电喷发动机传感器的检测

电喷发动机传感器的检测
电喷发动机传感器的检测

电喷发动机传感器的检测

怠速控制阀卡死故障

故障现象

l)冷机启动需踩几脚油门;

2)启动后不需踩油门,车速能达到7Okm/h;

3)发动机怠速居高不下。

故障分析

经分析故障可能有几方面原因:

1)发动机怠速调整螺钉调整不当;

2)节气门开度过大或节气门传感器调整不当;

3)怠速控制阀卡死或进气管漏气。

检查处理

经修理人员检查发现,怠速控制阀卡死,将其更换后,发动机工作正常。

上述故障适用于1990年后生产的带有怠速自动控制的车型,例如:

1、丰田系列:3.0 V6凌志L300 L400 ES300。

2、尼桑系列:V2P千里马

3、奔驰系列:450 500 560 S300

4、通用系列:雪佛莱子弹头卡迪拉克别克福特林肯水星金牛天霸克莱斯勒道奇

案例总结

由于电控汽油喷射发动机的正确怠速是通过一个电控怠速

控制阀来保证的,而不是由人工调整节气门开度大小来决定的。电脑ECU根据发动机的水温、节气门的位置来决定发动机的怠速。一般发动机在怠速时,稳定转速为700±

50r/min。当电脑接收到节气门位置、发动机负荷、水温及转速信号后,经过运算指令怠速控制阀进行调节。当怠速转速低于设定转速值(如700r/min)时,电脑指令怠速控制阀打开进气旁通道,使进气量增加,以提高发动机怠速,当怠速转速高于设定转速值时,电脑便指令怠速控制阀关小进气旁通道,使进气量减少,降低发动机转速。而怠速转速值的调节是在发动机工作情况下进行的,当节气门传感器调整不当或节气门开度过大时,节气门开关无法将正确的怠速转速工况传给电脑,电脑也就无法调节发动机正确的怠速转速值,怠速转速就会出现过高或过低现象。当节气门积碳过多,由于节气门关闭不到位,怠速控制阀卡死或进气歧管破裂及接口松动漏气时,也会造成怠速转速过高或过低。修理方法如下:

1)测量节气门传感器的电压,正常值为0.4-0.5V;

2)清洁节气门阀体,并调节节气门开度;

3)清除怠速控制阀及进气孔内积碳;

4)检查、坚固松动或破裂的进气管接口,防止歧管漏气。

返回

电喷发动机传感器的检测

在现代汽车上,传感器的使用越来越普遍,为了方便维修人员对发动机的检修,现将发动机常见的十几种传感器的检测方法介绍如下。

一、进气歧管压力传感器

进气歧管压力传感器是D型(速度密度型)燃油喷射系统中非常重要的传感器,其作用是将进气歧管内的压力变化转换成电压信号,控制电脑(ECU)依据该信号和发动机转速(由装在分电器内的发动机转速传感器提供的信号)来确定进入气缸内的空气量。

1、安装部位与接线端子

由于歧管压力传感器内部有放大电路,故需要电源线,地线和信号输出线共三根导线,它们相应地在接线端子上有三个接线端,分别为电源端子(Vcc)、接地端子(E)和信号输出端子(PIM),三个端子通过导线连接器及导与控制电脑ECU相连。

为了减少进气歧管压力传感器内部电子元器件的振动,它通常安装在车辆振动相对较低小的信置上,并处于进气总管的上方,以防来自进气歧管的窜气侵入压力传感器,另外进气歧管压力传感器从下边接受进气管压力也可防止信号传感器部分不受污染,,因此通过橡胶胶管从进气歧管靠近节气门处所采集的进气管气体,是从歧管压力传感器下端接入

的。

2、单体检测

(1)外观检视

检视时,只需从进气歧管靠近近节气门端找到橡胶管,便可在汽车上找到歧管压力传感器。首先在半闭点火锁的状态下,检查进气歧管压力传感器导线连接器的连接是否良好橡胶软管是否脱落,然后启动发动机,检查橡胶软管有无密封不严和漏气现象。

(2)仪表测试

A、接通点火开关(ON)用万用表的直流电压挡(DCV-20)测试接线端子Vcc与E2之间的电压值,该电压值即为ECU加在歧管压力传感器上的电源电压值,其正常值应为4.5-5.5V之间,若该值不正确,则应检查蓄电池电压或导线间的连接情况,有时问题也可能出在控制电脑ECU上。

B、接通点火开关,(ON)位,并从进气歧管压力传感器上拔下真空橡胶软管。使进气歧管压力传感器的进气口与大气相通,此时测试线端子输出电压信号,(PIM与地线E2之间的电压值)其正常值为3.3-3.9V之间,若输出电压过高或过低,均说明进气管压力传感器有故障,应予更换。

C、接通点火开关(ON)位,拆下进气歧管压力传感器上的真空橡胶软管,用手持直空泵向歧管压力传感器进气口处施以下不同的负压(真空度),边施压边测试接线端子输电压信号

PIM与地线E2之间电压值,该电压值应随所施加负压的增长呈线性增长,否则,说明传感器内的信号检测电路有故障,应予以更换,例如皇冠3.0型轿车2JZ-GE发动机有关正常数据如表所示:

负压值(kPa)

13.3

26.7

40

53.5

66.7

电压值(V)

0.3-0.5

0.7-0.9

1.1-1.3

1.5-1.7

1.9-

2.1

二、空气流量传感器

空气流量传感器,是L型(质量流量型)电子燃油喷射发动机中最主要的传感器之一,它测试进入气缸的空气流量,是基本点火提前角的重要能数据。因此空气流量传感器单体的故障检测与分析,对电喷发动机是至关重要的。目前,空气流量传感器的种类较多,但就其测量原理的不同,大致分为三

种:叶板式、涡流式和热线式空气流量传感器,由于三种传感器的结构差异,其单体故障检测各异,现分别加以分析。

1、叶板式空气流量传感器

(1)安装部位及接线端子

叶板式空气流量传感器安装在空气滤清器的节气门体之间,以便准确测量吸入发动机的空气量。

在发动机控制中,为了精确得出发动机所需要的空气质量流量,需要考虑空气的密度,而空气的密度是随空气的温度,压力变化的,为了防止因空气温度变化而引进质量的检测偏差,在空气流量计中装有进气气温度传感器。因此叶板式空气流量传感器的连接端子上有空气温度信号(THA)输出(有

关进气温度传感器的情况将另外以分析)。

为了保证电喷发动机的电动燃油泵只在发动机运转时工作,防止误操作,因此在叶板式空气流量传感器内,装有电动燃油泵控制开关。只是在发动机转动时,有空气流入空气流量传感器后,油泵开关才闭合,从而启动燃油泵工作。当发动机停止转动,即使点火开关打开(ON)泵也不工作,因此,在叶板式空气流量传感器接线端子上有电动燃油泵控制信号(FC、E1)输出。

叶板式空气流量传感器共有7个接线端子,通过导线连接器,用导线与控制电脑相连,它位分别为:用于燃油泵控制的FC 和E1端子,用于输出空气温度信号的THA端子;用于向传

感器输入电源电压和接地VC的E2端子,以及向电脑ECU 输出进气量信号的VB和VS端子(采用双信号输出,在ECU 中以VB/VS)端子的电压比形式分析进气量,可以消除因电源电压VC的波动而使测量的进气信号失准的现象)

