信号与系统实验-电话拨号音的合成与分解

合集下载

信号的合成与分解实验报告

信号的合成与分解实验报告

声音的奇妙合成与分解实验实验目的:
通过实验观察声音的合成和分解过程,了解声音的本质和特性。

实验材料:
1.计算机音频软件(如Audacity)
2.音频采集卡(可选)
3.扬声器或耳机
4.麦克风
实验步骤:
1.声音的合成
(1)打开音频软件,在音频轨道上录制两段清晰的声音样本,并将它们单独保存。

(2)选择一段音频,将其复制到另一个轨道上,调节两个轨道的音量大小,使它们相互重叠。

此时发现,两段声音通过叠加产生了新的声音,这就是声音的合成过程。

2.声音的分解
(1)将合成的声音和原始声音一起保存,重新打开软件,选择原始的声音轨道,并使用谱分析工具观察其频谱特征。

(2)选定频谱上的一段区间,将其复制到另一个轨道上,并使用滤
波器将这一段区间从原始音频轨道上剔除。

此时,认为分离出了原始
声音中的一段频率区间,即声音的分解过程。

实验结果:
通过实验结果可以发现,声音的合成和分解都是基于声音波形的
基础上进行的。

声音的合成是将两段声音波形相加形成新的波形;声
音的分解则是通过谱分析将一个复杂波形分解成多个简单波形的过程。

实验提示:
在进行合成和分解实验时,注意保持音频清晰,尽量避免外界噪
音的干扰。

此外,实验中的操作需要耐心和细心,需要多次尝试和调整,才能得到合适的实验结果。

深大信工实验四信号的分解与合成实验

深大信工实验四信号的分解与合成实验

深圳大学实验报告课程名称:信号与系统
实验项目名称:信号的分解与合成实验学院:信息工程
专业:电子信息
指导教师:
报告人:学号班级: 4
实验时间:2016-05- 14
实验报告提交时间:2016-05-14
教务部制
送入Y轴,示波器采用X-Y方式显示,观察李沙育图形。

90、1800时,波形分别如图2-2-3当基波与三次谐波相位差为00(即过零点重合)、0
所示。

相位差=0º相位差=90º相位差=180º
图4-3 基波与三次谐波相位的观察
以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比,即3:1,实际上可用同样的方法观察五次谐波与基波的相移和频率比,其应约为5:1。

实验内容:
1、观察信号分解的过程及信号中所包含的各次谐波。

2、观察由各次谐波合成的信号。

数据处理:
基波与三次谐波的相位图、幅度比
基波与五次谐波的相位与幅度比
基波与七次谐波的相位、幅度比
基波与各次谐波的合成图形
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

MATLAB电话拨号音的合成与识别

MATLAB电话拨号音的合成与识别

知识就昱力量MATLAB 电话拨号音的合成与识别1. 实验目的1.本实验内容基于对电话通信系统中拨号音合成与识别的仿真实现。

主要涉及到电话拨号音合成的基本原 理及识别的主要方法,利用 MATLAB 软件以及FFT 算法实现对电话通信系统中拨号音的合成与识别。

并进一步利用 MATLAB 中的图形用户界面 GUI 制作简单直观的模拟界面。

使其对电话通信系统拨号音 的合成与识别有个基本的了解。

2. 能够利用矩阵不同的基频合成 0 — 9不同按键的拨号音,并能够对不同的拨号音加以正确的识别,实 现由拨号音解析出电话号码的过程。

进一步利用 GUI 做出简单的图形操作界面。

要求界面清楚,画面简洁,易于理解,操作简单。

从而实现对电话拨号音系统的简单的实验仿真。

2.实验原理 1. DTMF 信号的组成双音多频 DTMF ( Dual Tone Multi-Frequency )信号,是用两个特定的单音频率信号的组合来代表数 字或功能。

在DTMF 电话机中有16个按键,其中10个数字键0 — 9, 6个功能键*、#、A 、D 。

其中12个按键是我们比较熟悉的按键,另外由第4列确定的按键作为保留,作为功能 1209Hz 、 1336Hz 、 1477H:、 1633Hz 高频群。

从低频群和高频群任意各抽出一种频率进行组合, 共有16种组合,代表16种不同的数字键或功能,每个按键唯一地由一组行频和列频组成,如表 示。

V4 Z Z.+DTMF 的组合功能3. 实验步骤1. DTMF 信号的产生合成现在将对上节制作的图形电话拨号面板上的各控件单位的动作和变化进行设置, 即对tu1.m 文件进行编辑。

