2020年信号处理知识点总结
数字信号处理主要知识点整理复习总结

n
(c) y(n) x(k) k
(d) y(n) x(n)
解:(a) 为因果系统,由定义可知。
(b)由于 y(n 1) 领先于 x(n) ,故为非因果系统。
n
(c) y(n) x(k) k 由于 y(n) 由目前和过去的输入所决定,故为
*实际系统一般是因果系统; * y(n)=x(-n)是非因果系统,因n< 0的输出决定 n>0时 的输入;
Stable System (稳定系统) (1) 有界输入导致有界输出
(2)
| h(n) | (线性、时不变系统)
n
(3) H(z)的极点均位于Z平面单位圆内(因果系统)
[例5] 判断下列系统是否为因果系统。
第二部分 离散时间系统
1、线性时不变系统的判定 2、线性卷积 3、系统稳定性与因果性的判定 4、线性时不变离散时间系统的表示方法 5、系统分类及两种分类之间的关系
1、线性系统:对于任何线性组合信号的响应等于 系统对各个分量的响应的线性组合。
线性系统 判别准则
若 y1(n) T x1(n) y2(n) T x2(n) 则 T ax1(n) bx2(n) ay1(n) by2(n)
① y(n)的长度——Lx+Lh-1
② 两个序列中只要有一个是无限长序列,则卷 积之后是无限长序列
③ 卷积是线性运算,长序列可以分成短序列再 进行卷积,但必须看清起点在哪里
4、系统的稳定性与因果性 系统 时域充要条件
Z域充要条件
因果 h(n)≡0 (n<0)
ROC: R1 <┃Z┃≤∞
数字信号处理知识点总结

频域采样
X (k)
N 1
x(n)e
j 2 N
kn,0
k
N
1
3. DFT
n0
频域采样不失真条件:采样长度不小于信号长度(频域采样定理)
2/11/2020
9
2) Computation cost of DFT
N 1
X(k) x(n)WNnk n0
x(n)
1 N
Nபைடு நூலகம்1
单位圆
2/11/2020
7
Discrete Fourier Transform
x n
Sequence’s Fourier Transform
X e jw
Periodic Copies
xn
DFS
N
X% k
Extract One period
Extract One period
xa( t )|tnT x( n ) sin( nTs ) x( n ) sin(n )
时域离散 幅度量化
4
数字信号处理 Digital signal processing
(1) 模拟信号数字化过程 奈奎斯特采样定理 Nyquist sampling theorem
xa t
优越性,特别当点数N越大时,
FFT的优点更为明显。
2/11/2020
13
m=0
x(0)
x(1)
x(2)
x(3) x(4) x(5) x(6) x(7)
W
0 N
1
W
1 N
1
W
2 N
1
W
3 N
数字信号处理知识点总结

数字信号处理知识点总结数字信号处理技术为人们提供了处理和分析信号的便利方式,同时也加快了信号的传输速度和提高了传输质量。
数字信号处理技术在多个领域都有着广泛的应用,比如图像处理、音频处理、通信系统、雷达系统、生物医学信号处理等等。
在这些领域中,数字信号处理技术能够对信号进行分析、滤波、编码、解码、压缩等处理,从而提高系统性能和降低成本。
数字信号处理的基础知识点主要包括以下几个方面:1. 信号和系统基础:信号与系统是数字信号处理的基础,需要深入理解信号的特性和系统的行为。
信号与系统的基本概念包括信号的分类、时域和频域分析、连续时间信号和离散时间信号、因果性、稳定性等等。
2. 采样和量化:采样是将连续时间信号转换为离散时间信号的过程,而量化是将模拟信号转换为数字信号的过程。
采样和量化的基本概念包括采样定理、采样率和量化精度。
3. 离散时间信号的表示和运算:离散时间信号可以用离散时间单位冲激函数的线性组合表示,同时可以进行离散时间信号的运算,比如线性和、线性积分、线性差分等。
4. 离散时间系统的性质和分析:离散时间系统的特性包括线性性、时不变性、因果性、稳定性等,同时还需要对离散时间系统进行频域和时域分析。