(2)传感器单体检测

①外观检测

首先检查导线与接线器接触是否良好(插接传感器时,要关闭点火开关)再检查空气流量传感器外壳有无破裂,与进气管连接处有无漏气的现象,(在发动机行驶时,可用纸片帖近空气流量传感器,看有无吸力,若有,则漏气,应加以密封紧固,对裂纹可粘修或更换)发动机停转后,关闭点火开关(OFF位置),用手拔动叶板看基摆动是否平顺,有无卡滞现象,若有应更换。

②电压检测

接通点火开前,但不要起动发动机,然后在控制电脑ECU

的相应端子上测量叶板式空气流量传感器输入输出电压值(以判断其性能特征如何),应符合下表规定:

端子

条件

标准电压(V)

VC-E2

测量板在任何开度

4-6

VS-E2

测量板全关

3.7-

4.3

测量板全开

0.2-0.5

③电阻检测

关闭点火开关(OFF位置)拔下叶板式空气流量传感器上的导线连接器,测量对应端子的电阻值,若阻值不符,应更换空气流量传感器,因车型不同,各端子间的电阻值略有差异,现仅以丰田CROWN2.85M-E发动机为例,列表如下供参数:测量端子

叶板位置

标准电阻(KΩ)

E2-VS

关闭

0.02-0.10

E1-FC

从全开到全闭

0.02-1.0

完全关闭

任何开度

E2-VC

-

0.10-0.30

E2-VB

-

0.20-0.40

E2-FC

-

2、涡流式空气流量传感器

(1)安装部位与连接端子

涡流式空气流量传感器通常与空气滤清器的外壳安装成一体,并与进气总管上的节气门体相连接。

为了便于对进气温度进行适时检测,涡流式空气流量传感器内装内进气温度,传感器,控制电脑ECU根据进气温度信号(THA),对随气温度变化的空气密度进行修正,因此,涡流式流量传感器接线端子上有进气温度信号端子(THA)和进气温度传感器接地端子(E1)。

为了保证涡流式空气流量传感器内电路正常工作,通过控制电脑ECU给传感器输入工作电压,其信号端子为VC,传感

器接地端子为E2。

涡流式空气流量传感器输出信号端子上常以“KS”符号来表示。

(2)单体检测

现仅以丰田凌志LS400型轿车所装配的IUE-EF发动机上的反光镜式涡流空气流量传感器为例,进行传感器单体检测分板。

首先接通点火开关(ON)位置,但不启动发动机,此时测量ECU向传感器供电电压,即导线连接器端子VC与E2接地端子间的电压,正常值为:4.5-5.5V 。

当确定上述电压正常后,便可测量涡流空气流量传感器输出信号端子KS与接地端子E2之间的电压值。测量时,分为两个步骤,第一步是在打开点火开关发动机不启动时,KS与E2电压值时为4.5-5.5V。第二步,启动发动机,在怠速状态下(1000rad/min),KS与E2端子之间的电压为脉冲电压,电压值在0.2-0.4V之间为合适。

3、热线式空气流量传感器

(1)安装部位与接线端子

热线式空气流量传感器安装在发动机的空气滤清器与进气总管之间,其后端为节气门体。

由于热线安装在进气管路中,在使用一段时间后,热线表面会受空气中灰尘的沾污,从而引起空气流量传感器输出信号

的偏差,使其测量精度降低,为克服此问题,在集成电路中设置了一个传感器热自清洁电路,使得每次关闭发动机时控制电脑ECU便控制着电路给热线输送一极限电压值,使热线迅速加热到1000度左右以清除其上的脏物,从而达到自清洁作用,因此,在热线式空气流量传感器导线连接器端子中,有一个由ECU输入自清洁信号的端子。

由于热线式空气流量传感器的热线所需电流较大,其电源的供给是不通过控制电脑ECU的,而是直接自于蓄电池(当然要通过有关继电器)因此接线端子中有蓄电池供电端子,同时也相应地增设了不通过控制电脑内部的搭铁端子,用它作为热线加热电路的搭铁端子。

热线式空气流量传感器通过两个接线端子,分别给控制电脑ECU输送热线电流变化的电压信号和冷线电阻变化的电压信号,(该信号相当于进气温度传感器THA信号)

热线式空气流量传感器除上述搭铁端子外,还另有一个搭铁端子是通过控制电脑ECU内部来搭铁的,它是传感器内部信成电路的搭铁端子。

(2)单体检测

热线式空气流量传感器的检测数据,因车型不同略有差异,但是检测方法基本相同。

①热线自清洁功能的检查

该车自清洁功能信号端用“F”表示,在不拔下导线连接器

的情况下,拆下空气滤清器和空气流量传感器的防尘网。启动发动机,并加速到2500rad/min以上,之后关闭点火开(OFF)位置,此时从拆下防尘网的进气通道处观察热线能否自动烧红,(关闭点火开关5s后,热线能加热到(1000度)并持续大约1s。如无此现象,说明空气流量传感器热线自清洁功能有故障,若“F”端子接线良好,则需更换空气流量计。

②输出信号特性检查

在关闭点火开半(OFF)位,的前提下,拔下空气流量传感器的导线连接器,并拆下空气流量传感器总成,进行单体测量,测量输出信号之前,需在传感器蓄电池电压输入端子“E”与搭铁端子“D”之间加蓄电池电压(蓄电池正极接E,负级接D)然后按下述步骤测量传感器输出电压值。

1、测静态输出信号值,用电压表测热线电压输出信号端子“B”与搭铁端子“D”之间电压值,正常值为1.6±0.5V,如电压不符,则应更换空气流量传感器,

2、用嘴或电吹风将热空气吹入空气流量计内,同时测量“B”端子与“D”端子间电压值,应有所上升,吹气时测量的电压值应保持在2.0-4.0V之间,否则应更换之。

3、用电吹风和电扇分别向空气流量传感器吹热风和冷风,并测量冷丝信号端子“A”与“D”之间电压值,应有波动变化为合适,否则应更换空气流量传感器。

返回

电喷发动机水温偏高分析

汽车发动机水温偏高或者“开锅”是一种常见的故障现象,造成这种故障的原因很多,是否一定要有冷却系统的故障才能造成水温高呢?回答是否定的。冷却系统故障如节温器打不开、水道阻塞、水箱散热片脏堵和风扇耦合器失效等的确是造成水温高的直接原因,但是对电控燃油喷射发动机来说,情况就不是这么简单了。下面就其他一些原因进行分析。

1.点火控制系统工作不良

发动机的点火提前角过大或过小都会造成水温高,这是因为发动机燃烧室内的热机能量转换条件被破坏造成的。由于点火时间选择不当,能量转换受阻,无功热能的积蓄致使发动机迅速升温,大大超出了冷却系统的散热能力,使冷却液沸腾。ECU对点火提前角的选定是依据一系列的信号采集器来完成的,如曲轴转角传感器、凸轮轴位置传感器、车速传感器、节气门位置传感器、氧传感器以及爆传感器等,它们将采集的信号传给ECU,ECU经过计算比较后,选择最优化的点火提前角,并对点火执行器发出指令,完成点火。