其主要的功能是使对应的按键,按照表1的对应关系产生相应的拨号音,完成对应行频及列频的叠加输岀。

此外,对于图形界面的需要,还要使按键的号码数字显示在拨号显示窗口中。

键留为今后他用。

根据CCITT 建议,国际上采用 697Hz 、770Hz 、 852Hz 、 941Hz 低频群及■I知识就昱力量鉴于CCITT对DTMF信号规定的指标,这里每个数字信号取1000个采样点模拟按键信号,并且每两个数字之间用100个0来表示间隔来模拟静音。

电话通信系统中信号音的产生及其实现

电话通信系统中信号音的产生及其实现

合肥学院课程设计报告题目:_ 电话通信系统中信号音的产生与实现系别:__ 电子信息与电气工程系 _ _ 专业:___ 通信工程___ ______ _班级:____ _ ______2013年 12月 09日《现代通信技术课程设计》课程设计任务书电话通信系统中信号音的产生及其实现摘要:随着社会的飞速发展,人与人之间的交流日益密切,电话通信系统运用日趋广泛,每时每刻都充满了我们的生活,给我们的生活提供了方便,带来了不一样的体验和色彩。

在电话通信系统中,各种不同的信号音对我们的通信状态,有很大的提示和指引作用。

本设计中我们通过运用所学的FPGA的相关知识,基于VHDL语言进行编程,借助Quartus软件和GW-48实验开发平台设计实现拨号音,回铃音、忙音、通知音,这四种不同的信号音,并进行验证。

关键词:信号音;VHDL语言;FPGA ;Quartus2 ;实现;正文:一、设计目的1.掌握CPLD可编程器件的编程和下载方法。

2.熟悉用CPLD可编程器件产生程控交换中信令信号的方法。

3.从设计中掌握一些基本技巧,提高自己动手能力和发现问题解决问题的能力。

4.通过设计完成一个小项目,培养团队合作能力,并检验我们四年来所学的专业知识。

二、设计要求利用可编程器件CPLD对系统的全局时钟信号进行分频,产生程控交换系统中电话交换的4种信号音:拨号音:连续发送的500Hz信号。

回铃音:1秒通,4秒断的5秒断续的500Hz信号。

忙音:0.35秒通,0.35秒断的0.7秒断续的500Hz信号。

振铃信号(铃流):以0.2秒通,0.2秒断,以0.2秒通,0.6秒断的1.2秒断续方式发送。

通过软件编程及仿真,正确实现以上四种信号音的发生,最终下载,并用示波器观察波形,和拨数字键调出不同信号音听扬声器发出声音是否正确来验证程序及产生信号音的正确性。

三、设计原理设计中我们用到的开发系统主频为50MHz,因设计要求产生500Hz及25Hz 的信号音,故我们首先考虑把50MHz的主频进行分频。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告广州大学学生实验报告学院日期:2014年5月20专业: 年级: 成绩:姓名: 学号:实验课程名称:信号与系统实验指导老师:实验项目名称:滤波器的频响特性测定一、实验目的1、进一步掌握周期信号的傅里叶级数。

2、用同时分析法观测锯齿波的频谱。

3、全面了解信号分解与合成的原理。

4、掌握带通滤波器的有关特性测试方法及其选频作用。

5、掌握不同频率的正弦波相位差是否为零的鉴别和测试方法(李沙育图形法)。

二、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波叠加而成的。

对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。

而非周期信号包含了从零到无穷大的所有频率成分,每一频率成分的幅度均趋向无限小,但其相对大小是不同的。

通过一个选频网络可以将信号中所包含的某一频率成分提取出来。

对周期信号的分解,可以采用性能较佳的有源带通滤波器作为选频网络。

若周期信号的角频率,则用作选频网络的,种有源带通滤波器的输出频率分别是、Wo,1Wo,2Wo,。

NWo,从每一有源带通滤波器的输出端可2wo、3Wo、4Wo、5Wo( 以用示波器观察到相应谐波频率的正弦波,这些正弦波即为周期信号的各次谐波。

把分离出来的各次谐波重新加在一起,这个过程称为信号的合成。

本实验中,将被测锯齿波信号加到分别调谐于其基波和各次谐波频率的一系列有源带通滤波器电路上。

从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。

本实验所用的被测周期信号是,,,,,的锯齿波,而用作选频网络的,种有源带通滤波器的输出频率分别是,,,,,、,,,Hz、300Hz、 400Hz、500Hz、600Hz、700Hz,因而能从各有源带通滤波器的两端观察到基波和各次谐波。

