43,16-,34,5-,)0(3≥a a ,12+x2、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a 的意义是 。

3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式中,字母a 必须满足 ,才有意义。

(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :x 取何值时,下列各二次根式有意义?①43-x 223x + ③ 2、(133a a --a 的值为___________.(2)若在实数范围内有意义,则x 为( )。

A.正数 B.负数 C.非负数 D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1反比例函数
【学习目标】
1、进一步熟悉作函数图象的步骤,会作反比例函数的图象;
2、体会函数的三种表示方法的相互转化,对函数进行认识上的整合; 【使用说明与学法指导】
1、用l0分钟左右的时间,阅读探索课本的基础知识,自主高效预习,提升自己的阅读理解能力,完成“自主预习”。

2、将预习中不能解决的问题标识出来,并填写到后面“我的疑惑”处。

【自主预习】
一、知识梳理(5分钟)
1、反比例函数(0)k
y k x =≠的图象是一条双曲线,当k>0时,图象位于第_______象限,
且在每一个象限内,y 随x 的增大而____________;当k<0时,图象位于第________象限,且在每一象限内,y 随x 的增大而_____________。

2、反比例函数的图象既是中心对称图形,又是_____________图形,对称中心是_________,对称轴有两条:____________________和_____________________.由于0k ≠,则x ,y 都不可能为____________,所以双曲线与坐标轴_________交点,只能无限逼近坐标轴。

3、自学了本节内容,你还有什么疑问?记下来,以备上课时与同学老师探讨。

【课堂导学】
【导入示标】(5分钟)
1.引入
2.汇报预习检查情况。

【合作探究】(10分钟)
探究一: 已知反比例函数的图象经过某点,求反比例函数的表达式 例1、若反比例函数k
y x
=
的图象经过(-3,2),则k 的值为( ) A 、-6 B 、6 C 、-5 D 、5
探究二:由待定系数法求解析式 例2、已知反比例函数的图象经过一次函数y=x-1的图象上的点A ,且点A 的横坐标为3,
求反比例函数的解析式。

探究三:双曲线位置的确定 例3、反比例函数,2
y x
=
,图象的两支分别在第____________象限。

探究四:根据函数的图象求反比例函数的表达式
例4、如图所示,过双曲线上一点P 作PQ ⊥x 轴,垂足为Q ,已知S △PQO =4。

求双的表达式。

探究五:反比例函数关系式中k 的应用
例5、在一个反比例函数图象上任取两点P ,Q ,过点P 分别作x 轴、y 轴的平行线,与
坐标围成的矩形面积为S 1;过点Q 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 2。

(1)S 1与S 2有什么关系?为什么?
(2)将反比例函数的图象绕原点旋转180°后,能与原来的图象重合吗?
【展示交流】(15分钟)
小组展示,全班展示。

【总结反馈】(10分钟)
1、完成反馈检测案。

2、小结:
【反馈检测】
1、已知力F 所做的功是15J ,则力F 与物体在力的方向上通过的距离s 的图象大致是( )
2、已知点(3,3)-是反比例函数图象上的一点,则此反比例函数图象的解析式是______________.
3、双曲线3
y x
=
和直线y=3x 有___________个交点,交点在第__________象限。

4、如图所示,点P 在双曲线k
y x
=
(0)k ≠上,点P ′(1,2)与点P 关于y 轴对称,则此双曲线的解析式为____________.
【课后练习】
1、已知反比例函数2
k y x
-=
的图象位于第一、三象限,则k 的取值范围是( ) A 、k>2 B 、k ≥2 C 、k ≤2 D 、k <2 2、若点(x 0,y 0)在函数(0)k
y x x
=
<的图象上,且x 0y 0= -2,则它的图象大致是( )
3、矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可以表示为( )
4、如图,四边形OABC 是边长为1的正方形,反比例函数k
y x
=的图象过点B ,则k 的值为______________.
4题图 5题图
5、你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度ycm 是面积精细度(横截面积)xcm 2的反比例函数,假设它的图象如图所示,则y 与x 的函数关系式为______________.
6、已知y 与x 成反比例,且点(4,14
-)在它的图象上,求y 与x 之间的函数关系式。