对于开环点火系统来说,由于缺少爆震传感器,对点火结果没有验证,当不同国家和地区燃油质量的差异使燃油爆震点产生不同时,这一微小的差异就会在高速运转的发动机中被放大,使热机能量转换损失而引起水温偏高。对于闭环点火系统,由于爆震传感器的介入,实现了ECU对点火结果的

监控,使点火时间更接近爆震点而又不引起爆震,有效地保证了热机转换条件。但由于此系统中的大部分采集器和执行器的工作环境恶劣,器件的损坏是不可避免的,任何一部分出错,都会影响点火提前角,仍然存在水温高的隐患。

总之,爆燃是生热的根源,只要有效地控制点火相位,保证系统完好,就会大大降低这一故障出现的机率。

2.冷却系统电控元件失效

这是指水温传感器、电子风扇继电器、电子风扇及其控制电路出现故障时造成的水温高故障。一般情况下,ECU对水温的信号采集是靠多个传感器来完成的,比较简单的系统包括以下两个水温传感器。

(1)一个水温传感器在发动机上水管的附近,在水温变化时其电阻值呈线性响应,它是水温表显示水温的唯一依据。此传感器损坏或其电路不良,可导致水温表显示水温失控。如果此传感器与水温变化呈负比例关系,则短路时显示水温过高,断路时显示水温过低或无反应。与温度呈正比例关系的水温传感器与之正好相反。

(2)另一个水温传感器对温度的响应有阶跃特性,即在某个温度区间,其电阻值陡然变小或变大。这种传感器在冷起动系统和控制电子风扇或继电器中常被采用,在某个水温区间,利用近似阶跃式的变化控制电子风扇或继电器电路的通断。如果此传感器或其电路出现故障,电子风扇不能在需要的时

候被起动,就会造成水温过高。

值得一提的是,很多高级轿车的冷却系统是由ECU参与工作的,还有的专为冷却系统配备了ECU,或用多个传感器监视水温、油温和气温,通过ECU或者多元继电器、继电器组组成的逻辑电路控制冷却系统的工作。这样的系统出现故障时,一定要从系统的原理入手,才可圆满解决问题。

3.自动变速器出现故障

汽车在同一档位的行驶速度与发动机的转速成正比,自动变速器作为发动机和行驶机构的中介系统,在同一模式、同一档位时也保持这种正比关系。如果自动变速器在规定的车速和转速时没有换档,此时高转速大转矩的发动机输出功率,对应变速器的小转矩传递,会造成发动机温度急剧上升,超出冷却系统的散热能力,使水箱“开锅”。

返回

电喷轿车怠速不稳

故障现象:一辆进口电喷轿车,当水温上升到正常值时,怠速仍然不稳,转速波动很大。

故障分析:怠速不稳是汽车常见故障,当排除点火提前角过小、点火高压漏电、火花塞烧蚀等非电控系统故障以后,首先应怀疑怠速步进电机及其阀门和氧传感器的故障。借助电控汽车诊断仪如“修车王”可以得到明确的诊断,并告诉您维修的方法。如果仪器显示怠速控制系统的故障,可卸下阀

体,按汽车使用说明书测量各端子阻值,以确定是否损坏,如果阻值正确,则故障可能是阀体被污物卡死或阀门通道截面因尘埃附着而减小,使怠速调节过程远远偏离正常值,污物可以清除,但步进电机损坏只能更换。

如果仪器显示氧传感器故障,只好更新,因氧传感器是不能修复的。电控系统的ECU是根据氧传感器的反馈信号对喷油量进行闭环控制的,正常工作时控制可燃混合气的空燃比在理想的范围内(λ=14.9-15.2),这是汽车动力性和经济性的需要,也是控制排放指标的三元催化反应器高效工作环境的需要,但当燃油中的抗爆剂四乙基铅的氧化物附着于氧传感器上形成铅中毒现象时,传感器失去对排气中氧含量的敏感能力,致使ECU得不到氧的浓度信号而无法修正混合气浓度,致使怠速时无法加浓混合气而使怠速不能稳定运行。返回

电喷系统喷油器故障诊断

电控汽油喷射系统的喷油器实际上是一个电磁阀,作用是控制和雾化汽油。其针阀的升程量约为0.1mm,每次打开的时间约为2-10ms。喷油器的喷油量、开启时间和开启时刻,由电控单元根据发动机状况进行控制。

故障现象

喷油器的故障主要有以下几种形式:

(1)喷油器针阀胶结,使喷油器无法喷油。

(2)喷油器接线有油垢脏污,造成接触不良。

(3)喷油器出现裂纹,产生泄漏。

(4)喷油器线路出现故障。

(5)喷油器其他元件损坏,导致工作失常。

诊断与排除

当发动机起动不良或运转不良时,就有可能是喷油器故障引起的,应对喷油器进行诊断与检查。步骤如下:

(1)起动发动机,检查其速度和性能,逐一拔下与喷油器接线座相连的插件,如果发动机速度和性能发生了变化,证明该喷油器是正常的;如果发动机速度和性能未发生任何变化,则该喷油器是可疑的。

(2)用万用表测量可疑喷油器接线座两个端子之间的电阻,看是否符合标准值。电流驱动喷油器的电阻值一般为3Ω左右,电压驱动喷油器的电阻值一般为15Ω左右。如果电阻值不相符,则喷油器有故障,如相符,则进行下一步检查。

(3)检查与喷油器相连接的线路是否有故障。把12V的试验灯接在喷油器接插件两端之间,起动发动机,观察试验灯,如果试验灯不闪烁,则线路有故障,应检查喷油器的电源和接地线路;如果闪烁,则进行下一步检查。

(4)检查喷油器进油口是否堵塞,如堵塞,则更换,否则进行下一步检查。

(5)检查供油管路或供油总管,寻找有可能限制燃油流向喷油

器的堵塞物。

(6)检查喷油器的工作状况,将12V电源接到喷油器接线座的一个端子上,将另一个端子重复地与地接通和断开,如果每次接通地线时,喷油器都能发出短促的“咔嗒”声,则说明喷油器工作良好,否则更换。

返回

进气检测传感器故障分析

就目前汽车发展的现状而言,能源消耗的降低和尾气排放污染的控制是汽车必须解决的两个前沿问题。采用多点汽油喷射取代化油器作为燃油供给装置,使得汽车发动机,每一个气缸可以得到相等的燃油量配给,从而使进入气缸中的混合气空燃比接近一致,因此,汽车发动机便可以在较稀薄的混合气下工作,不仅使汽油消耗减少,同时也可以便尾气排放中的HC和CO的含量降到最底限。

汽油喷射目前采用电子集中控制系统。该控制系统的核心部件是控制电脑(ECU),汽车研究机构的专家们经过大量的科学试验,采集了若干数据,并将这些数据存贮于控制电脑(ECU)内,以适应某些特定车型的具体要求。但是,若想使控制电脑很顺利地工作,则离不开发动机,不同工况、不同部位的瞬间信号输入,以便使控制电脑(ECU)分析判断和发出若干工作指令。这些输入信号则主要来源于安装在汽车有关部位的各个传感器。