5. 离散傅里叶变换(DFT):DFT 是将离散时间信号转换到频域的一种方法,它可以帮助分析信号的频率分量和谱特性。
6. Z变换:Z 变换是将离散时间信号转换到 Z 域的一种方法,它可以帮助分析离散时间系统的频域特性。
7. 数字滤波器设计:数字滤波器设计是数字信号处理中非常重要的一部分,它包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器的设计方法。
8. FFT 算法:快速傅里叶变换(FFT)是一种高效的计算 DFT 的算法,它能够大大提高傅里叶变换的计算速度。
9. 数字信号处理系统的实现:数字信号处理系统的实现可以通过软件方式和硬件方式两种方法进行,比如使用 MATLAB、C 语言等软件实现,或者使用专用的数字信号处理器(DSP)进行硬件实现。
信号处理(PDF)

时域离散信号:§例:已知模拟信号是一个正弦波,将它转换成时域离散信号和数字信号。
} {,0,0.9sin 50,0.9sin100,0.9sin150T T ππ时域离散信号n 只能取整数总结:时域离散信号可以通过对模拟信号得到,如果将它的每一个序列值经过有限位的,得到一个用二进制编码表示的序列,该序列就数字信号。
序列值一般有无限位小数。
如果用四位二进制数表示的幅度,二进制数第一位表示符号位,该二进制编码形成的信号数字信号数字信号编码、量化号之间是有差别的。
总结:随着二进制编码位数增加,数字信号和时域离散信号之间的差别越来越小。
[x n 换算成十进制,则x(n 位数有关,如果用换算成十进制,则时域离散信号的来源有两类:¾¾例:每天上午压均正常,收缩压不正常,仅记录收缩压并用时域离散信号号也称为时域离散信号表示方法(((x(n)……¾,如果将它的每一个序列值经过有限位的,得到一个用二进制编码表示的序列,该序列就是字信号¾号之间的差别越来越小。
110()00n n n δ=⎧=⎨≠⎩δδ()t δ10 ()00nu nn≥⎧=⎨<⎩101()0n N n N R n ≤≤−⎧=⎨⎩其它4、实指数序列()()nx n a u n =a 为实数5、复指数序列00()()j n j n nx n e e eσωωσ+==⋅00cos()sin()n ne n je n σσωω=+0ω为数字域频率j n n 3x(n)=0.9e π例:6、正弦序列0()sin()x n A n ωφ=+()()sin()a t nTx n x t A nT φ===Ω+0/sT f ω=Ω=Ω0ω:数字域频率Ω:模拟域频率T :采样周期s f :采样频率()sin()a x t A t φ=Ω+模拟正弦信号:数字域频率是模拟域频率对采样频率的归一化频率弧度弧度/秒(x n8x 要使表示成取(3)任何整数例:判断解:如果一个正弦型序列是由一个连续信号采样而得到的,那么,时间间隔得到的采样序列是周期序列呢?设连续正弦信号信号的周期为ω频率乘以频率。
信号处理技术的基础知识

信号处理技术的基础知识信号是工程学和科学研究中经常用到的一种概念,它可以指电信号、声音信号、图像信号等多种形式的信息。
信号处理技术是指通过数学、计算机、电子等手段对信号进行分析、处理和提取,以实现对信号的识别、转换、压缩等操作。
信号处理技术的应用场景非常广泛,如通信、音频处理、图像处理、生物医学、控制系统等领域。
因此,了解信号处理技术的基础知识非常重要。
一、信号的类型信号可以被分为模拟信号和数字信号两种类型。
模拟信号是指在一定时间内连续变化的信号,如声音信号、光信号等。
在模拟信号处理过程中,需要对信号进行采样、量化和滤波等操作。
数字信号是指以数字形式表示的信号,如数字音频、数字图像等。
数字信号通常是通过采样和量化将模拟信号转化为数字信号,进而进行数字信号处理。
数字信号处理具有精度高、稳定性好、计算速度快等优点。
二、信号的表示方式信号可以通过时域、频域和复数域等方式进行表示。
时域表示法是指通过在时间轴上画出信号在一段时间内随时间变化的曲线,来表示信号的变化。
时域表示法常用于分析信号的尖峰、谷底、波形和周期等特征。
频域表示法是指将信号分解成各种不同频率的正弦波的加权和。
频域表示法常用于分析信号的频谱、频率组成等特征。
复数域表示法是指将信号表示为复数形式,以实部和虚部分别表示信号在两个方向上的变化。
