转速闭环转差频率控制的调速系统仿真
双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
转速闭环转差频率控制的调速系统仿真

转速闭环转差频率控制的调速系 统仿真
单击此处添加正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点。
演讲人姓名
一、转差频 率控制的特 点
s
在ωs<<ωsm的范围内, 保持气隙磁通不变的前提 下,通过控制转差频率来 控制转矩。
在不同的定子电流值时,按下图所示关系控制定子电压和频率,就能保持气隙磁通恒定。
⑵加载过程
假定系统处于稳定运行状 态,负载转矩突然增大, 负载转矩作用下,转速ω 开始下降,在内环的作用 下使定子频率ω1开始下降, 但在外环的作用下使转差 频率ωs上升,定子频率 ω1上升,电磁转矩Te增大, 转速回升。
4、仿真 结果
在仿真结果中,图 a - d反映了在起动和加载过程中,电动 机的转速、电流、电压和转矩的变化过程,在起动中逆变器 输出电压(线电压)逐步提高,转速上升,但是电流基本保持 不变 35A ,电动机以给定的最大电流起动。在 0.39s 时, 转速稍有超调后稳定在 1400r/min ,电流也下降为空载电 流,逆变器输出电压也减小了。电动机在加载后,电流和电 压迅速上升,电动机转矩也随之增加,转速在略经调整后恢 复不变。
转矩上升:在t=0时,突加给定,转速调节器ASR很快进入饱和,输出 为限幅值ωsmax,电流与转矩快速上升。
恒转矩升速:当t=t1时,电流达到最大值,启动Байду номын сангаас流等于最大允许电流, 理论分析
启动转矩等于最大允许转矩;接下来电动机在最大转矩下加速运行。
启动过程
转速调节:当t=t2时,转速ω达到给定值,转速略有超调后ASR退饱和, 转速达到稳定值。
202X
谢谢观看!
汇报人姓名
带电流截止负反馈转速单闭环直流调速系统建模与仿真

潇湘学院《课程设计报告》题目:带电流截止负反馈转速单闭环直流调速系统建模与仿真专业:电气工程及其自动化班级:姓名:学号:指导教师:陈敏初始条件:1.技术数据输出功率为:7.5Kw 电枢额定电压220V电枢额定电流 36A 额定励磁电流2A额定励磁电压110V 功率因数0.85电枢电阻0.2欧姆电枢回路电感100mH电机机电时间常数2S电枢允许过载系数1.5额定转速 1430rpm2.技术指标稳态指标:无静差(静差率s≤2%, 调速范围 D≥10 )动态指标:系统稳定要求完成的主要任务:1.技术要求:(1) 该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D ≥10),系统在工作范围内能稳定工作(2) 根据指标要求进行动态校正,选择调节器的参数,并确定电流截止负反馈环节的相关参数,(3) 系统在5%负载以上变化的运行范围内电流连续2.设计内容:(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图(2) 根据带电流截止负反馈转速单闭环直流调速系统原理图, 分析转速调节器和电流截止负反馈的作用,(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB 来进行调节器的参数调节。
(4) 绘制带电流截止负反馈转速单闭环直流调速系统的电气原理总图(要求计算机绘图)(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书目录摘要 (3)1.闭环调速控制系统构成 (5)1.1 主电路 (5)1.2 原理框图 (5)2带电流截止负反馈的转速负反馈的分析 (6)2.1电流截止负反馈的提出 (6)2.2 电流截止负反馈环节 (7)2.3 带电流截止负反馈调速系统结构框图和静特性 (8)3 参数设计 (10)3.1整体分析 (10)3.2稳定性参数计算和判断 (10)3.3 转速调节器校正 (11)3.3.1 PI调节器结构 (11)3.3.2 调节器的选择 (12)3.4 电流截止负反馈参数设计 (16)4. 电流MATLAB仿真 (17)4.1 将设计的参数进行仿真 (17)4.2 调节器参数调整 (18)5.电气总图 (19)6.结束语 (20)参考文献 (20)摘要为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。
转速反馈单闭环直流调速系统仿真

