第10章 钢结构的塑性设计和抗震设计
钢结构设计规范

钢结构设计规范第一章总结第二章材料第三章基本设计规定第四章受弯构件的计算第五章轴心受力构件和拉弯、压弯构件的计算第六章疲劳计算第七章连接计算第八章构造要求第九章塑性设计第十章钢管结构章第十一章圆钢、小角钢的轻型钢结构第十二章钢与混凝土组合梁附录一梁的整体稳定系数附录二梁腹板局部稳定的计算附录三轴心受压构件的稳定系数附录四柱的计算长度系数附录五疲劳计算的构件和连接分类附录六螺栓的有效面积附录七非法定计量单位与法定计量单位的换算关系第一章总则第1.0.1条为在钢结构设计中贯彻执行国家的技术经济政策,做到技术先进、经济合理、安全适用、确保质量,特制定本规范。
第1.0.2条本规范适用于工业与民用房屋和一般构筑物的钢结构设计。
第1.0.3条本规范的设计原则是根据《建筑结构设计统一标准》(CBJ68-84))制订的。
第1.0.4条设计钢结构时,应从工程实际情况出发,合理选用材料、结构方案和构造措施,满足结构在运输、安装和使用过程中的强度、稳定性和刚度要求,宜优先采用定型的和标准化的结构和构件,减少制作、安装工作量,符合防火要求,注意结构的抗腐蚀性能。
第1.0.5条在钢结构设计图纸和钢材订货文件中,应注明所采用的钢号(对普通碳素钢尚应包括钢类、炉种、脱氧程度等)、连接材料的型号(或钢号)和对钢材所要求的机械性能和化学成分的附加保证项目。
此外,在钢结构设计图纸中还应注明所要求的焊缝质量级别(焊缝质量级别的检验标准应符合国家现行《钢结构工程施工及验收规范》)。
第1.0.6条对有特殊设计要求和在特殊情况下的钢结构设计,尚应符合国家现行有关规范的要求。
第二章材料第2.0.1条承重结构的钢材,应根据结构的重要性、荷载特征、连接方法、工作温度等不同情况选择其钢号和材质。
承重结构的钢材宜采用平炉或氧气转炉3号钢(沸腾钢或镇静钢)、16Mn 钢、16Mnq钢、15MnV钢或15MnVq钢,其质量应分别符合现行标准《普通碳素结构钢技术条件》、《低合金结构钢技术条件》和《桥梁用碳素钢及普通低合金钢钢板技术条件》的规定。
钢结构房屋抗震设计规定

目录(三)
8.主要构造规定 8.1 构件长细比和板件宽厚比 8.2 节点设计 8.2.1 美、日大震后框架梁-柱连接节 点设计的改进
中国建筑标准设计研究所
(1)震害情况 (2)对节点破坏原因的分析 (3)两国的构造差异 (4)美、日的改进措施 (5)我国采取的对策 8.2.2 梁-柱连接的弹性阶段抗震设计 8.2.3 拼接计算 8.2.4 中心支撑的节点设计
一、多层和高层钢结构房屋-4
5.结构布置的一般规定
与《高钢规程》相比,主要有以下变更:
1. 关于楼板,8.1.7条规定了超过12层的钢结构房屋, 宜采用压型钢板组合楼板和现浇或整体式钢筋混 凝土楼板,并与钢梁有可靠连接;必要时可设置 水平支撑。不超过12层的钢结构房屋,除上述形 式外,尚可采用装配整体式钢筋混凝土楼板、装 配式楼板或其它轻型楼盖,但强调了应将楼板预 埋件与钢梁焊接,或采取其它保证楼盖整体性的 措施。
一、多层和高层钢结构房屋-6
6.3 弹塑性位移增大系数
对钢框架和框架-支撑结构弹塑性位移增大
系数,在大量算例的基础上编制成表,对10~ 中
目录(四)
二、多层钢结构厂房 1.一般规定 2.计算要点 3.构造措施
中国建筑标准设计研究所
三、单层钢结构厂房 1.一般规定 2.计算要点 3.构造措施
一、多层和高层钢结构房屋-1
1、前言 我国《钢结构设计规范》GBJ17不含抗震内容。
因此,地震区的房屋钢结构设计,除应符合钢结 构设计规范外,还应符合抗震规范的有关规定。 今后,凡是《高钢规程》中与抗震规范不一致之 处,应按抗震规范的规定执行,且不应比其低。 但抗震规范中未列入而《高钢规程》中已列入的 ,在该规程修订前仍可执行。