奇次谐波的相位与基波同相,而偶次谐波的相位与基波反相。

各次谐波之间的相位差可以用李沙育图形法测量.。

利用运算放大器可以制成加法器,通过加法器将锯齿波分解出来的各次谐波相叠加,可以重新获得锯齿波。

信号与系统实验报告 实验五 信号的分解与合成

信号与系统实验报告  实验五  信号的分解与合成

实验五信号的分解与合成基波二次谐波
三次谐波四次谐波
五次谐波信号合成
调整后信号合成三次谐波与基波相位差
五次谐波与基波相位差
通过观察和示波器测量,可以发现各次谐波的幅值符合方波的傅利叶级数各项系数之比,此时,基波、三次谐波、五次谐波合成的信号最贴近原方波信号。

基波二次谐波
三次谐波四次谐波
五次谐波信号合成
三次谐波与基波相位差五次谐波与基波相位差
数各项系数之比,此时,基波、三次谐波、五次谐波合成的信号最贴近原三角波信号
2.分别绘出三角波基波、三次谐波、五次谐波及合成的波形在同一坐标
平面的图形。

3.总结信号的分解与合成原理。

信号分解:采用性能较好的有源带通滤波器作为选频网络,选频网络的输出频率调整到被分解信号的基波、二次谐波、三次谐波四次、五次谐波,分别将电信号中所包含的该谐波频率成份提取出来。

信号合成:分解后的各次谐波信号分别输送到加法器中合成即可。

但要调整各次谐波的幅度和相位符合傅立叶分解级数中各次谐波间的幅度相位的比例关系,才能合成出效果良好的信号。

4. 总结方波、三角波所含频谱成分的差异。

等幅三角波与方波,傅立叶分解后,同次谐波相比,三角波信号分量幅度小。

方波与三角波相比,含有的高次谐波更丰富。

信号与系统中信号分解与合成实验报告

信号与系统中信号分解与合成实验报告

信号与系统中信号分解与合成实验报告信号与系统实验报告非正弦周期信号的分解与合成专业:班级:姓名:学号:用同时分析法观测50Hz非正弦周期信号的分解与合成用同时分析法观测50Hz 非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备1、信号与系统实验箱:THKSS,A型或THKSS,B型或THKSS,C型。

2、双踪示波器,数字万用表。

三、实验原理1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。

2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示方波频谱图各种不同波形的傅立叶级数表达式1、方波4u111 mu(t),(sin,t,sin3,t,sin5,t,sin7,t,,,,),3572、三角波8U11 mu(t),(sin,t,sin3,t,sin5,t,,,,)2,9253、半波2U1,11 mu(t),(,sin,t,cos,t,cos4,t,,,,),243154、全波4U1111 mu(t),(,cos2,t,cos4,t,cos6,t,,,,),2315355、矩形波,U2U ,,12,,13,,mmu(t),,(sincos,t,sincos2,t,sincos3,t,,,,)T,T2T3T实验装置的结构如下图所示信号分解与合成实验装置结构框图,图中LPF为低通滤波器,可分解出非正弦周期函数的直流分量。