复数域表示法常用于分析信号的相位差等特征。
三、信号处理的基本操作对信号进行处理的基本操作包括采样、量化、滤波和变换等。
采样是指将连续的模拟信号转化为离散的数字信号的过程。
采样频率越高,采样的信号精度就越高。
量化是指将信号的连续值转换成离散的数字值的过程。
量化级别越高,转换的数字精度就越高。
滤波是指对信号进行去除噪声、增强信号等处理。
滤波分为低通滤波、高通滤波、带通滤波和带阻滤波等多种类型。
变换是指将信号在时域和频域之间进行转换的过程。
变换包括傅里叶变换、小波变换、半波整流变换等多种类型。
四、信号处理的应用场景信号处理技术被广泛应用于通信领域、音频处理、图像处理、生物医学、控制系统等多个领域,具体应用场景包括:通信领域:信号处理技术被应用于数字通信、无线通信、卫星通信等多种通信方式中,可以通过处理信号实现数据的传输、解调、编解码、多路复用等功能。
信号处理的基本知识

传感器类型:根据传感器各构成部分工作方式的不同,可将传感器分成不同的类型;依据接收方式不同,有相对式和绝对式(惯性式)之分;依据机电转换输出量的不同又有发电机型和参数型两种类型。
测量电路可输出不同的关系特性,以适应不同的测试要求。
如位移(间隙)电压特性、速度电压特性、加速度电压特性等等。
所谓相对接收方式,是指以传感器外壳为参考坐标,借助于顶杆或间隙的变化来直接接收机械振动量的一种工作方式。
获得的结果是以外壳为参考坐标的相对振动值。
惯性接收方式通过质量-弹簧单自由度振动系统接收被测振动量,工作时,其外壳固定在振动物体上,整个传感器(包括质量块在内)跟着振动物体一起振动,但其中的机电转换环节---线圈由于是用极为柔软的弹簧片固定在外壳上的,它的自振频率比振动体的振动频率低的多,因而对振动体而言便处于相对静止的状态,换句话说,线圈是固定不动的,是一个绝对参考坐标系统,所以测得的结果是绝对振动值。
惯性接收方式有时也称为地震式。
传感器的性能指标灵敏度:指沿着传感器测量轴方向对单位振动量输入x可获得的电压信号输出值u,即s=u/x。
与灵敏度相关的一个指标是分辨率,这是指输出电压变化量△u可加辨认的最小机械振动输入变化量△x的大小。
为了测量出微小的振动变化,传感器应有较高的灵敏度。
使用频率范围:指灵敏度随频率而变化的量值不超出给定误差的频率区间。
其两端分别为频率下限和上限。
为了测量静态机械量,传感器应具有零频率响应特性。
传感器的使用频率范围,除和传感器本身的频率响应特性有关外,还和传感器安装条件有关(主要影响频率上限)。
动态范围:动态范围即可测量的量程,是指灵敏度随幅值的变化量不超出给定误差限的输入机械量的幅值范围。
在此范围内,输出电压和机械输入量成正比,所以也称为线性范围。
动态范围一般不用绝对量数值表示,而用分贝做单位,这是因为被测振值变化幅度过大的缘故,以分贝级表示使用更方便一些。
相移:指输入简谐振动时,输出同频电压信号相对输入量的相位滞后量。
数字信号处理重要知识点

数字信号处理知识点1、混叠是怎样产生的?答:采样信号的频率太低,低于被检测信号频率的二倍系统就会发生混叠。
2、如何判定线性时不变系统的因果性和稳定性?答:因果性:响应不出现在激励之前稳定性:1)、激励有界,响应有界2)、连续系统,h(t)绝对可积;系统频域函数的收敛域包含虚轴(极点全在左半平面)3)、离散系统,h(n)绝对可和;系统频域函数的收敛域包含单位圆(极点全在单位圆内)3、时域采样在频域产生什么效应?答:1)对连续信号进行等间隔采样形成的采样信号,其频谱是原模拟信号的频谱以采样频率为周期进行周期延拓形成的2)如果连续信号是带限信号,当采样角频率大于最高截止频率,让采样信号通过理想低通滤波器时,可以唯一地恢复出原连续信号。
否则,会造成采样信号中的频谱混叠现象,不能无失真地恢复原连续信号。
4、用离散傅里叶变换进行谱分析时,提高频域分辨率有哪些措施?答:增加采样点数5、何谓全通滤波器?其零极点分布有何特点?答:全通滤波器:幅度特性在整个频带[0,2π]上均为常数的滤波器零点和极点互成倒易关系,均以共轭对形势出现。