中国建筑标准设计研究所
结构抗震设计的基本概念及抗震结构的概念设计

重不均匀,不连续。 主要破坏:第4层与第5层之间(竖向刚度和承载力突变),周围柱子严重开裂,柱钢筋压屈; 横向裂缝贯穿3层以上的所有楼板(有的宽达1cm),直至电梯井东侧; 塔楼西立面、其他立面窗下和电梯井处的空心砖填充墙及其它非结构构件均
建筑抗震概念设计基本内容
1.建筑设计应重视建筑结构的规则性; 2.合理的建筑结构体系选择; 3.抗侧力结构和构件的延性设计。
结构设计的7条基本原则
1、质量与刚度对称原则 2、比例协调原则 3、减轻自重原则,使建筑物自重减轻,重心降低, 4、弹性原则,采用均质材料 5、下部结构的可靠性原则,采用密实且具有足够刚度的
(1) 悬臂、倾斜体系,水平地震作用会导致较大的竖向位移。
特别是对于悬臂段,可能产生较大的竖向位移和振动,进而影 响建筑的正常使用; (2)倾斜、悬臂体系,使得结构在竖向地震作用下,存在较大 的水平和竖向动力响应; (3)地震作用下,结构基础承受较大的倾覆弯矩;(蹲马步) (4) 结构严重竖向不规则,结构各层的位移和内力响应沿高度 有很大变化,特别是在9 层(裙房顶层)和37层(悬臂底层) ,应 力高度集中,层间位移大; (5)结构倾斜和受力构件的不对称分布,使得结构对不同方向 水平地震作用的响应有一定差异; (6)地震作用下,结构会有较大的扭转变形; (7)薄弱部位的构件,在地震作用下应力水平较高,可能较早
地裂
1.2 选择有利于抗震的场地 《规范》3.3.4 地基和基础设计应符合下列要求: 1、同一结构单元的基础不宜设置在性质截然不同
钢结构建筑在地震中的抗震性能研究与优化

钢结构建筑在地震中的抗震性能研究与优化引言随着城市化的进程和人口的不断增长,地震给城市带来的灾害性影响越来越受到人们的关注。
作为一种重要的建筑材料,钢结构由于其独特的优势在地震中展现出了极高的抗震性能。
本文将针对钢结构建筑在地震中的抗震性能进行深入研究,并探讨如何优化其抗震性能。
第一章钢结构材料的特点及其影响1.1 钢结构的优点与不足钢结构具有优异的抗拉强度和刚度,可以有效承受地震力的作用,但其在抗压和抗弯方面相对较弱,因此需要对结构进行合理的设计和优化。
1.2 钢材的力学特性钢材具有较高的屈服强度、抗拉强度和弹性模量,这些特性对钢结构的抗震性能起着重要影响。
第二章钢结构建筑的地震反应及其分析方法2.1 钢结构地震反应的分类钢结构在地震中可能产生的反应包括与建筑物的整体位移、变形、应力以及地震能量的分散等。
2.2 钢结构地震反应的评估方法常用的钢结构地震反应评估方法包括静力弹塑性分析、时程分析和模态分析等,这些方法可以有效评估钢结构在地震中的性能。
第三章钢结构建筑的抗震设计原则3.1 强度设计原则钢结构的强度设计原则是确保结构在地震中不超过其强度极限,从而保证其完整性和稳定性。
3.2 刚度设计原则钢结构的刚度设计原则是通过控制结构的变形,降低地震作用引起的结构响应。
3.3 能量耗散设计原则能量耗散设计原则是通过设计能够吸收和分散地震能量的结构元素和装置,降低地震对结构的破坏。
第四章钢结构抗震性能优化方法4.1 结构配置优化通过优化钢结构的布置和构造形式,可以提高结构的刚度和强度分布,增强其抗震性能。
4.2 材料选择和性能优化选用具有较高屈服强度和延展性的钢材,可以提高钢结构的抗震性能。
4.3 防震措施的改进与完善加强连接节点的设计,增加剪力墙、支撑等措施,可以提高钢结构在地震中的整体稳定性。
结论在地震中,钢结构建筑具备较高的抗震性能,适宜于抵御地震所带来的力量。
通过合理的设计原则和优化方法,可以进一步提高钢结构的抗震能力。