信与系统实验电话拨音的合成与分解

信与系统实验电话拨音的合成与分解
3.涉及的MATLAB相关内容
1. Set
功能:设置对象属性。
基本调用格式:set(H,'PropertyName',PropertyValue,...) 用属性值'PropertyValue'设置关于用参量 H 标志的对象(一个或多个)的属性名'PropertyName'(一个或多个)。H 可以为一句柄的向量。在这种情形下,命令 set 可以设置所有对象的属性值。
n=[1:1000]; % 每个数字 1000 个采样点表示
d0=sin(2*pi*697/8192*n)+sin(2*pi*1209/8192*n); % 对应行频列频叠加
n0=strcat(get,'string'),'1'); % 获取数字号码
set,'string',n0); % 显示号码
space=zeros(1,100); %100 个 0 模拟静音信号
end
t(i)=tel;
c=strcat(number,int2str(tel));
number=c;
i=i+1;
end
msgbox(strcat('拨打的号码为:',number),'分析');
程序解释: 确定行频和列频的数值范围是通过计算得出的:已知输入信号的取样频率fs=8192Hz ,而做 FFT 的 N=2048,则频谱分辨率为
2. DTMF 信号的产生合成
现在将对上节制作的图形电话拨号面板上的各控件单位的动作和变化进行设置,即对 文件进行编辑。其主要的功能是使对应的按键,按照表 1 的对应关系产生相应的拨号音,完成对应行频及列频的叠加输出。此外,对于图形界面的需要,还要使按键的号码数字显示在拨号显示窗口中。 鉴于 CCITT 对 DTMF 信号规定的指标,这里每个数字信号取 1000 个采样点模拟按键信号,并且每两个数字之间用 100 个 0 来表示间隔来模拟静音。以便区别连续的两个按键信号。间隔的静音信号也是在按键时产生的。 以按键 1 为例,简单介绍拨号音产生的过程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给每一个域名赋值,赋值可以为矢量也可以为标量,但是矢量必须有相同的维数。
二、实验操作部分
1.实验数据、表格及数据处理
2.实验操作过程(可用图表示)
3.实验结论
2.实验操作过程(可用图表示)
1.图形电话拨号面板的制作
利用GUI图形用户界面设计工具制作电话拨号面板,把DTMF信号和电话机的键盘矩阵对应起来。其中选用我们熟悉的10个数字键0 —9,2个功能键“*”、“#”,另四个键省略。按照图1电话机键盘矩阵的排列方式制作四行三列的按键控件。每个按键可用(PushButton)添加。然后,为了更直观的反映对应的按键号码,可以设置一个编辑框,用于动态的显示拨号号码,模拟实际电话的拨号显示窗口。编辑框可用(Edit Text)添加。另外,为了图形电话拨号面板的简洁美观,可以添加空白区域作为背景,并用静态文本框制作文字信息。背景可用(Frame)添加,静态文本框可用(Static Text)添加。最终利用GUI图形用户界面设计工具生成的图形电话拨号面板用于拨号音的合成产生部分。
p=audioplayer(d0,8192); %产生拨号音
global soun
if(soun==1)
play(p)
pause(0.5)
end
str=get(handles.edit1,'string');
l=length(str);
str=strrep(str,str,str(1:l-1)); %去掉末尾号码在面板上的显示
global n
global contact
found=0;
x=0;
for i=1:n
if (strcmp(contact(i).num,str)==1)
found=1;
x=i;
end
end
if(found==1)
str=strcat('正在打电话给:',contact(x).name);
msgbox(str,'电话');
2. find
功能:找出矩阵X中非0项的坐标和取值。
基本调用格式:[row,col] = find(X, ...)常与逻辑运算法一起使用,可进一步明确搜索数值的范围。
3. disp
功能:显示文本或数组。
基本调用格式:disp(X)
4. struct
功能:创建一个结构体数组。
基本调用格式:
s = struct('field1', values1, 'field2',values2, ...)
四、教师评语
指导教师年月日
2. DTMF信号的产生合成
现在将对上节制作的图形电话拨号面板上的各控件单位的动作和变化进行设置,即对tu1.m文件进行编辑。其主要的功能是使对应的按键,按照表1的对应关系产生相应的拨号音,完成对应行频及列频的叠加输出。此外,对于图形界面的需要,还要使按键的号码数字显示在拨号显示窗口中。鉴于CCITT对DTMF信号规定的指标,这里每个数字信号取1000个采样点模拟按键信号,并且每两个数字之间用100个0来表示间隔来模拟静音。以便区别连续的两个按键信号。间隔的静音信号也是在按键时产生的。以按键1为例,简单介绍拨号音产生的过程:
fs/N=8192/2048=4Hz,由此可算出频谱图上任意点对应的频率K=f/F。例如,数字8的高、低端频率为fl= 852Hz, fh=1336Hz,则在谱图上对应的点Kl=fl/F=213,Kh=fh/F=334
拨号来电识别的代码如下:
n=[1:1000]; %每个数字1000个采样点表示
d0=sin(2*pi*941/8192*n)+sin(2*pi*1477/8192*n); %对应行频列频叠加
global NUM