实验一、转速反馈单闭环直流调速系统仿真一、实验内容:直流电机模型框图如下图所示,仿真参数为R=0.6,T l=0.00833,T m=0.045,Ce=0.1925。
本次仿真采用算法为ode45,仿真时间5s。
1.开环仿真:用Simulink实现上述直流电机模型,直流电压U d0取220V,0~2.5s,电机空载,即I d=0;2.5s~5s,电机满载,即I d=55A。
画出转速n的波形,根据仿真结果求出空载和负载时的转速n以及静差率s。
改变仿真算法,观察效果(运算时间、精度等)。
实验步骤:(1)按照上图把电机模型建立好,其中u d0设置为常数,并把其幅值设置为220,把其它相应的环节也设置好。
把I d设置为“阶跃信号”,且在0~2.5s之间其幅值为0,而2.5~5s之间其幅值为55,在对系统中其它参数进行设置。
为了观察输出地波形,在输出处接上一个示波器。
(2)对仿真模式进行设置,系统默认的仿真算法为ode45,只需要把仿真时间设置为5s即可。
(3)对系统进行仿真。
仿真结果:(1)仿真算法为ode45:图1 上图即为电机转速的仿真结果图,同图上我们可以看出来分为了两个阶段,其中第一个阶段(0~2.5s)为空载转速,第二阶段(2.5~5s)为满载转速。
空载转速为1142n/min。
在2.5s时加入了负载,通过仿真结果我们可以看出来,负载转速为972n/min。
这可以看出来在加入负载之后,电机的转速开始下降。
根据电机转差率的公式s=(n0-n)/ n0=(1142-972)/1142=0.149。
转差率还是比较小的,说明该电机效率比较高。
通过观察该仿真的时间,其运算时间为T=9.134*10^-7s。
(2)仿真算法为ode23:仿真结果图如图2所示,由图我们可以看出来,结果基本上和计算方法为ode45的结果一样,但是运算时间却不一样,该算法的运算时间为T=3.636*10^-7s。
运算时间比ode45的时间短。
直流电机双闭环调速系统MATLAB仿真

题目:直流电机双闭环调速系统姓名:学号:专业班级:电气工程及其自动化指导教师:一、直流电机双闭环调速系统模块功能图1直流电机双闭环调速系统框图图2直流电机双闭环提速系统原理图如图1为直流电机速度、电流双闭环调速系统框图,图2为直流电机速度、电流双闭环调速系统原理图。
该调速系统包括两个反馈控制闭环,内环为电流控制环,外环为速度控制环。
速度调节器与电流调节器均为PI调节器,可以实现直流电机转速的静态无差调节与快速动态响应。
以图2所示由硬件构成的双闭环调速系统为例,介绍该系统的工作原理。
直流电机给定速度信号ug与反馈速度信号ufn进行比较,形成速度输入信号Δun=ug-ufn,进入速度PI调节器ST,其输出信号为电流给定信号un,与电流反馈信号ufi进行比较,得到电流PI调节器LT的输入信号Δui=un-ufi,输出信号uk 作为触发器CF的移相电压,从而控制整流桥的移相角a,进而控制直流电机的电枢电压U d、电枢电流I d以及输出转矩T。
如图3为MATLAB中直流电机速度、电流双闭环调速系统的Simulink仿真模型。
接下来对该模型各个模块的功能进行描述。
图3双闭环调速系统Simulink仿真模型1、速度给定模块图1如图4所示为速度给定模块,为一阶跃信号,由表1的模块参数表可知速度给定信号的阶跃时间Step time为0.8s,阶跃信号初始值Initial value为120rad/s,稳定值Final value为160rad/s。
该模块的功能为产生一个阶跃的速度给定信号wef输入到速度调节器中。
表12、速度调节器图5图5为速度调节器模块,是一个PI调节器,输入信号为速度给定信号wef 与速度反馈信号wm,输出信号Iref作为电流调节器的电流给定信号。
通表2的模块参数表可知该PI调节器的比例系数kp=1.6,积分系数ki=16,最大输出限幅值Current limit为30A。
该模块的功能为通过对电机速度的闭环控制输出电流调节器的给定信号Iref。
课题五转速闭环转差频率控制的变压变频调速系统设计