用于汽车发动机上电子控制系统的传感器,因不同型号或不同出产年份的发动机不同,所采用的数量多少不一,即使同一类型的传感器也有不同的结构型式,但大体上可分为以下几种类型,进气量检测传感器、性能特征传感器、驾驶控制传感器以及位置传感器等。在电子控制燃油发动机的使用中,一旦某一个传感器发生故障,都会影响到整个控制系统的良好工作。因此,本文将对进气检测传感器基本结构原理、故障检测方法以及传感器的维护保养进行系统的分析研究,以便给广大的电控燃油喷射汽车的使用者、维护者提供一点参考,使您的汽车发动机在强劲的动力下正常运转。

进气量检测传感器

电子控制燃油喷射发动机中,用于检测进入发动机内空气量多少的传感器有两大类,一类是用于间接测量空气量的进气歧管压力传感器(又称为真空度传感器),另一类是直接测量空气量的空气流量传感器。

(一)进气歧管压力传感器

进气歧管压力传感器是D型(速度密度型)燃油喷射系统的非常重要的传感器,其作用是将进气歧管内的压力变化转换成电压信号。该信号在控制电脑(ECU)内根据发动机转速(由装在分电器内的发动机转速传感器提供信号)来确定进入气缸内的空气量。它不适用于具有废气再循环的发动机。进气歧管压力D传感器开始在沃尔沃164型车上使用,后来其改进

型广泛应用于达特桑、杰戈娃、奔驰、雷诺、萨伯特、大众以及凯迪拉克等车型上。

1.工作原理

进气歧管压力传感器是集信号传感和信号放大于一体的部件。它是由压力转换元件和把压力转换元件输出信号进行放大的集成电路组成。压力转换元件是利用半导体的压电效应制成的硅膜片,该膜片的一面是真空室,另一面通过橡胶管接进气歧管,故承受的是进气歧管的气体压力。硅膜片会在进气胶管压力的作用下产生变形,压力越大,硅膜片的变形越大,其电阻值就越大。反之,进气压力越小,硅膜片产生的电阻值就越小。在歧管压力传感器内部硅膜片产生的电阻值变化量,通过惠斯通电桥电路可将其转接成为电压信号。由于该信号很微弱,因此在传感器内部设有放大电路进行放大处理,而后,便可以从传感器端子输出相应的电压信号(PIM),该电压信号与进气歧管压力成线性关系。

2.安装部位与接线端子

由于歧管压力传感器内部有放大电路,故需要电源线及电源地线、信号输出线其三根导线,相应地在接线端子上有三个接线端,分划为电源端子(VCC)、接地端子(E)和信号输出端子(PIM)三端子通过导线连接器及导线与控制电脑ECU相连。

为减少歧管压力传感器内部电子元器件的震动,因此它通常

任务五:发动机转速传感器(G28)的检测

授课教案 课程:汽车发动机检测与维修授课专业:汽修类项目发动机电控系统各传感器的检测 任务名称任务五:发动机转速传感器(G28)的 检测 教学课时8学时 教学目标知识目标: 1.熟悉发动机转速传感器的结构、工作原理及连接线路。 2.掌握发动机转速传感器的检测方法。 能力目标: 1.能根据故障现象分析发动机转速传感器故障原因。 2.能正确规范使用工量具及检测仪器。 3.能借助检测仪器及工量具对发动机转速传感器部件进行检测,并判断故障点。 4.能提出故障点维修方案并对故障点进行恢复。 素质目标: 1.质量,规范,环保,安全意识,培养良好的团队精神; 2.培养吃苦耐劳的工作作风和严谨细致的工作态度。 教学重点、难点1.借助检测仪器及工量具对发动机转速传感器部件进行检测,并判断故障点; 2.根据故障点维修方案并对故障点进行恢复。 教学方法建议任务驱动法,现场演示,学做一体教学组织形式资讯-决策-计划-实施-检查-评价 教学内容与步骤一、工作任务展示 二、工作任务分析 三、以任务为导向的相关知识点(工作页) 四、工作任务实施 五、任务完成评价 六、任务总结

【工作任务展示】 图6-5-1 发动机转速传感器 【工作任务分析】 一辆桑塔纳2000,装用AJR发动机,有燃油供应、喷油器也是能接受到控制信号,就是没有高压点火,低压电也是有的,发动机不能正常工作。现在就是发现那位置。用故障阅读仪进入电控系统进行故障码阅读,显示发动机转速传感器正极接地或偶发故障。确诊造成上述现象的原因,首先要知道电控发动机电控系统的结构和工作原理,,这在电控发动机这门课程中已经学习了;其次要明确电控发动机转速传感器的检测方法及操作步骤。 本任务要求学生能按正常步骤使用检测仪器,并要求学生按规定对检测仪器和设备进行保养,对场地进行清理、维护。 【相关知识点】 知识点一:发动机转速传感器的作用 用来采集曲轴转角位置和发动机转速信号。 知识点二:发动机转速传感器的类型 目前发动机转速传感器有电磁式、霍尔式和光电式等几种。AJR发动机转速传感器是一个电磁感应式传感器。 知识点三:电磁感应式发动机转速传感器工作原理 转速传感器固定在缸体一侧,靠近飞轮一端。在曲轴上装了一个信号盘(脉冲轮),其工作原理如图6-6-2所示。当信号盘经过传感器的磁头时,传感器产生的交变电压信号频率随发动机转速变化而变化。ECU根据交变电压的频率识别发动机的转速。在信号盘上有一处缺两个齿,该处是ECU识别曲轴转角位置的基准标记,并作为点火正时信号的参考记号。 AJR发动机转速传感器把曲轴精确的转角位置和发动机转速信号输送给ECU,供ECU判别点火正时和计算基本喷油量。 当转速传感器发生故障时,ECU如果没有收到转速信号,发动机立即停止运转或者不能起动。使用专用阅读仪可以读出该故障的信息;“信号不可信、没有信号”。

《传感器与检测技术》实验实施方案1

自考“机电一体化”专业衔接考试《传感器与检测技术》课程 实验环节实施方案 一、实验要求 根据《传感器与检测技术》课程教学要求,实验环节应要求完成3个实验项目。考虑到自考课程教学实际情况,结合我院实验室的条件,经任课教师、实验指导教师、教研室主任和我院学术委员会认真讨论,确定开设3个实验项目。实验项目、内容及要求详见我院编制的《传感器》课程实验大纲。 二、实验环境 目前,我院根据编制的《传感器》课程实验大纲,实验环境基本能满足开设的实验项目。实验环境主要设备为: 1、486微机配置 2、ZY13Sens12BB型传感器技术实验仪 三、实验报告要求与成绩评定 学生每完成一个实验项目,要求独立认真的填写实验报告。实验指导教师将根据学生完成实验的态度和表现,结合填写的实验报告评定实验成绩。成绩的评定按百分制评分。 四、实验考试 学生在完成所有实验项目后,再进行一次综合性考试。教师可以根据学生完成的实验项目,综合出3套考试题,由学生任选一套独立完成。教师给出学生实验考试成绩作为最终实验成绩上报。 五、附件

附件1 《传感器与检测技术》课程实验大纲 附件2 实验报告册样式 以上对《传感器与检测技术》课程实验的实施方案,妥否,请贵校批示。 重庆信息工程专修学院 2009年4月14日