6、何谓最小相位系统?如何判断系统是最小相位系统与否?答:最小相位系统:全部零点位于单位圆内的因果稳定系统7、如何将模拟滤波器 H (s)转换为数字滤波器 H(z)脉冲响应不变法或双线性变换法答:优点:数字频率与模拟频率成线性关系 w=nT;缺点:会产生频率混叠现象,只适合低通和带通滤波器的设计。
8、补零和增加信号长度对谱分析有何影响?是否都可以提高频谱分辨率?答:时域补零和增加信号长度,可以使频谱谱线加密,但不能提高频谱分辨率。
9、什么是吉布斯现象?旁瓣峰值衰减和阻带最小衰减各指什么?有什么区别和联系?答:增加窗口长度 N 只能相应地减小过渡带宽度,而不能改变肩峰值。
例如,在矩形窗地情况下,最大肩峰值为 8.95%;当 N 增加时,只能使起伏振荡变密,而最大肩峰值总是 8.95%,这种现象称为吉布斯效应。
信号处理基础知识

信号处理基础知识在我们生活的这个充满信息的世界里,信号无处不在。
从我们日常交流使用的手机信号,到医疗设备检测身体状况的生理信号,再到各种电子设备中的电信号,信号处理在其中发挥着至关重要的作用。
那么,什么是信号处理?它又包含哪些基础知识呢?首先,让我们来理解一下什么是信号。
简单来说,信号就是传递信息的载体。
它可以是随时间变化的电压、电流、声音、图像等等。
例如,当我们说话时,声音就是一种信号,它包含了我们想要表达的信息。
而信号处理,就是对这些信号进行各种操作和变换,以提取有用的信息、去除噪声、增强信号的特征或者将信号转换成更适合传输、存储和分析的形式。
信号可以分为两大类:模拟信号和数字信号。
模拟信号是连续变化的,它在时间和幅度上都是连续的。
比如老式的磁带录音,上面的磁信号就是模拟信号。
而数字信号则是离散的,它在时间和幅度上都进行了量化。
像我们现在使用的电脑中的数据、手机里的数字音频等,都是数字信号。
在信号处理中,有几个重要的概念我们需要了解。
第一个是采样。
由于计算机只能处理数字信号,所以我们需要将模拟信号转换为数字信号。
采样就是这个转换过程中的关键步骤。
它是按照一定的时间间隔对模拟信号进行测量,得到一系列离散的样本值。
采样定理告诉我们,为了能够从采样后的数字信号中完全恢复出原始的模拟信号,采样频率必须至少是原始信号最高频率的两倍。
第二个是量化。
在采样得到样本值后,我们还需要将这些值用有限的数字来表示,这就是量化。
量化会引入一定的误差,但通过合理选择量化级数,可以控制误差在可接受的范围内。
第三个是傅里叶变换。
这是信号处理中非常强大的工具。
它可以将一个信号从时域转换到频域,让我们能够看到信号在不同频率上的成分。
通过傅里叶变换,我们可以分析信号的频率特性,例如哪些频率成分比较强,哪些比较弱,这对于去除噪声、滤波等操作非常有帮助。
接下来,我们说一说信号处理中的滤波。
滤波就是让特定频率范围内的信号通过,而阻止其他频率的信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章信号1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体2.信号的特性:时间特性,频率特性3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限6.信号的频谱有两类:幅度谱,相位谱7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析第二章连续信号的频域分析1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位4.周期信号频谱的特点:离散性,谐波性,收敛性5.周期信号由无穷多个余弦分量组成周期信号幅频谱线的大小表示谐波分量的幅值相频谱线大小表示谐波分量的相位6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和7.非周期信号可看成周期趋于无穷大的周期信号8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;非周期信号可以用其自身的积分表示10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号11.