240克塑料注射机液压系统设计计算
塑料注射机液压系统设计课程设计

塑料注射机液压系统设计课程设计塑料注射机液压系统设计课程设计塑料注射机液压系统设计目录第一章绪论2 1.1注塑机概述2 1.2注塑机的原理4 1.3塑料注射机的工作循环塑料4 第二章液压系统设计5 2.1对液压系统的要求5 2.2液压系统设计参数5 第三章工况分析6 3.1 合摸油缸负载6 3.2 注射座整体移动油缸负载7 3.3 注射油缸负载8 3.4 顶出油缸负载8 3.5 初算驱动油缸所需的功率9 3.6 液压执行元件载荷力和载荷转矩计算9 3.7 液压系统主要参数计算11 第四章制定系统方案和拟定液压系统图15 4.1制定系统方案15 4.2拟定液压系统图17 第五章液压缸的设计17 5.1液压缸主要尺寸的确定17 5.2 液压缸的结构设计22 第六章液压元件的选择25 6.1液压泵的选择25 6.2电动机功率的确定25 6.3液压阀的选择26 6.4液压马达的选择26 6.5油管内径计算27 6.6确定油箱的有效容积27 第七章液压系统性能验算27 7.1验算回路中的压力损失27 7.2液压系统发热温升计算29 第八章液压站的设计32 8.1 250型注塑机液压站的设计32 8.2液压油箱的设计34 8.3 液压泵组的结构设计38 设计内容设计说明及计算过程备注第一章绪论1.1注塑机概述注塑机又名注射成型机或注射机。
它是将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备。
分为立式、卧式、全电式。
注塑机能加热塑料,对熔融塑料施加高压,使其射出而充满模具型腔。
注塑机通常由注射系统、合模系统、液压传动系统、电气控制系统、润滑系统、加热及冷却系统、安全监测系统等组成。
塑机具有能一次成型外型复杂、尺寸精确或带有金属嵌件的质地密致的塑料制品,被广泛应用于国防、机电、汽车、交通运输、建材、包装、农业、文教卫生及人们日常生活各个领域。
注射成型工艺对各种塑料的加工具有良好的适应性,生产能力较高,并易于实现自动化。
注塑机原理之液压系统

(三)液压系统注塑机是机、电、液一体化、集成化和自动化程度都很高。
无论是机械液压式还全液压式,液压部分都占有相当的比值,对注塑机的技术性能、节能、环保以及成本占有重要部分。
注塑机液压系统由主回路、执行回路及辅助回路系统组成,如图所示。
图14 油路系统组成图1,2,3,4,5,6—分别为合模油缸、滑模油缸、顶出油缸、注射座油缸、注射油缸、液压xx;7,8,9,10,11,12—分别为油缸的控制模块(CU)、指令模块(CM);13—系统压力(P)、流量(Q)的控制和指令模块;14—泵;15—电机(M);16—进油过滤器;17—油冷却器; 18—油箱;P—进油管路(高压);T—回油管路。
(低压)油路总管线(P、T、P)的上部分是执行回路系统,下部分是主回路系统及辅助回路系统。
执行回路系统:主要由各执行机构(油缸)和指令及控制装置(电磁阀)组成。
其功能是将进入管路P的高压油按程序放到油缸的左腔或右腔中去,推动活塞杆执行动作。
高压油进入的时间、顺序和位置是通过电磁换向阀来实现的,工作指令通过电信号发给电磁阀的电磁铁,控制其阀芯动作,将控制油路(P)的高压油,进入换向阀推动阀芯动作,将高压油接通到油缸中去;而各油缸中的回油经回油管路T及辅助油路系统放回油箱。
主回路系统:由动力源和控制模块组成。
动力源系统(电机、油泵)产生油压(P)和流量(Q),与指令(CU)及控制(CM)模块(压力阀、流量阀等)组成回路。
从泵来的高压油,进入主管路的时间、顺序、压力及流量,是通过流量阀,压力阀是电磁铁获得,指令的时间、顺序和强弱,由控制其阀芯的推力和开度来确定的。
执行回路与主回路之间是通过进油管路P(高压),回油管路T(低压)以及控制回路P(高压)形成“连接网络”。
1.主要液压组件注塑机应用液压组件非常广泛。
⑴.动力组件由电机带动泵实现电能—机械能—液压能的转换。
有各种油泵和液压xx。
油泵是靠封闭容腔使其容积发生变化来工作的。
塑料注射成型机PLC控制系统设计