附件1 《传感器与检测技术》课程实验教学大纲 实验课程负责人:段莉开课学期:本学期 实验类别:专业课程实验类型:应用性实验 实验要求:必修适用专业:机电一体化 课程总学时:15 学时课程总学分: 1分 《传感器与检测技术》课程实验项目及学时分配

实验一 金属箔式应变片性能—单臂电桥 一、 实验目的 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、比较各桥路间的输出关系。 二、 实验内容 了解金属箔式应变片,单臂电桥的工作原理和工作情况。(用测微头实现) 三、 实验仪器 直流稳压电源、电桥、差动放大器、双平行梁测微头、一片应变片、电压表、主、副电源。 四、 实验原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: R Ku R ?=式中 R R ?为电阻丝电阻相对变化,K 为应变灵敏系数, l u l ?=为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换 被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压 14 O EKu U = 。 五、 实验注意事项 1、直流稳压电源打到±2V 档,电压表打到2V 档,差动放大增益最大。 2、电桥上端虚线所示的四个电阻实际上并不存在,仅作为一标记,让学生组桥容易。 3、做此实验时应将低频振荡器的幅度旋至最小,以减小其对直流电桥的影响。 六、 实验步骤 1、了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 2、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与电压表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使电压表显示为零,关闭主、副电源,拆去实验连线。 3、根据图1接线。R1、R2、R3为电桥单元的固定电阻。R X =R4为应变片;将稳压电源的切换开关置±4V 档,电压表置20V 档。调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使电压表显示为零,然后将电压表置2V 档,再调电桥W1(慢慢地调),使电压表显示为零。

电喷发动机工作原理

电喷发动机工作原理 电喷发动机工作时,需要随时从各种传感器中获取数据,然后由行车电脑运算后,送到各执行部件进行调整来实现对发动机的控制的。简单的说分以下几种情况:(只对电喷型发动机)1. 着车:当你将钥匙转动到on位时,行车电脑开始对各传感器和执行器进行自检,并同时接通汽油泵继电器供油,这时如果车子里很静的话,你会听到在油箱里的电子油泵转动的声音,1-2秒左右后,当油压达到标准压力后,汽油泵停转。同时,电脑将向位于节气门处的怠速步进电机供电,使其进入正常位置。这时将钥匙转向start位置,接通启动继电器,启动机开始转动; 2. 怠速:启动机开始转动后,电脑开始读取位于发动机飞轮处的曲轴位置传感器和位于分电器中的同步传感器这两个传感器的读数,如果读数正常,且两信号数据变化与启动条件吻合,则电脑再根据当前的发动机冷却水温度,进气岐管空气温度数据调整怠速步进电机,将怠速调整杆调整到合适位置。一切就绪后,电脑开始根据曲轴位置传感器和同步传感器传来的信号计算出点火时机,并根据水温和气温传感器的数据计算出喷油咀开启时隙(脉冲),然后根据计算结果开始向高压包的低压线供电和向喷油咀线路供电,其中,向喷油咀供电是以脉冲方式进行的。根据以上原理,在冻天启动电喷车是不用加油门的,不然行车电脑还要将节气们开启度数据进行运算,会影响启动效果。点火成功后,行车电脑将时刻监视各传感器数据,并根据安装在发动机进气岐管上的进气岐管绝对压力传感器所传入的真空压力值,结合水温、进气温度等信号,调整怠速电机和喷油咀开启脉冲,将转速控制在最低的稳定转速下; 3. 加速:当你踩下油门时,电脑及时从节气门上的节气门位置传感器读到数值,并结合节气门上的进气岐管绝对压力(真空度)传感器和分动箱上(2021切诺基)的行车速度传感器共同算出车辆负荷信息,调整喷油咀喷油脉冲(实际上是延长喷油时间),加大喷油量,完成加速动作; 4. 减速:当你松开油门时,电脑如上面加速一样,根据各传感器信号,调整喷油脉冲实现减速,但此时为保证减速效果平稳,电脑会对喷油量

传感器与自动检测技术课后习题答案余成波主编

读书破万卷下笔如有神 一、1.1什么是传感器?传感器特性在检测技术系统中起什么作用? 答:(1)能感受(或响应)规定的被测量,并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。(2)传感器是检测系统的第一个环节,其主要作用是将感知的被测非电量按一定的规律转化为某一种量值输出,通常是电信号。 1.2画出传感器系统的组成框图,说明各环节的作用。 答:(1)被测信息→敏感元件→转换元件→信号调理电路→输出信息 其中转换元件、信号调理电路都需要再接辅助电源电路;(2)敏感元件:感受被测量并输出与被测量成确定关系的其他量的元件;转换元件:可以直接感受被测量而输出与被测量成确定关系的电量;信号调理电路与转换电路:能把传感元件输出的电信号转换为便于显示、记录和控制的有用电路。 1.3什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标? 答:(1)指检测系统的输入、输出信号不随时间变化或变化缓慢时系统所表现出得响应特性。(2)性能指标有:测量范围、灵敏度、非线性度、回程误差、稳定度和漂移、重复性、分辨率和精确度。(3)灵敏度:s=&y/&x;非线性度=B/A*100%;回程误差=Hmax/A*100%;不重复性 Ex=+-&max/Yfs*100%;精度:A=&A/ Yfs*100%; 1.4什么是传感器的灵敏度?灵敏度误差如何表示? 答:(1)指传感器在稳定工作情况下输出量变化&y对输入量变化&x的比值;(2)灵敏度越高,测量精度就越大,但灵敏度越高测量范围就越小,稳定性往往就越差。 1.5什么是传感器的线性度?常用的拟合方法有哪几种? 答:(1)通常情况下,传感器的实际静态特性输出是条曲线而非直线,在实际工作中,为使仪器(仪表)具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线,线性度就是这个近似程度的一个性能指标。(2)方法有:将零输入和满量程输出点相连的理论直线作为一条拟合直线;将与特性曲线上个点偏差的平方和为最小理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 二、2.1什么是测量误差?测量误差有几种表示方法?各有什么用途? 答:(1)由于测量过程的不完善或测量条件的不理想,从而使测量结果偏离其真值产生测量误差。(2)有绝对误差、相对误差、引用误差、分贝误差。(3)绝对误差用来评价相同被测量精度的高低;相对误差可用于评价不同被测量测量精度的高低;为了减少仪器表引用误差,一般应在满量程2/3范围以上进行测量。 2.2按测量手段分类有哪些测量方法?按测量方式分类有哪些测量方法? 答:(1)按测量手段分类:a、绝对测量和相对测量;b、接触测量和非接触测量;c、单项测量和综合测量;d、自动测量和非自动测量;e、静态测量和动态测量;f、主动测量和被动测量。(2)按测量方式分类:直接测量、间接测量和组合测量。 2.3产生系统误差的常见原因有哪些?常见减少系统误差的方法有哪些? 答:原因有:a、被检测物理模型的前提条件属于理想条件,与实际检测条件有出入;b、检测线路接头之间存在接触电动势或接触电阻;c、检测环境的影响;d、不同采样所得测量值的差异造成的误差;e、人为造成的误读等等。 2.4什么是准确度、精密度、精确度?并阐述其与系统误差和随机误差的关系? 答:测量的准确度是指在一定的实验条件下多次测定的平均值与真值相符合的程度,以误差来表示;它表示系统误差的大小。精密度是指在相同条件下,对被测量进行多次反复测量,测得值之间的一致程度。反映的是测得值的随机误差。精密度高,不一定正确度高。精确度是指被测量的测得值之间的一致程度以及与其真值的接近程度,即精密度与正确度的综合概念。从测量误差的