wavplay(NUM,8192);
L=length(NUM);
n=L/1100;
number='';
for i=1:n
j=(i-1)*1100+1;
d=NUM(j:j+999); %截取出每个数字
f=fft(d,2048); %以N=2048作FFT变换
a=abs(f);
N=2048;
3.涉及的MATLAB相关内容
1. Set
功能:设置对象属性。
基本调用格式:set(H,'PropertyName',PropertyValue,...)用属性值'PropertyValue'设置关于用参量H标志的对象(一个或多个)的属性名'PropertyName'(一个或多个)。H可以为一句柄的向量。在这种情形下,命令set可以设置所有对象的属性值。
end
t(i)=tel;
c=strcat(number,int2str(tel));
number=c;
i=i+1;
end
msgbox(strcat('拨打的号码为:',number),'分析');
程序解释:确定行频和列频的数值范围是通过计算得出的:已知输入信号的取样频率fs =8192Hz,而做FFT的N=2048,则频谱分辨率为
num(2)=300+find(p(300:380)==max(p(300:380))); %找列频
if (num(1) < 180) row=1; %确定行数
elseif (num(1) < 200) row=2;
elseif (num(1) < 220) row=3;
else row=4;
end
elseif z==[1,3] tel=3;
elseif z==[2,1] tel=4;
elseif z==[2,2] tel=5;
elseif z==[2,3] tel=6;
elseif z==[3,1] tel=7;
elseif z==[3,2] tel=8;
elseif z==[3,3] tel=9;
5.电话本的存储:定义全局的结构体数组,把电话号码和姓名都以字符串的格式保存。
来电识别:确认拨号后,遍历电话本结构体中的号码,比较比较所拨打号码和和电话本中的号码是否相同。
静音功能:定义一个全局的变量保存静音状态,按下静音键时状态变为1,按下室外时变为0,每次waveplay时先判断静音状态,根据判断结果决定是否播放按键音。
end
3. DTMF信号的检测识别
要实现电话拨号音(DTMF)信号的检测识别,可以通过直接计算付里叶变换得到输入信号的组成频率。这里采用FFT算法对信号进行解码分析。首先对接收到的数字信号作FFT分析,计算出其幅度谱,进而得到功率谱,组成输入信号的频率必定对应功率谱的峰值。对于连续的双音多频(DTMF)信号,需要把有效的数字拨号信号从静音间隔信号中分割提取出来,然后再用FFT算法对信号进行解码分析。MATLAB实现信号音的识别如下:
space=zeros(1,100); %100个0模拟静音信号
global NUM
phone=[NUM,d0];
NUM=[phone,space]; %存储连续的拨号音信号
p=audioplayer(d0,8192); %产生拨号音
global soun
if(soun==1)
play(p)
pause(0.5)
n0=strcat(get(handles.edit1,'string'),'#'); %获取数字号码
set(handles.edit1,'string'1,100); %100个0模拟静音信号
global NUM
phone=[NUM,d0];
NUM=[phone,space]; %存储连续的拨号音信号
武汉大学教学实验报告
电子信息学院专业2014年11月29日
实验名称电话拨号音的合成与分解指导教师
姓名年级大三学号201230*******成绩
源程序下载地址:
访问密码:skyw
一、预习部分
1.实验目的
2.实验基本原理
3.主要仪器设备(含必要的元器件、工具)
1.实验目的
本实验基于对电话通信系统中拨号音合成与识别的仿真实现,主要涉及到电话拨号音合成的基本原理及识别的主要方法,利用MATLAB软件以及FFT算法实现对电话通信系统中拨号音的合成与识别。并进一步利用MATLAB中的图形用户界面GUI制作简单直观的模拟界面。使其对电话通信系统拨号音的合成与识
else
str=strcat('正在拨打',str,',请等待...');
msgbox(str,'电话');
end
三、实验效果分析(包括仪器设备等使用效果)
实验分析:
实验的到数字1的频谱结构如上图,频谱的峰值出现在DTFM频率表中规定的频率附近。
1.话音识别的步骤:
分组FFT变换寻找每个组功率最大的两个频率点比较确定数字
别有个基本的了解。
能够利用矩阵不同的基频合成0-9不同按键的拨号音,并能够对不同的拨号音加以正确的识别,实现由拨号音解析出电话号码的过程。进一步利用GUI做出简单的图形操作界面。要求界面清楚,画面简洁,易于理解,操作简单。从而实现对电话拨号音系统的简单的实验仿真。
2.实验原理
双音多频DTMF(Dual Tone Multi-Frequency)信号,是用两个特定的单音频率信号的组合来代表数字或功能。在DTMF电话机中有16个按键,其中10个数字键0—9,6个功能键*、#、A、B、C、D。其中12个按键是我们比较熟悉的按键,另外由第4列确定的按键作为保留,作为功能键留为今后他用。根据CCITT建议,国际上采用697Hz、770Hz、852Hz、94lHz低频群及1209Hz、1336Hz、1477Hz、1633Hz高频群。从低频群和高频群任意各抽出一种频率进行组合,共有16种组合,代表16种不同的数字键或功能,每个按键唯一地由一组行频和列频组成,如表1所示。
相关文档
最新文档