[钢结构设计规范]2019最新版- -对抗震更高要求
![[钢结构设计规范]2019最新版- -对抗震更高要求](https://img.taocdn.com/s3/m/9a539536f78a6529647d53e3.png)
[钢结构设计规范]2019最新版- -对抗震更高要求【导读】目前市面上通用最基础的钢结构设计规范是GB50017-2019,随着科技的进步,各种计算软件的更新及近年来频发的自然灾害,尤其是自汶川地震以来,对建筑防灾减灾,尤其是抗震有更高的要求,基于重重原因,新版《钢结构设计规范》的修订出台是设计师一直很期待的。
12019最新版《钢结构设计规范》主要修订内容如下:01 术语和符号(第2章)删除了原规范中关于强度的术语,增加了本次规范新增内容的术语。
02 基本设计规定(第3章)增加了“结构体系”和“截面板件宽厚比等级”;“材料选用”及“设计指标”内容移入新章节“材料(第4章)”;关于结构计算内容移入新章节“结构分析及稳定性设计(第5章)”;“构造要求(原第8章)”中制作、运输及安装的原则性规定并入本章。
03 受弯构件的计算(原第4章)改为“受弯构件(第6章)”,增加了腹板开孔的内容,“构造要求”中与梁设计相关的内容移入本章。
04 轴心受力构件和拉弯、压弯构件的计算(原第5章)改为“轴心受力构件(第7章)”及“拉弯、压弯构件(第8章)”两章,“构造要求(原第8章)”中与柱设计相关的内容移入第7章。
05 疲劳计算(原第6章)改为“疲劳计算及防脆断设计(第16章)”增加了简便快速验算疲劳强度的方法,“构造要求(原第8章)”中“提高寒冷地区结构抗脆断能力的要求”移入本章,并增加了抗脆断设计的补充规定。
06 连接计算(原第7章)改为“连接(第11章)”及“节点(第12章)”两章,“构造要求(原第8章)”中有关焊接及螺栓连接的内容并入11章、柱脚内容并入12章。
07 构造要求(原第8章)条文根据其内容,分别并入相关各章。
08 塑性设计(原第9章)改为“塑性及弯矩调幅设计(第10章)”,改变了塑性设计思路,采用内力重分配的思路进行设计。
09 钢管结构(原第10章)改为“钢管连接节点(第13章)”,丰富了计算的节点连接型式,另外,增加了节点刚度判定的内容。
[钢结构设计规范]2019最新版- -对抗震更高要求
![[钢结构设计规范]2019最新版- -对抗震更高要求](https://img.taocdn.com/s3/m/9a539536f78a6529647d53e3.png)
[钢结构设计规范]2019最新版- -对抗震更高要求【导读】目前市面上通用最基础的钢结构设计规范是GB50017-2019,随着科技的进步,各种计算软件的更新及近年来频发的自然灾害,尤其是自汶川地震以来,对建筑防灾减灾,尤其是抗震有更高的要求,基于重重原因,新版《钢结构设计规范》的修订出台是设计师一直很期待的。
12019最新版《钢结构设计规范》主要修订内容如下:01 术语和符号(第2章)删除了原规范中关于强度的术语,增加了本次规范新增内容的术语。
02 基本设计规定(第3章)增加了“结构体系”和“截面板件宽厚比等级”;“材料选用”及“设计指标”内容移入新章节“材料(第4章)”;关于结构计算内容移入新章节“结构分析及稳定性设计(第5章)”;“构造要求(原第8章)”中制作、运输及安装的原则性规定并入本章。
03 受弯构件的计算(原第4章)改为“受弯构件(第6章)”,增加了腹板开孔的内容,“构造要求”中与梁设计相关的内容移入本章。
04 轴心受力构件和拉弯、压弯构件的计算(原第5章)改为“轴心受力构件(第7章)”及“拉弯、压弯构件(第8章)”两章,“构造要求(原第8章)”中与柱设计相关的内容移入第7章。