《汽车传感器技术》课程标准

《汽车传感器技术》课程教学标准 课程编码:课程类别:专业素质课 适用专业:汽车电子技术课程管理单位:汽车工程系 学时:60 学分:3 制定日期:2010-11-12 第一次修订日期:2011-03-26 第二次修订日期: ... 1、课程概述 1. 1课程性质 《汽车传感器技术》属于人才培养方案中四个课程模块中的专业基础课,是汽车电子技术专业的专业必修课,是技能考证课程,《汽车传感器技术》是一门实践性很强的技术应用型课程,它是来自企业的特色课程。 1.2课程的定位 《汽车传感器技术》课程,是汽车电子技术专业课程开发与教学资源建设中的一门课程,是汽车电子技术专业一门重要的职业必修课程。 该课程的学习需要以前修课程《汽车电工技术》、《汽车电子技术》、《汽车机械制图》为前导课程;该课程在后续课程《汽车电器与电子设备》、《汽车车身电控系统故障诊断与维修》、《发动机电控系统检修》、《汽车底盘电控系统检修》、《汽车总成拆装实训》、《整车电路实训》、《汽车性能检测与故障诊断》的学习以及企业顶岗实习、毕业实践等环节中,起着重要的支撑作用。该课程与前后续课程共同形成了完整的职业能力培养体系,是实现汽车电器与电子检测与维修专业人才培养目标的重要环节。该课程属于能力培养第二阶段,是一门重要的专业基础课程。 1.3修读条件 具有高等数学和简单的工程数学的分析和应用能力,具有基本的物理和化学基础;具有基本的读图和识图能力,英语水平较好。前期必须已经合格修读完电工技术和电子技术等专业基础课程。 2、课程目标 2.1知识目标: ①能正确描述传感器的作用、组成和常用术语。 ②能正确描述汽车电控系统中各传感器的类型和工作原理。 ③掌握汽车电控系统中各传感器的故障现象、故障检测与故障排除的流程方法。 2.2技能目标: ①能辨别和说出汽车电器设备各部位传感器的名称和功用。 ②能将传感器实物转化成简图并分析工作过程。 ③通过简图能在实物中找出相应的零部件并分析它的工作过程和工作原理。 ④能正确拆装汽车电器的各个传感器,并有维修和排除故障的能力。

康明斯电喷发动机故障代码

注意:此翻译稿仅供参考,所有内容以英文原版公告为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ECM具有大范围检测故障的能力 闪烁故障代码 位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 保养指示灯 机载诊断 1.故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2.闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

传感器与检测技术实验报告

“传感器与检测技术”实验报告 学号: 913110200229 姓名:杨薛磊 序号: 83

实验一电阻应变式传感器实验 (一)应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流 1位数显万用表(自备)。 稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 2 四、实验步骤: 应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。

电喷发动机氧传感器故障诊断及检修的主要方法

电喷发动机氧传感器故障诊断及检修的主要方法 发表时间:2019-07-30T16:41:13.683Z 来源:《建筑细部》2018年第27期作者:刘新辉 [导读] 氧传感器是电喷发动机实现闭环控制的必不可少的重要部件,它对发动机排放控制起着不可缺少的作用。 湛江德利车辆部件有限公司 524094 摘要:随着汽车业的飞速发展,汽车排放污染也越来越引起人们的高度重视,目前,汽油机最有效的排气净化方法主要是采用混合气成分的闭环控制和三效催化反应装置,三效催化转化器能有效地全面净化CO、HC和NOX这三种有害气体。但其净化效率依赖于混合气浓度必须保持在理论空燃比(14.7)附近的狭小范围内。如果混合气体浓度偏离了这个范围,则三效催化转化器全面净化能力便急剧下降。由于混合空燃比的变化会引排气中氧浓度相应的变化,因此,通过在排气管中设置氧传感器来反映混合气浓度的变化,进而控制空燃比。氧传感器是电喷发动机实现闭环控制的必不可少的重要部件,它对发动机排放控制起着不可缺少的作用。 一、发动机故障排除、检修的工作原理 在电喷式发动机的控制系统中,传感器信号输入中的发动机转速及曲轴位置的传感器,主要负责控制喷油器的输出。在系统检修的过程中,为了保证汽车零部件最佳的点火能量,需要对喷油嘴输出的敏感性进行检查。汽车进气歧管绝对压力传感器,对于点火正时有较大影响,在汽车的点火能量不足时,也应该对压力传感器进行检查和更新。 发动机控制模块ECM系统中,节气门位置传感器和冷却液位置的温度传感器,分别作用于汽车燃油泵继电器和车载怠速及启动空气控制阀门。为了确保汽车的燃油压力系统始终处于正常的运行状态,技术人员在车辆诊断和检查维修的过程中,应该对传感器系统中的继电器电路和控制阀的运行状态进行测试,这样才能够保证运行故障的彻底排除。汽车的进气温度传感器和氧传感器系统直接控制碳罐蒸发器和车内的空调压塑机的运转状况。如果车辆在使用过程中出现温度调节失灵的情况,应该对汽车内部的蒸发器、压缩机进行拆卸保养,需要更换大功率压缩机的应该更换。同时,还应该及时地进行燃油滤清操作,防止油品不纯引起的运行故障。 二、氧传感器对维修检测的作用 发动机闭环控制时氧传感器随时监测着排气中的氧浓度,如果供入气缸的混合气空燃比不正常,排气中的氧浓度亦不正常,氧传感器信号就会有所反映。 但排气中氧浓度不仅受混合气空燃比的影响,而且也受气缸中燃烧状况的影响。一旦燃烧不充分或个别缸出现缺火,气缸中的部分氧“未气缸中的部分氧“未经消化”即排出缸外,排气中的氧浓度即会发生变化。 发动机正常燃烧需要三方面条件:1、合适的混合气空燃比;2、足够的点火能量和适当的点火提前角;3、正常的压缩压力和压缩温度。三个条件如有一条不满足,就可能造成燃烧不正常,进而使排气中的氧含量异常,氧传感器的信号波形即出现异常。 可导致燃烧不正常进而引起氧传感器波形不正常主要因素有以下几个方面: 1.点火系故障造成的燃烧不正常或缺火:例如:某缸火花塞损坏、某缸高压分线损坏、或分电器、分电器转子、点火线圈等损坏。 2.由机械原因引起的压缩泄漏使正常的压缩比遭到破坏:例如,气门烧损、活塞环断裂或磨损过度等造成的压缩泄漏使点火之前的压缩温度、压缩压力不够,造成燃烧不完全甚至缺火。 3.真空泄漏造成的空燃比不正常:例如进气道、进气管上的真空软管等处存在泄漏。如果真空泄漏使混合气空燃比达到17以上时,就可引起因混合气过稀而发生的缺火。 4.各缸喷油不均衡造成的压缩比不正常(对于多点喷射):个别缸喷油器的喷油量过多或过少(喷油器卡在开的位置或堵塞),造成混合气过浓或过稀,当个别缸的混合气空燃比达到13以下或17以上时,将可能引起缺火。 所有以上这些故障都可能使部分氧不经燃烧即排出缸外从而使排气中的氧含量异常。因而我们可以通过测试氧传感器的信号波形进而追溯汽车故障所在: 1、如果氧传感器波形显示为不正常的持续浓混合气信号,而微机控制系统能正确地发出较短的喷油脉宽指令试图使混合气变稀。两个波形的关系是正确的负反馈关系。这说明故障不在燃料反馈控制系统,可能是燃油压力过高或喷油器存在漏油等原因。 2、如果氧传感器波形显示为不正常的持续稀混合气信号,而微机控制系统能发出较长的喷油脉宽指令(例如6 ms),这两个波形的关系也是正确的负反馈关系。这同样说明故障不在燃料反馈控制系统,可能是燃油压力过低或喷油器存在堵塞等原因。 3、如果氧传感器波形显示为不正常的持续浓混合气信号,而微机控制系统正在发出的却仍然是要加浓混合气的较长的喷油脉宽指令,即两个波形的关系出现方向性错误。这说明故障存在于燃料反馈控制系统内部,可能是微机控制系统接收了错误的进气流量信号或错误的发动机冷却液温度信号等原因。 例如,个别缸喷油器堵塞造成各缸喷油不均衡的故障,其现象表现为:怠速非常不稳,加速迟缓,动力下降,在冷启动后或重新热启动后的开环控制期间情况稍好,一旦反馈燃油控制系统进入闭环控制,症状就变得显著。这时如果利用示波器测试氧传感器,检测发动机在2 500 r/min和其他稳定转速下的氧传感器电压波形,在所有的转速、负荷下都会显示出严重的杂波,即表明喷油不均衡或存在缺火。这些杂波彻底破坏了燃料反馈控制系统对混合气的控制能力。 三、开展发动机诊断维修的主要方法 3.1 针对传感器信号输入系统进行检查维修 由于当今社会的汽车制造行业,普遍使用的是智能汽车制造技术,智能化电控汽车燃油的控制系统能够实现燃油的高效率利用。电喷发动机系统中,喷油器的控制受到凸轮轴位置传感器系统、车速传感器系统和曲轴位置传感器、氧传感器的影响。在凸轮轴位置传感器附近技术人员会配置一块嵌入式的CPU,CPU的运行受到接口电路系统的影响。车速加快的过沉重,接口电路会给接口电路发送指令,CPU 根据汽车运行过程中的曲轴位置、车辆行驶速度和凸轮轴的位置等具体信息,综合测算出此时的喷油控制量的指标分布。喷油器会在汽车发动机系统的ROM/RAM指令下作出相应的工作变化。 为了保证A/D转换器的运行状况良好,应该对空气流量传感器和节气门位置进行故障的重点检查。冷却液温度传感器也是容易发生故障的部件,在汽车燃油喷射系统中,对于冷却液温度系统、进气温度传感器系统的检修,是故障诊断的首要考虑方面。