周期信号的傅里叶变换:周期信号:一个周期绝对可积◊傅里叶级数◊离散谱非周期信号:无限区间绝对可积◊傅里叶变换◊连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合脉冲函数的位置:ω=nω0 , n=0,±1,±2, …..脉冲函数的强度:傅里叶复指数系数的2π倍周期信号的傅立叶变换也是离散的;谱线间隔与傅里叶级数谱线间隔相同13.信号的持续时间与信号占有频带成反比14.信号在时域的翻转,对应信号在频域的翻转15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变第三章 连续信号分析1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频 (频nf0)分量2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身; f(t)与冲激偶的卷积,δ(t)称为微分器 f(t)与阶跃函数的卷积, u(t)称为积分器 3. 函数正交的充要条件是它们的内积为0第二章 离散傅里叶变换及其快速算法1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列2.周期卷积特性:同周期序列的时域卷积等于频域的乘积同周期序列的时域乘积等于频域的卷积3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和4.有限长序列隐含着周期性)()()(t f t t f '='*δ⎰∞-=*td f t u t f λλ)()()(5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响6.FFT的计算工作量:FFT算法对于N点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法第三章随机信号分析与处理1 随机信号是随时间变化的随机变量,用概率结构来描述。
对于离散型随机变量,用概率述;对于连续型随机变量,用概率密度描述。
2方差:用于表明随机信号各可能值对其平均值的偏离程度,是随机信号取值分散性的度量3平稳随机信号的均值、方差、均方值是与时间无关的常量,相关函数及协方差仅是时移τ的函数,与随机信号的起止时刻t无关。
平稳随机信号最重要的特点是随机信性。
在不同时刻具有相同的统计特征。
与平稳随机信号相反,非平稳随机信号的统计特性是随着时间的推移而变化的。
4平稳随机信号的每一个样本都同样地经历了随机信号其它样本的各种可能状态,因而从一个样本的统计特性(时间平均)就能得到全部样本的统计特性(集平均),此类信号称为各态遍历性随机信号。
5可以用时间充分长的单个样本函数的时间平均统计参数来代替总体的平均统计值6离散时间信号功率谱的特点:1)功率谱是周期性的,因此可作傅立叶级数分解;2)反演变换的积分区间是-p---p7系统的功率谱传输能力仅与系统的幅频特性有关,而与系统的相频特性无关。
互功率谱密度不仅包含有系统幅频特性函数的幅度信息,还包含有相位信息8频谱分析不改变信噪比功率谱分析工程信号分析的关键是降低噪声,提高信噪比傅里叶变换不会提高信噪比。
相关函数可以提高信噪比,但不反映频谱相关函数的傅里叶变换功率谱,可以提高信噪比,又能反映频率结构9能量谱从频域提取信号中的周期分量或同频分量相关函数从时域提取信号中的周期或同频分量10功率谱的性质函数性质自功率谱Sxx(f)是实偶函数;互功率谱Sxy(f)是非奇非偶复函数;双边谱:f∈(-∞,∞);功率谱与相关函数包含的信息完全等价。
物理性质Gxx(f)下的面积等于信号的总能量Gxx(f)为能量有限信号的能量谱密度函数或功率有限信号的功率谱密度函数Gxx(f)任意频段间的面积=该频带下信号的能量11 Rxy(τ)能从延时域上描述输出与输入的相关关系相干函数则从频域上描述输出与输入的相关关系12 提高频率分辨率的途径:保持N不变,设法降低fm 或增大采样间隔13细化分析的基本思想移频低通滤波重新采样FFT 14功率谱分析(Spectrum)的局限性: 1仅适应于线性叠加信号的频谱分析2两信号频带不交叠时信号的分离3不适用于非线性信号处理15从倒功率谱可以恢复信号的功率谱!一般在不关心相位信息时,采用实倒谱离散信号的分析一离散信号的时域描述和分析1模拟信号:时间和幅值均连续的信号(一般现实信号均为模拟信号)离散时间信号(序列):只在离散的时间点上有定义的信号,通常由模拟或连续时间信号经采样得到.2在没有任何条件限制的情况下,从连续时间信号采样所得到的样本序列不能唯一地代表原来的连续时间信号。