05 疲劳计算(原第6章)改为“疲劳计算及防脆断设计(第16章)”增加了简便快速验算疲劳强度的方法,“构造要求(原第8章)”中“提高寒冷地区结构抗脆断能力的要求”移入本章,并增加了抗脆断设计的补充规定。
06 连接计算(原第7章)改为“连接(第11章)”及“节点(第12章)”两章,“构造要求(原第8章)”中有关焊接及螺栓连接的内容并入11章、柱脚内容并入12章。
07 构造要求(原第8章)条文根据其内容,分别并入相关各章。
08 塑性设计(原第9章)改为“塑性及弯矩调幅设计(第10章)”,改变了塑性设计思路,采用内力重分配的思路进行设计。
09 钢管结构(原第10章)改为“钢管连接节点(第13章)”,丰富了计算的节点连接型式,另外,增加了节点刚度判定的内容。
钢结构抗震性能评估和加固设计

钢结构抗震性能评估和加固设计钢结构作为一种重要的建筑结构形式,在建筑工程中的应用越来越广泛。
但随之而来的是,建筑物在地震等自然灾害中的抗震性能也成为一个重要的问题。
为了提高建筑物的抗震性能,钢结构的抗震性能评估和加固设计显得至关重要。
一、钢结构抗震性能评估1、抗震性能的评估方法钢结构抗震性能的评估需要针对不同的情况采用不同的评估方法。
一般来说,抗震性能的评估可以分为静力分析和动力分析两种方法。
静力分析是指根据建筑结构的几何形状和材料特性,以及不同地震作用下的荷载,采用有限元或弹性法等手段,对结构进行分析。
动力分析则是利用地震波的输入,通过有限元方法、基于能力设计思想的方法、地震监测数据分析等手段来评估建筑物的抗震性能。
2、影响抗震性能的因素钢结构的抗震性能涉及到多个因素,如钢结构的材料特性、结构的几何形状和尺寸、连接方式、支座形式等等。
此外,地震的频谱、持时、振幅等因素也会影响钢结构的抗震性能。
3、抗震性能的评估指标对于钢结构的抗震性能评估,一般采用的是平面矩形振型法和弹塑性时程分析法等评估指标。
其中,平面矩形振型法用于简化计算和评估建筑物的抗震性能,而弹塑性时程分析法则是一种更加准确的评估方法。
在实际应用中,一般采用这两种方法相结合的方式来评估钢结构的抗震性能。
二、钢结构抗震性能加固设计1、加固设计的原则钢结构抗震性能加固的设计需要遵循以下原则:(1)确保结构的整体稳定性;(2)提高结构的整体刚度和韧性;(3)采用经修范或加固结构的传统机械连接;(4)采用新型钢材、复合材料等先进材料。
2、加固设计的方法加固设计的方法有多种,主要包括改善原结构、添置新构件、加强连接方式等方法。
(1)改善原结构改善原结构是指通过加固柱、剪力墙、板条等结构部位来提高原结构的耐震性能。
(2)添置新构件添置新构件是指在原结构的基础上,增加钢构件等加强构件来提高原结构的耐震性能。
(3)加强连接方式加强连接方式是指加强原结构的连接节点,采用先进的钢制连接件、钢板连接件等方式来提供更好的连接性能。
【干货】钢结构抗震性能化设计

8.45kN • 结果
整个构件屈服,结构延性较好
支撑的屈强比与结构的塑性变形能力(2-2)
• 假设 构件极限抗拉强度
fu=375kN/mm2 构件
实际构件屈强比为 0.9
•则 构件净截面断裂承载力
An*fu=(614.3-17*5)*375=198.45kN
• 高次卓越振型的建筑
物
• 偏心产生扭转的建筑 物
• 竖向震动的大跨度建 筑物
• 塑性率极大且仅在某 一特定方向产生残余 变形的建筑物
《钢结构设计规范》抗震性能化设计
• 性能化设计体现在以下几个方面: ✓根据结构特性及使用功能选定塑性耗能区性能 等级 ✓根据结构塑性耗能区弹性承载力的差别,采用 不同的延性等级 ✓进行延性开展机构的控制,确保地震来袭时结 构按照预想的延性机构开展弹塑性变形
影响钢构件的延性的因素
• 钢构件的截面宽厚比 • 杆件的长细比 • 框架柱的轴压比
影响结构延性的因素