传感器与检测技术期末考试试卷及答案

传感器与自动检测技术 一、填空题(每题3分) 1、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。 2、金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。 3、半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。 4、金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。 5、金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。 6、金属应变片的灵敏度系数是指金属应变片单位应变引起的应变片电阻的相对变化叫金属应变片的灵敏度系数。 7、固体受到作用力后电阻率要发生变化,这种现象称压阻效应。 8、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。 9、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。 10、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 11、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 12、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 13、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用

传感器与检测技术实验的报告.doc

精品资料 “传感器与检测技术”实验报告 序号实验名称 1 电阻应变式传感器实验 2 电感式传感器实验 学号: 3 电容传感器实验913110200229 姓名:杨薛磊 序号:83

实验一电阻应变式传感器实验 (一)应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。 一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感 器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元 件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。 它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在 机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:主机箱中的± 2V ~± 10V (步进可调)直流稳压电源、±15V 直 流稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 12位数显万用表(自备)。 四、实验步骤: 应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器 +5V 电源输入口、多芯插头、应变片测量电路、差动放大器组成。实验模 板中的 R1( 传感器的左下 )、R2( 传感器的右下 )、R3( 传感器的右上 )、R4( 传感器的左上)为称重传感器上的应变片输出口;没有文字标记的 5 个电阻符号是空的无实体,其中 4 个电阻 符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R 6、R7是 350 Ω固定电阻, 是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。加热器+5V是传感器 上的加热器的电源输入口,做应变片温度影响实验时用。多芯插头是振动源的振动梁上的应 变片输入口,做应变片测量振动实验时用。 1、将托盘安装到传感器上,如图 1 —4 所示。

电喷发动机工作原理

电喷发动机工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱内,

浸在燃油中。油箱内的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管内,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管内的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管内真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸喷油器,通过控制每次喷油的持续时间来控制喷油量。喷油持续时间愈长,喷油量就愈大。一般每次喷油的持续时间为2~10ms。各缸喷油器每次喷油的开始时刻则由电脑根据安装于离合器壳体上的发动机转速(曲轴位置)传感器测得某一位置信号来控制。这种类型的燃油喷射系统的每个喷油器在发动机每个工作循环中喷油两次,喷油是间断进行的,属于间歇喷射方式 二、电子燃油喷射控制的原理 (一)各种工况控制简介

传感器与自动检测技术实验指导书.

传感器与自动检测技术验 指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

电喷发动机传感器检测大全

电喷发动机传感器检测大全 在现代汽车上,传感器的使用越来越普遍,为了方便维修人员对发动机的检修,现将发动机上常见的十几种传感器的检测方法介绍如下。 进气歧管压力传感器 进气歧管压力传感器,是D型(速度密度型)燃油喷射系统中非常重要的传感器,其作用是将进气歧管内的压力变化转换成电压信号。控制电脑(ECU)依据该信号和发动机转速(由装在分电器内的发动机转速传感器提供的信号)来确定进入汽缸内的空气量。 1、安装部位与接线端子 由于歧管压力传感器内部有放大电路,故需要电源线、地线和信号输出线共三根导线,它们相应地在接线端子上有三个接线端,分别为电源端子(Vcc)、接地端子(E)和信号输出端子(PIM),三个端子通过导线连接器及导线与控制电脑ECU相连。 为了减少进气歧管压力传感器内部电子元器件的振动,它通常安装在车辆振动相对较小的位置上,并处于进气总管的上方,以防来自进气歧管的窜气侵入压力传感器。另外进气歧管压力传感器从下边接受进气管压力也可防止信号传感部分不受污染,因此,通过橡胶管从进气歧管靠近节气门处所采集的进气管气体,是从歧管压力传感器下端接入的。