摘要注塑机控制系统是注塑机整机的一个重要组成部分,其性能优劣对整机至关重要。
本论文首先确定了注塑机控制系统的设计方案与思路,经过与单片机控制、微机控制、继电接触器控制等控制系统相比较,决定采用PLC来实现对注塑机各动作的控制。
确定了PLC输入和输出接口的属性,将注塑机的所有检测开关、限位开关、手动操作开关和主令开关等,进行确切地分类和编号,从而确定了I/O口的数量。
根据输入输出的数量、类型确定PLC的型号为FX2N-MR。
完成了注塑机主电路和控制电路等硬件电路的设计。
软件设计方面,根据注塑机各个动作制出注塑机的工艺流程图。
根据此工艺流程图,设计出注塑机的动作流程图,根据动作流程图写出注塑机的状态转移图,并依据状态转移图写出步进梯形图。
关键词:注塑机,控制系统,状态转移图,步进梯形图目录摘要............................................................. 第一章绪论.. 01.1塑料机械行业概述 01.2国内外注塑机的研究现状 01.3注塑机的发展趋势 (2)第二章注塑机系统概述 (4)2.1注塑机的组成 (4)2.2注塑机的分类 (5)2.3注塑机控制系统的抗干扰措施 (6)第三章注塑机控制系统的设计方案和思路 (9)3.1注塑机控制系统设计的主要内容和工艺分析 (9)3.2设计的思路和方案 (10)第四章注塑机的PLC控制系统硬件和软件设计 (13)4.1输入输出点的继电器属性 (13)4.2PLC机型的选择 (14)4.3输入输出地址分配表 (15)4.4主电路的设计 (17)4.5控制电路的设计 (18)4.6注塑机的动作流程 (19)4.7程序设计 (23)第五章总结与展望 (33)5.1结论 (33)5.2展望 (34)致谢 (35)参考文献 (36)第一章绪论1.1 塑料机械行业概述从20世纪50年代技术创新推出了螺杆式塑料注射成型机至今已有50多年的历史。
注塑机液压系统设计计算

注塑机液压系统设计为了满足市场和客户的需求,为了使本公司产品更具竞争力,公司在开发新机型时,会预先确定一系列关键参数,如锁模力,顶针力,最高射胶压力,最大射胶速率,循环周期等。
液压系统的设计计算正是为满足这些参数而服务的。
当完成总体方案和液压原理图后,接下来就是液压系统的设计计算了。
液压系统的设计计算包括:油泵的选型计算、电机的功率计算、熔胶马达的选择计算、油阀的选型计算、冷却器选型计算、管路规格计算。
3.1油泵的选型主要依据有两点:系统所需最高压力和最大流量。
本公司注塑机最高系统压力通常为175BAR ,也有一些是145BAR ,所选油泵的额定压力须大于或等于系统最高使用压力。
最大流量应为注塑机运行时执行各动作所需流量最大的一种,计算项目包括:射胶、熔胶、射移、开锁模、顶针、抽芯。
通常只须比较射胶、熔胶、锁模即可。
各执行元件执行动作时的所需流量计算公式如下:A V Q g ⋅⋅=6d d D n Q ⋅=pvQ Q η/max = 其中:gQ -液压缸执行动作时的流量(L/min )d Q -液压马达执行动作时的流量(L/min ) m a x Q -系统所需最大流量(L/min )V -液压缸活塞的线速度(m/s)A -液压缸的有效作用面积(2cm )n -液压马达的转速(rpm)d D -液压马达的排量(c.c/r)Q -各执行元件动作时流量最大的一种pv η-液压泵的容积效率(一般取0.85-0.95)根据系统所需最大流量即可计算出液压泵的排量,公式如下:n Q D b /1000max ⋅=其中: b D -液压泵的排量(c.c/r)n -电机转速(rpm)选取液压泵时,其排量应大于或等于b D .3.2电机功率计算可按如下公式:L=P D n b ⋅⋅/612000其中:L -电机功率(KW)P -系统所需最高压力(BAR)其余同上.3.3熔胶马达的选取除应满足转速要求(排量已在前面确定),还需保证熔胶所需扭矩.计算公式如下:b M =55.0772D ⋅/Py其中: b M -比扭矩(kg.m/bar)D -螺杆直径(mm)Py -熔胶使用压力(BAR)3.4油阀的选型计算请参考«液压阀的选型计算规范»3.5冷却器的选型计算主要考虑热交换量,其计算公式如下:r ps L n Q ⋅=式中:Q -热交换量ps n -热交换系数(一般取0.25至0.5,本公司的机铰式注塑机上取0.35,直压式的取0.4)r L -液压系统输入功率然后根据冷却器的性能曲线来选取冷却器.3.6管路选型计算公式如下:[]410613.1⨯⨯⨯=V Q PZ d[]&pd⨯≥2δ其中:d -管的内径δ-管的壁厚Qpz -管的通过流量[]V -管的许用流速(压力管路:[]V <6.5m/s 回油管路:[]V <2.5m/s ) []&-管材的许用应力。
注塑机的注射速率和塑化能力的计算公式