• 构件的延性 • 连接节点的延性 • 双重抗侧力结构中框架的剪力分担率 • 确保“保险丝”的思路得以实现
不适合采用极限承载力设计的建筑物
• 不适合模拟成单质点 体系的建筑物
• 不适合使用等价线性 法的建筑物
• 剪切型模型 ✓ 一般框架结构
• 弯剪型模型 ✓ 框架支撑结构 ✓ 超高层结构和筒状结构(高宽比较大)
• 构件及节点进入非线性 ✓ 屈服 ✓ 失稳 ✓ 滑移
结构的能量吸收能力
• 塑性变形能力 ✓ 结构体系 ✓ 构件延性
日本抗震设计路径
• 路径1:小震验算 ✓ 规模较小的钢结构
• 路径2:小震和层间位移角验算 ✓ 建筑物的平面和立面高度方向都比较规则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章钢结构的塑性设计和抗震设计§10-1 塑性设计的基本概念钢材具有良好的延性,在保证结构构件不丧失局部稳定和侧向稳定的情况下,可以在超静定结构中的若干部位形成具有充分转动能力的塑性铰,引起结构内力的重分配(redistribution of internal forces ),从而发挥结构各部分的潜能。
这种以整个结构的极限承载力作为结构极限状态的塑性设计(plastic design )方法具有如下的优点:(1)与通常的弹性设计方法相比,可以节约钢材(10%~15%)和降低造价; (2)对整个结构的安全度有更直观的估计。
通常的弹性设计方法在弹性范围内可以给出精确的内力和位移,但给不出整个结构的极限承载能力; (3)对连续梁和低层框架的内力分析较弹性方法简便。
1914年匈牙利建立了世界上第一座塑性设计的建筑物,随后英、加、美等国均在本国建立了塑性设计的工程。
英国在1948年第一个把塑性设计方法引进了BSS499规范。
随后,以英国和美国为中心,迅速地普及塑性设计。
现已公认,塑性设计简单、合理,而且可以节约钢材,所以英国和荷兰的低层建筑几乎全部采用塑性设计,美国和加拿大的大部分低层建筑也应用塑性设计。
我国1988年的《钢结构设计规范》(GBJ17-88)开始列入塑性设计,新修订的GB50017规范又进行了局部修改。
10.1.1 简单塑性分析方法一、塑性铰的性质本书§4-2和§7-2节分别介绍了受弯构件和压弯构件全截面屈服的条件,当其截面满足了屈服条件时,就认为在该截面形成了塑性铰。
实际的塑性铰附近截面均发展了一定的塑性(见图10.1.1a ),形成了一个塑性区域。
为了简化计算,认为塑性区仅集中在塑性铰截面,杆件的其它部分都保持弹性。
(a) (b)图10.1.1 塑性铰及其性质由图10.1.1b 可见,当在外荷载作用下,杆件的某一截面达到塑性弯矩M p 以后,该截面除可以传递该弯矩外,在力矩作用方向上允许有任意大小的转动,但不能传递大于M p 的弯矩。
当荷载反向作用(或卸载)时,塑性铰恢复弹性,可以传递反方向弯矩,但不能任意转动,只有当反方向弯矩达到塑性弯矩时,才会形成反向的塑性铰。
二、简单塑性分析的基本假设M p s M简单塑性分析(simple plastic analysis )也称为极限分析(limit analysis ),其基本假设如下:(1)结构构件以弯曲为主,且钢材是理想的弹塑性体,不考虑强化效应; (2)所有荷载均按同一比例增加,即满足简单加载条件;(3)假设结构平面外有足够的侧向支撑,构件的组成板件满足构造要求,能保证结构中塑性铰的形成及充分的转动能力(rotation capacity ),直到结构形成机构(mechanism )之前,不会发生侧扭屈曲,板件不会发生局部屈曲。
(4)采用一阶分析方法,不考虑二阶效应。
分析时假设变形均集中于塑性铰处,塑性铰间的杆件保持原形。