对同一个连续时间信号,当采样间隔不同时也会得到不同的样本序列3时域抽样等效频域周期重复频域抽样等效时域周期重复4抽样定理时域对f(t)抽样等效于频域对F(w)重复时域抽样间隔不大于1/2Wm频域对F(w)抽样等效于时域对f(t)重复频域抽样间隔不大于1/2Tm满足抽样定理,则不会产生混叠二离散信号频域分析1离散傅里叶级数的性质2时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱密度函数。
时域连续函数造成频域是非周期的谱而频域的离散对应时域是周期函数。
2 一个域的离散造成另一个域的周期延拓,因此离散傅里叶变换的时域和频域都是离散的和周期的。
3 时域的离散化造成频域的周期延拓,而时域的非周期对应于频域的连续4四种傅里叶变换形式的归纳时间函数频率函数傅里叶变换连续和非周期非周期和连续傅里叶级数连续和周期(T0) 非周期和离散(Ω0=2π/T0)序列的傅里叶变换离散(T)和非周期周期(Ωs=2π/T)和连续离散傅里叶变换离散(T)和周期(T0) 周期(Ωs=2π/T)和离散(Ω0=2π/T0)5 DFS:离散傅里叶级数DTFT:序列的傅里叶变换DFT:离散傅里叶变换6 周期序列的DFS及其性质7 x(n)的N点DFT是x(n)的z变换在单位圆上的N点等间隔抽样x(n)的DTFT在区间[0,2π]上的N点等间隔抽样。
8有限长序列的圆周移位导致频谱线性相移,而对频谱幅度无影响。
9时域序列的调制等效于频域的圆周移位10 圆周卷积过程:1)补零2)周期延拓3)翻褶,取主值序列4)圆周移位5)相乘相加11 时域抽样造成频域周期延拓,频域抽样造成时域周期延拓12 x(n)为无限长序列—混叠失真x(n)为有限长序列,长度为M N>=M 不失真N<M 混叠失真13 频率采样定理若序列长度为M,则只有当频域采样点数N>=M 不失真地恢复原信号14 N一定时信号最高频率与频率分辨率相矛盾同时提高信号最高频率和频率分辨率,需增加采样点数N。
15 频谱泄漏改善方法:1)增加x(n)长度2)缓慢截短16栅栏效应改善方法增加频域抽样点数N(时域补零),使谱线更密17提高频率分辨率方法:增加信号实际记录长度补零并不能提高频率分辨率18序列的抽取与插值抽取:减小抽样频率插值:加大抽样频率19三FFT变换1DFT要解决两个问题:一是离散与量化,二是快速运算。
2 DFS性质3周期卷积特性同周期序列的时域卷积等于频域的乘积同周期序列的时域乘积等于频域的卷积4 周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和两个不同长度的序列可以进行线性卷积;只有同周期的两个序列才能进行周期卷积,且周期不变5有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响。
6 循环卷积两序列长度必须相等不等补0 卷积结果长度与两信号长度相等为N线性卷积两序列长度可不等卷积结果长度N1+N2—17 FFT的计算工作量FFT算法对于N点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法8 一次复数乘法换算成实数运算量4N2次实数乘法运算,N(4N-2)次实数加法运算9 DFT的基本思想1)利用DFT系数的对称性和周期性,合并DFT 运算中的某些项;(2)将长序列分解为短序列,从而减少其运算量。
精品文档10设一序列x(n)的长度为L=9,应加零补长为N=24=16 应补7个零值11循环卷积运算量大于直接卷积运算量时采用分段卷积(重叠保留法重叠相加法)信号处理基础1信号和系统的关系:信号是系统实施处理的对象,而系统是信号处理的工具。
2系统的性质连续时间系统:①系统的输入、输出信号,及所有状态变量都是连续时间信号;②通常用微分方程或连续时间状态方程描述。