2、单体检测 (1)外观检视 检视时,只需从进气歧管靠近节气门端找到橡胶软管,便可在汽车上找到歧管压力传感器。首先,在关闭点火锁的状态下,检查进气歧管压力传感器导线连接器的连接是否良好、橡胶软管是否脱落。然后启动发动机,查看橡胶软管有无密封不严和漏气现象。 (2)仪表测试 A、接通点火开关(ON位),用万用表的直流电压挡(DCV-20)测试接线端子Vcc与E2之间的电压值,该电压值即为ECU加在歧管压力传感器上的电源电压值,其正常值应为:4.5~5.5V之间,若该值不正确,则应检查蓄电池电压或导线间的连接情况,有时问题也可能出在控制电脑ECU上。 B、接通点火开关(ON位),并从进气歧管压力传感器上拔下真空橡胶软管,使进气歧管压力传感器的进气口与大气相通,此时测试接线端子输出电压信号(PIM与地线E2之间的电压值),其正常值为:3.3~ 3.9V之间,若输出电压过高或过低,均说明进气歧管压力传感器有故障,应予更换。 C、接通点火开关(ON位),拆下进气歧管压力传感器上的真空橡胶软管,用手持真空泵向歧管压力传感器进气口处施以不同的负压(真空度),边施压边测试接线端子输电压信号PIM与地线E2之间电压值。该电压值应随所施加负压的增长呈线性增长,否则,说明传感器内的信号检测电路有故障,应予以更换。例如皇冠3.0型轿车2JZ-GE发动机有关正常数据如下表所示: 空气流量传感器 空气流量传感器,是L型(质量流量型)电子燃油喷射发动机中最主要的传感器之一。它测试进入汽缸的空气流量是用来确定发动机基本喷油持续时间和基本点火提前角的重要参数。因此,空气流量传感器单体的故障检测与分析,对电喷发动机是至关重要的。目前,空气流量传感器的种类较多,但就其测量原理的不同,大致分为三种:叶板式、涡流式和热线式空气流量传感器。由于三种传感器的结构差异,其单体故障检测各异,现分别加以分析。 1、叶板式空气流量传感器 (1)安装部位及接线端子 叶板式空气流量传感器安装在空气滤清器和节气门体之间,以便准确测量吸入发动机的空气量。

《传感器与自动检测技术》课后习题答案(余成波_主编)

一、1.1什么是传感器?传感器特性在检测技术系统中起什么作用? 答:(1)能感受(或响应)规定的被测量,并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。(2)传感器是检测系统的第一个环节,其主要作用是将感知的被测非电量按一定的规律转化为某一种量值输出,通常是电信号。 1.2画出传感器系统的组成框图,说明各环节的作用。 答:(1)被测信息→敏感元件→转换元件→信号调理电路→输出信息 其中转换元件、信号调理电路都需要再接辅助电源电路; (2)敏感元件:感受被测量并输出与被测量成确定关系的其他量的元件;转换元件:可以直接感受被测量而输出与被测量成确定关系的电量;信号调理电路与转换电路:能把传感元件输出的电信号转换为便于显示、记录和控制的有用电路。 1.3什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标?答:(1)指检测系统的输入、输出信号不随时间变化或变化缓慢时系统所表现出得响应特性。(2)性能指标有:测量范围、灵敏度、非线性度、回程误差、稳定度和漂移、重复性、分辨率和精确度。(3)灵敏度:s=&y/&x;非线性度=B/A*100%;回程误差=Hmax/A*100%;不重复性Ex=+-&max/Yfs*100%;精度:A=&A/ Yfs*100%; 1.4什么是传感器的灵敏度?灵敏度误差如何表示? 答:(1)指传感器在稳定工作情况下输出量变化&y对输入量变化&x的比值;(2)灵敏度越高,测量精度就越大,但灵敏度越高测量范围就越小,稳定性往往就越差。 1.5什么是传感器的线性度?常用的拟合方法有哪几种? 答:(1)通常情况下,传感器的实际静态特性输出是条曲线而非直线,在实际工作中,为使仪器(仪表)具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线,线性度就是这个近似程度的一个性能指标。(2)方法有:将零输入和满量程输出点相连的理论直线作为一条拟合直线;将与特性曲线上个点偏差的平方和为最小理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 二、2.1什么是测量误差?测量误差有几种表示方法?各有什么用途? 答:(1)由于测量过程的不完善或测量条件的不理想,从而使测量结果偏离其真值产生测量误差。(2)有绝对误差、相对误差、引用误差、分贝误差。(3)绝对误差用来评价相同被测量精度的高低;相对误差可用于评价不同被测量测量精度的高低;为了减少仪器表引用误差,一般应在满量程2/3范围以上进行测量。 2.2按测量手段分类有哪些测量方法?按测量方式分类有哪些测量方法? 答:(1)按测量手段分类:a、绝对测量和相对测量;b、接触测量和非接触测量;c、单项测量和综合测量;d、自动测量和非自动测量;e、静态测量和动态测量;f、主动测量和被动测量。(2)按测量方式分类:直接测量、间接测量和组合测量。 2.3产生系统误差的常见原因有哪些?常见减少系统误差的方法有哪些? 答:原因有:a、被检测物理模型的前提条件属于理想条件,与实际检测条件有出入;b、检测线路接头之间存在接触电动势或接触电阻;c、检测环境的影响;d、不同采样所得测量值的差异造成的误差;e、人为造成的误读等等。 2.4什么是准确度、精密度、精确度?并阐述其与系统误差和随机误差的关系? 答:测量的准确度是指在一定的实验条件下多次测定的平均值与真值相符合的程度,以误差来表示;它表示系统误差的大小。精密度是指在相同条件下,对被测量进行多次反复测量,测得值之间的一致程度。反映的是测得值的随机误差。精密度高,不一定正确度高。精确度是指被测量的测得值之间的一致程度以及与其真值的接近程度,即精密度与正确度的综合概念。从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。正确度是指被测量的测得值与其真值的接近程度。反映的是测得的系统误差。

电控发动机传感器

电控发动机传感器. 汽车传感器 进气压力传感器:反映进气歧管内的绝对压力大小的变化,是向ECU(发动机电控单元)提供计算喷油持续时间的基准信号; 空气流量计:测量发动机吸入的空气量,提供给ECU作为喷油时间的基准信号;

节气门位置传感器:测量节气门打开的角度,提供给ECU作为断油、控制燃油/空气比、点火提前角修正的基准信号; 曲轴位置传感器:检测曲轴及发动机转速,提供给ECU作为确定点火正时及工作顺序的基准信号; 氧传感器:检测排气中的氧浓度,提供给ECU作为控制燃油/空气比在最佳值(理论值)附近的的基准信号; 进气温度传感器:检测进气温度,提供给ECU作为计算空气密度的依据; 冷却液温度传感器:检测冷却液的温度,向ECU提供发动机温度信息; 爆震传感器:安装在缸体上专门检测发动机根据信号调整点火提前ECU的爆燃状况,提供给. 角。 这些传感器主要应用在变速器、方向器、悬架和ABS上。 变速器:有车速传感器、温度传感器、轴转速传感器、压力传感器等,方向器有转角传感器、转矩传感器、液压传感器;

悬架:有车速传感器、加速度传感器、车身高度传感器、侧倾角传感器、转角传感器等; 空气流量传感器----将吸入的空气转换 成电信号送至电控单元(ECU),作为决定喷油的基本信号之一 根据测量原理不同分四种型式-----旋转翼 片式空气流量传感器(丰田PREVIA旅行车)、卡门涡游式空气流量传感器(丰田凌志 LS400轿车)、热线式空气流量传感器(日产千里马车用VG30E发动机和国产天津三峰客车TJ6481AQ4装用的沃发动机)和热膜式 空气流量传感器B230F尔沃. 前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热 膜式空气流量传感器两种。

相关文档
最新文档