三、极限分析方法1. 极限分析定理根据塑性力学,结构的极限分析定理如下:(1)上限定理 对于一个给定的结构与荷载系,只要存在一个满足运动约束条件的机动场(运动可能场),使外荷载所做的功率不小于内部塑性变形所消耗的功率,由此所得的荷载值,总是大于或等于真正的极限荷载。
(2)下限定理 对于一个给定的结构与荷载系,只要存在一个满足平衡条件,且不破坏屈曲条件的内力场,由满足平衡条件的内外弯矩所求得的荷载值,总是小于或等于真正的极限荷载。
(3)极限分析的全解 在极限分析中,如所求的内力场和机动场能同时满足平衡条件、破坏机构条件和屈服条件,则所求得的解答,即为极限分析的全解。
如果所求荷载既是极限荷载的上限,又是其下限,则该荷载便是真实的极限荷载。
2. 极限分析方法针对上述极限分析定理,可有相应的二种分析方法:破坏机构法和极限平衡法。
(1)破坏机构法当不考虑平衡方面的要求,而只考虑机动与屈服条件,用上限定理求出荷载的上限解,称为破坏机构法。
其步骤为:① 确定结构上可能出现塑性铰的位置,一般塑性铰出现在集中力作用处、嵌固支座处和均布荷载作用时剪力为零的地方;② 画出可能的破坏机构,并找出各塑性铰处的位移关系; ③ 运用虚功原理逐一计算各破坏机构的破坏荷载,其中最小的即为极限荷载的上限值。
虚功原理的公式为:∑∑===mj j pj ni i i M P 11θδ (10.1.1)式中:i P ,i δ为结构所受的第i 个外力和相应该外力方向的虚位移;pjM,j θ为某破坏机构中出现的第j 个塑性铰处的塑性弯矩和相应的虚转角。
④ 用平衡方程求出弯矩图,并检查是否满足pjpjMM M ≤≤-的塑性弯矩条件。
[例题10-1] 图10.1.2示门式刚架的所有杆件均具有相同的塑性弯矩M p ,求其极限荷载P u 。
[解] 可能出现塑性铰的位置是点1、2、3、4和5处。
有三种可能的破坏机构如图10.1.2中的(b)、(c)和(d)所示。
运用虚功原理,对机构(1)有θθp M lPP 42=⋅=∆,则lM P p81=。
图10.1.2 例题10-1图对机构(2)有)(2θθθθθ+++=⋅P M lP,则lM P p82=对机构(3)有)22(21θθθθ+++=∆+∆P M P P ,即θθp M l P 6=,则lM P p63=故lM P P pu 63==图10.1.2(e)为弯矩校核,对机构(3),所有弯矩pjpj MM M≤≤-,故u P 为该结构的极限荷载的上限。
图中虚线是弯矩最大点(5点)的弯矩达到屈服弯矩M y =0.89M p 时弹性状态下结构的弯矩图,由图中可以看出,塑性弯矩的出现顺序是5→4→3→1。
(2)极限平衡法(静力法)当不考虑机动方面的要求时,只考虑平衡与屈服条件,用下限定理求出极限荷载的下限解,称为极限平衡法。
其步骤为:① 去掉多余约束,并用未知力代替,将超静定结构化为静定结构(基本体系); ② 分别按外荷载和未知力在基本体系上画弯矩图;③ 将弯矩图迭加,并使最大或最小弯矩达到塑性弯矩M p 或-M p ; ④ 解平衡方程组,并求出极限荷载; ⑤ 检查是否满足破坏结构条件。
[例题10-2] 试用极限平衡法,求例题10-1的极限荷载P u 。
[解] 取基本体系如图10.1.3(a)所示。
外荷载和未知力引起的弯矩图如(b)、(c)所示。
针对1、2、3、4、5各点弯矩迭加如下:Pl Vl M M -+=1 ①222Hl Pl Vl M M--+= ②(a) 门式刚架 (b) 梁机构(1) (c) 侧移机构(2) (d) 组合机构(3) (e) 弯矩图校核M pp =M y )223Hl Vl M M -+= ③24Hl M M-= ④M M =5 ⑤由(b)、(c)判断M 5、M 4、M 3可能先达到塑性弯矩,即假设M 5=M p 、M 4=-M p 、M 3=M p ,分别代入式⑤、④、③,并求解得:pMM =l M H p4=lM V p4=将M 、H 、V 各值代入公式①、②得:Pl MM p-=51232Pl MMp-=若假设M 2=-M p ,可得: lM P p8=、p pM MM -<-=31,显然是不对的。