课程设计任务书电气与信息工程系自动化专业班题目转速闭环转差频率控制的变压变频调速系统设计任务起止日期:2016 年 6 月 6 日~ 2016年6月17日学生姓名学号指导教师一、设计要求:设计一个转速闭环转差频率控制的变压变频调速系统:系统包括速度设定、速度显示、速度测量、速度控制、正反转控制等,且根据交流异步电动机的容量采用由三相二极管整流桥、电容滤波、基于全控型开关器件 IGBT 或 MOSFET 的三相 PWM 逆变桥构成的主电路给异步电动机供电。
已知:(1)异步电动机:额定容量 PN =3KW ,额定电压 UN =380V ,额定电流 IN =6.9A ,额定转速为 nN =1400 r/min,额定频率 fN =50Hz ,定子绕组 Y 联接。
由实验测得定子电阻 Rs =Ω,转子电阻 Rr =Ω,定子自感 Ls =,转子自感 L r = ,定、转子互感 L m =,转子参数已折算到定子侧,系统转动惯量J =0.1284kg.m2。
(2)变频电源主要技术指标:1)输入电压额定值:三相、380VAC 、50Hz,2)效率: 80%以上,3)额定输出容量: 4KVA 或 250VA ,4)额定输出电压:三相、380VAC ,5)输出频率: 5~400Hz,6)控制方式:转速闭环转差频率控制方式,SPWM 或 SVPWM 脉冲产生方式。
二、设计任务:1、绘出异步电动机T 型等效电路和简化等效电路;2、求额定运行时的转差率、定子额定电流和额定定子转矩;3、定子电压和频率均为额定值时,求空载时的额定电流;4、定子电压和频率均为额定值时,求临界转差率和临界转矩,绘出异步电动机的机械特性;5、完成系统电气原理图的设计三、设计说明书的格式要求:1、绪论a. 设计的目的和意义。
b. 设计要求。
c. 设计对象及有关数据。
2、系统结构方案的选择:3、系统结构及性能分析4、主回路的选择。
5、触发器的设计和同步相位的配合: a. 触发电路的设计与选择。
双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

第1章绪论1.1 双闭环三相异步电动机调压调速系统旳原理和构成调压调速即通过调整通入异步电动机旳三相交流电压大小来调整转子转速旳措施。
理论根据来自异步电动机旳机械特性方程式:其中,p为电机旳极对数;w1为定子电源角速度;U1为定子电源相电压;R2’为折算到定子侧旳每相转子电阻;R1为每相定子电阻;L11为每相定子漏感;L12为折算到定子侧旳每相转子漏感;S为转差率。
图1-1 异步电动机在不一样电压旳机械特性由电机原理可知,当转差率s基本保持不变时,电动机旳电磁转矩与定子电压旳平方成正比。
因此,变化定子电压就可以得到不一样旳人为机械特性,从而到达调整电动机转速旳目旳1.2 双闭环三相异步电动机调压调速系统旳工作原理系统主电路采用3个双向晶闸管,具有体积小。
控制极接线简朴等长处。
A.B.C为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。
为了保护晶闸管,在晶闸管两端接有阻容器吸取装置和压敏电阻。
控制电路速度给定指令电位器BP1所给出旳电压,经运算放大器N构成旳速度调整器送入移相触发电路。
同步,N还可以得到来自测速发电机旳速度负反馈信号或来自电动机端电压旳电压反馈信号,以构成闭环系统,提高调速系统旳性能。
移相触发电路双向晶闸管有4种触发方式。
本系统采用负脉冲触发,即不管电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。
负脉冲触发所需要旳门极电压和电流较小,故轻易保证足够大旳触发功率,且触发电路简朴。
TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够旳移相范围,TS采用DY11型接法。
移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器旳一次侧第2章双闭环三相异步电动机调压调速系统旳设计方案2.1 主电路设计调压电路变化加在定子上旳电压是通过交流调压器实现旳。
目前广泛采用旳交流调压器由晶闸管等器件构成。
它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角旳大小来调整加到定子绕组两端旳端电压。
电力拖动自动控制系统Matlab仿真实验报告