5.2反比例函数的图象与性质(二)
编制人:李学莲 审核: 审批:
【学习目标】
逐步提高从函数图象中获取信息的能力,探索并理解反比例函数的主要性质。

【使用说明与学法指导】
1、用l0分钟左右的时间,阅读探索课本的基础知识,自主高效预习,提升自己的阅读理解能力,完成“自主预习”。

2、将预习中不能解决的问题标识出来,并填写到后面“我的疑惑”处。

【自主预习】
一、知识梳理(5分钟)
1、反比例函数(0)k
y k x
=≠的图象是一条双曲线,当k>0时,图象位于第_______象限,且在每一个象限内,y 随x 的增大而____________;当k<0时,图象位于第________象限,且在每个象限内,y 随x 的增大而_____________。

2、如图所示,P 为双曲线k
y x
=
上任意一点,则S 矩形PMON =___________,S △PON =__________.
3、双曲线关于___________成中心对称;关于________________成轴对称。

4、自学了本节内容,你还有什么疑问?记下来,以备上课时与同学老师探讨。

【课堂导学】
【导入示标】(5分钟)
1.引入
2.汇报预习检查情况。

【合作探究】(10分钟)
探究一: 由解析式判断函数图象
例1、函数y=ax-a 与(0)a
y a x
=≠在同一直角坐标系中的图象可能是( )
探究二:反比例函数与一次函数的综合运用
例2、如图所示,一次函数y=kx+b 的图象与反比例函数m
y x
=
的图象交于点A (-2,-5),C (5,n ),交y 轴于B ,交x 轴于点D 。

(1)求反比例函数m
y x
=
和一次函数y=kx+b 的表达式; (2)连接OA ,OC 求△AOC 的面积。

【展示交流】(15分钟)
小组展示,全班展示。

【总结反馈】(10分钟)
1、完成反馈检测案。

2、小结:
【反馈检测】
1、已知反比例函数
2
y
x
=-,下列结论不正确的是()
A、图象必经过点(-1,2)
B、y随x的增大而增大
C、图象在第二、四象限内
D、若x>1,则y>-2
2、如图所示,在同一直角坐标系中,函数y=kx+1,和函数
k
y
x
=(k是常数且k≠0)
的图象只可能是()
3、已知(x1,y1),(x2,y2),(x3,y3)是反比例函数
4
y
x
=-的图象上的三个点,且x1<x2<0,
x3>0,则y1,y2,y3的大小关系是()
A、y3<y1<y2
B、y2<y1<y3
C、y1<y2<y3
D、y3<y2<y1
4、如图所示,正比例函数y=x与反比例函数(0)
k
y k
x
=≠的图象在第一象限交于点A,
且AO=2,则k的值为()
A、
2
2
B、1
C、2
D、2
【课后练习】
1、已知反比例函数
1
y
x
=,下列结论不正确的是()
A、图象经过点(1,1)
B、图象在第一、三象限
C、当x>1时,0<y<1
D、当x<0时,y随着x的增大而增大
2、如图所示,P为反比例函数
k
y
x
=的图象上一点,P A⊥x轴于点A,△P AO的面积为
6.下面各点中也在这个反比例函数图象上的点是()
A、(2,3)
B、(-2,6)
C、(2,6)
D、(-2,3)
3、如图所示,点P为反比例函数
2
y
x
=上的一动点,作
PD⊥x轴于点D,△POD的面积为k,则函数y=kx-1的图象为()
4、反比例函数y=(k2-3)x3-2k,当x>0时,y随x的增大而_____________.
5、反比例函数y=(3m-1)xm2-2的图象在所在的象限内,y随x的增大而增大,求m的值
及函数解析式。

6、已知:如图所示,双曲线
k
y
x
=的图象经过A(1,2)、B(2,b)两点。

(1)求双曲线的解析式;
(2)试比较b与2的大小。

相关文档
最新文档