1.锁模力 F(TON)公式:F=Am*Pv/1000F:锁模力:TON Am:模腔投影面积:CM2Pv:充填压力:KG/CM2(一般塑胶材料充填压力在150-350KG/CM2)(流动性良好取较底值,流动不良取较高值)射出压力=充填压力/0.4-0.6例:模腔投影面积 270CM2 充填压力 220KG/CM2锁模力=270*220/1000=59.4TON2.射出压力 Pi(KG/CM2)公式:Pi=P*A/Ao即:射出压力=泵浦压力*射出油缸有效面积÷螺杆截面积Pi: 射出压力 P:泵浦压力 A:射出油缸有效面积Ao:螺杆截面积A=π*D2/4 D:直径π:圆周率3.14159例1:已知泵浦压力求射出压力?泵浦压力=75KG/CM2 射出油缸有效面积=150CM2螺杆截面积=15.9CM2(∮45mm)公式:2〒R2即:3.1415*(45mm÷2)2=1589.5mm2Pi=75*150/15.9=707 KG/CM2例2:已知射出压力求泵浦压力?所需射出压力=900KG/CM2 射出油缸有效面积=150CM2螺杆截面积=15.9CM2(∮45)泵浦压力P= Pi*Ao/A=900*15.9/150=95.4 KG/CM23.射出容积 V(CM3)公式:V= π*(1/2Do)2*ST即:射出容积=3.1415*半径2*射出行程V:射出容积 CM3 π:圆周率 3.1415 Do:螺杆直径 CMST:射出行程 CM例:螺杆直径 42mm 射出行程 165mmV= π*(4.2÷2)2*16.5=228.6CM34.射出重量 Vw(g)公式:Vw=V*η*δ即:射出重量=射出容积*比重*机械效率Vw:射出重量 g V:射出容积η:比重δ:机械效率例:射出容积=228.6CM3 机械效率=0.85 比重=0.92射出重量Vw=228.6*0.85*0.92=178.7G5.射出速度 S(CM/SEC)公式:S=Q/A即:射出速度=泵浦吐出量÷射出油缸有效面积S:射出速度 CM/SECA:射出油缸有效面积 CM2Q:泵浦吐出量 CC/REV公式:Q=Qr*RPM/60 (每分钟/L)即:泵浦吐出量=泵浦每转吐出量*马达回转数/每分钟Qr:泵浦每转吐出量(每回转/CC)RPM:马达回转数/每分钟例:马达转速 1000RPM/每分钟泵浦每转吐出量85 CC/RPM射出油缸有效面积 140 CM2S=85*1000/60/140=10.1 CM/SEC6.射出率 Sv(G/SEC)公式:Sv=S*Ao即:射出率=射出速度*螺杆截面积Sv:射出率G/SEC S:射出速度CM/SEC Ao:螺杆截面积例:射出速度=10CM/SEC 螺杆直径∮42面积=3.14159*4.2*4.2/4=13.85CM2Sv=13.85*10=138.5G/SEC。
注塑压力计算方法

注塑压力计算方法(总2页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
注塑压力计算方法
新模试模以及注塑生产过程中,大家习惯上将注塑机屏幕显示的数值当成注塑压力,而实际上注塑机显示屏的数值并不是真正的注塑压力,而只是一个比例值。
那么真正的注塑压力是多少呢这需要进行计算。
注塑机参数表中有两个参数值:一个是最大注塑压力,另一个是最大油泵压力。
生产过程中炮嘴的实际注塑压力应该等于这两个参数值相除,然后乘以注塑机显示屏上第一段注塑压力的数值。
下面以我们注塑车间的注塑机为例,计算注塑压力:
MA1600/540注塑机技术参数表
假如,某个产品生产时注塑机上注塑压力显示值是90,则炮嘴的实际注塑压力如下:
注塑压力会影响射胶速度,影响气纹、冲花、波浪纹等产品外观缺陷,因此注塑机屏幕显示的注塑压力比例值不超过80为宜。
注意:目前注塑车间部分注塑机是A型螺杆,大部分注塑机仍然是B型螺杆。
注 塑 机 液 压 系 统 设 计