若假设M 1=-M p ,可得:图10.1.3 例题10-2图(a) 基本体系(b) 外荷载弯矩图(d) 最终弯矩图M PM PM PM P· ···(c) 各未知力弯矩图lM P p6=、02=M ,此时最终弯矩图如图10.1.3(d)所示,由图可见满足破坏机构条件。
因此其极限荷载为:lM P pu 6=回顾例题10-1,由于该解既是机构上限解,又是平衡下限解,故该解为真实的极限荷载。
由上述二个例题可以看出,对于一些简单的超静定结构,破坏机构法相对简捷些,常为人们采用。
10.1.2 塑性设计的试用范围我国规范规定塑性设计适用于不直接承受动力荷载的固端梁、连续梁以及由实腹构件组成的单层和两层框架结构。
考虑到只采用简单的塑性理论进行分析,所以规定塑性设计只适用于形成破坏机构过程中能产生内力重分配的超静定梁和超静定实腹框架。
由于变截面构件的塑性铰位置很难确定,目前的塑性设计仅适用于等直截面梁和等截面框架结构。
一、二层的实腹框架中,构件截面除受弯矩作用外,还有一定的轴心力,因而构件实为压弯构件或拉弯构件。
轴心力的存在将降低截面所能承受的塑性弯矩。
但一、二层框架构件中的轴心力一般不大,可以认为是以受弯为主,塑性分析时可略去轴力影响,仅在截面的强度验算中考虑轴力的作用。
对于两层以上的框架,我国的理论研究和实践经验都较少,所以没有包括在内。
按简单塑性理论分析,不考虑二阶效应,对二层以上的框架将产生不利影响。
如果设计者掌握了二阶理论的分析和设计方法,并有足够的依据时,也不排除在两层以上的框架设计中采用塑性设计。
由于动力荷载对塑性铰的形成和内力重分配等的影响,目前研究的还不够,故规范限制塑性设计法应用于直接承受动力作用的结构中。
§10-2 塑性设计的必要条件10.2.1 对钢材的要求钢结构塑性设计主要是利用在结构中的若干截面处形成塑性铰后,在该截面处发生转动而产生内力重分配,最后形成破坏机构,因此要求钢材必须具有良好的延性。
规范规定按塑性设计的钢结构,其钢材必须满足三个条件:(1) 强屈比f u /f y ≥1.2;(2) 伸长率δ5≥15%; (3) 相应于f u 的应变εu 不小于20倍的屈服点应变εy 。
这三个条件不但要求钢材具有良好的延性,而且要求具有足够的强化阶段,这是保证塑性铰具有充分的转动能力和板件进入塑性后仍能保持局部稳定所需要的。
试验研究表明,由f u /f y =1.1的钢材制作的连续梁不能实现塑性设计所求得的承载极限,这是因为强屈比太小的ζf f y st u y 5图10.2.1 塑性设计对钢材性能的要求钢材一旦屈服后,钢材的应变硬化模量E st 也将非常小,即使组成板件的宽厚比再小,也会过早地失去稳定,降低塑性铰处承受弯矩的能力。
超静定次数越多的结构,在形成破坏机构时,要求先期出现的塑性铰处的转动角度越大,因此还必须满足δ5和εu 的要求(图10.2.1)。
10.2.2 对板件宽厚比的要求塑性设计的前提是在梁、柱等构件中必须形成塑性铰,且在塑性铰处承受的弯矩等于构件的塑性弯矩,而且在塑性铰充分转动、使结构最终形成破坏结构之前,塑性铰承受的弯矩值不得降低。
如果组成构件的板件宽厚比过大,可能在没达到塑性弯矩之前就发生了局部屈曲,或者虽然在达到塑性弯矩形成塑性铰之前没有发生局部屈曲,但是有可能在塑性铰没来得及充分转动,使结构内力重分配并形成机构之前,板件在塑性阶段就发生了局部屈曲,使塑性弯矩降低。