电力拖动自动控制系统Matlab仿真实验报告实验一单闭环转速反馈控制直流调速系统一.【实验目的】1. 加深对比例积分控制的无静差直流调速系统的理解;2. 研究反馈控制环节对系统的影响和作用 .二.【实验步骤和内容】1. 仿真模型的建立:打开模型编辑窗口,复制相关模块,修改模块参数,模块连接。
2. 仿真模型的运行;仿真过程的启动,仿真参数的设置 .转速负反馈闭环调速系统 :直流电动机:额定电压U N=220V,额定电流I dN =55A,额定转速n N=1000r/min电动机电动势系数C e=0.192V.min/r, 假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s =0.00167s,电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数T1 =0.00167s,电力拖动系统机电时间常数Tm=0.075s,转速反馈系数α=0.01V.min/r对应额定转速时的给定电压U n∗ =10V 比例积分控制的直流调速系统的仿真框图如图 5-1 所示。
图 5-1 比例积分控制的直流调速系统的仿真框图图 5-2 开环比例控制直流调速系统仿真模型图图 5-3 开环空载启动转速曲线图图 5-4 开环空载启动电流曲线图图 5-5 闭环比例控制直流调速系统仿真模型图在比例控制直流调速系统中,分别设置闭环系统开环放大系数 k=0.56 , 2.5, 30 ,观察转速曲线图,随着 K 值的增加,稳态速降减小,但当 K 值大于临界值时,系统将发生震荡并失去稳定,所以 K 值的设定要小于临界值。
当电机空载启动稳定运行后,加负载时转速下降到另一状态下运行,电流上升也随之上升。
图 5-6 k=0.56 转速曲线图图 5-7 k=0.56 电流曲线图图 5-8 k= 2.5 转速曲线图图 5-9 k= 30 转速曲线图图 5-10 闭环比例积分控制直流调速系统仿真模型图图 5-11 PI 控制转速 n 曲线图图 5-12 PI 控制电流曲线图在闭环比例积分( PI )控制下,可以实现对系统无静差调节,即, 提高了系统的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、转差频率控制的矢量控制系统仿真模型
模型组成:系统的控制部分由给定、 PI 调节器、函数运算、两相 /三相坐标变换、 PWM脉冲发生器等环节组成。其中,给定环节有 定子电流励磁分量 im*和转子速度n* 。放大器 Gl G2 和积分器组 成了带限幅的转速调节器 ASR 。电流电压模型转换由函数 um* 、 ut* 模块实现。函数运算模块 Ws 根据定于电流的励磁分量和转矩 分量计算转差ws,并与转子频率w 相加得到定子频率w1,再经积 分器得到定子电压矢量转角θ( theta) 。模块 sin 、 cos 、 dqO_ to_abc 实现了两相旋转坐标系至三相静止坐标系的变换。 qO_to_abc 的输出是 PWM 发生器的三相调制信号。
• ⑵加载过程 • 假定系统处于稳定运行状态,负载转矩突然增大,负载转矩作用
下,转速ω开始下降,在内环的作用下使定子频率ω1开始下降, 但在外环的作用下使转差频率ωs上升,定子频率ω1上升,电磁转 矩Te增大,转速回升。
4、仿真结果
• 在仿真结果中,图 a - d反映了在起动和加载过程中,电动机的转 速、电流、电压和转矩的变化过程,在起动中逆变器输出电压(线 电压)逐步提高,转速上升,但是电流基本保持不变 35A ,电动机 以给定的最大电流起动。在 0.39s 时,转速稍有超调后稳定在 1400r/min ,电流也下降为空载电流,逆变器输出电压也减小了。 电动机在加载后,电流和电压迅速上升,电动机转矩也随之增加,
转速在略经调整后恢复不变。
谢谢观看!
3、理论分析
⑴启动过程 转矩上升:在t=0时,突加给定,转速调节器ASR很快进入饱和,输
出为限幅值ωsmax,电流与转矩快速上升。
恒转矩升速:当t=t1时,电流达到最大值,启动电流等于最大允许 电流,启动转矩等于最大允许转矩;接下来电动机在最大转矩下加 速运行。
转速调节:当t=t2时,转速ω达到给定值,转速略有超调后ASR退饱 和,转速达到稳定值。
转速闭环转差频率控制的调速系统仿 真
班级:13自动化1班 组员:王畅、王金鹏、刘增
一、转差频率控制的特点
•1、在ωs<<ωsm的范围内,保持气隙磁通不变的前提下,通过控
制转差频率来控制转矩。 率,就能保持气隙磁通恒定。
二、转差频率控制系统仿真及分析