机电工程学院《液压与气压传动课程设计》说明书课题名称:注塑机液压系统设计学生姓名:学号:专业:班级:成绩:指导教师签字:2013年6月22日课程设计任务设计题目:注塑机液压系统设计一、设计要求及任务1.设计要求(1)最大注射量:250 cm3/次;螺杆直径: d=40mm;螺杆行程:s1=200mm;最大注射压力p=160MPa;注射速度:vw=0.075m/s;螺杆转速:n=65r/min;螺杆驱动功率:Pm=5.5kW;注射座最大推力:Fz=35(kN);注射座行程:s2=250(mm);注射座前进速度:vz1=0.075m/s;注射座后退速度:vz2=0.085m/s;最大合模力(锁模力)Fh=950 (kN);开模力:Fk=49 (kN);动模板(合模缸)最大行程s3=360 (mm);快速合模速度:vhG = 0.25m/s;慢速合模速度:vhm =0.03m/s;快速开模速度:vkG =0.15m/s;慢速开模速度:vkm =0.035m/s;(2)实现的工作循环:1)准备工作:料斗加料,螺旋机构将一定量的物料送入料筒,由桶外电加热器加热预塑,合上安全门。
2)工作循环:合模—注射—包压—冷却—预塑—注射模后退—开模—顶出制品—顶出缸后退—合模(3)液压系统原理方案设计;液压系统设计计算及元件选择;(4)注塑机液压系统总图设计。
2.设计任务(1)绘制液压系统原理图;(2)系统零部件的计算与选型;(3)按照要求编写设计说明书目录摘要 (Ⅰ)第1章绪论 (4)1.1 注塑机概述 (4)1.2 注塑机的工作循环过程 (4)1.3 注塑机对液压系统的要求 (4)1.4 液压系统设计参数 (4)1.5 注塑机液压系统原理图 (5)第2章计算执行元件的主要结构参数 (7)2.1 各液压缸的载荷力计算 (7)2.2 液压系统主要参数计算 (8)2.3 制定系统方案和拟定液压系统图 (10)第3章液压元件的选择 (13)3.1 液压泵的选择 (13)3.2 液压阀的选择 (14)3.3 液压马达的选择 (14)3.4 确定油箱的有效容积 (15)第4章液压系统性能验算 (16)4.1 验算回路中的压力损失 (17)4.2 系统总输出功率 (18)4.3 冷却器所需冷却面积的计算 (18)心得体会 (19)参考文献 (20)第1章绪论1.1注塑机概述注塑机是一种通用设备,通过它与不同专用注塑模具配套使用,能够生产出多种类型的注塑制品。
注塑工艺计算公式参考资料

第一章1.锁模力 F(TON)公式:F=Am*Pv/1000F:锁模力:TON Am:模腔投影面积:CM2Pv:充填压力:KG/CM2(一般塑胶材料充填压力在150-350KG/CM2)(流动性良好取较底值,流动不良取较高值)射出压力=充填压力/0.4-0.6例:模腔投影面积 270CM2 充填压力 220KG/CM2锁模力=270*220/1000=59.4TON2.射出压力 Pi(KG/CM2)公式:Pi=P*A/Ao即:射出压力=泵浦压力*射出油缸有效面积÷螺杆截面积Pi: 射出压力 P:泵浦压力 A:射出油缸有效面积Ao:螺杆截面积A=π*D2/4 D:直径π:圆周率3.14159例1:已知泵浦压力求射出压力?泵浦压力=75KG/CM2 射出油缸有效面积=150CM2螺杆截面积=15.9CM2(∮45mm)公式:2〒R2即:3.1415*(45mm÷2)2=1589.5mm2Pi=75*150/15.9=707 KG/CM2例2:已知射出压力求泵浦压力?所需射出压力=900KG/CM2 射出油缸有效面积=150CM2螺杆截面积=15.9CM2(∮45)泵浦压力P= Pi*Ao/A=900*15.9/150=95.4 KG/CM23.射出容积 V(CM3)公式:V= π*(1/2Do)2*ST即:射出容积=3.1415*半径2*射出行程V:射出容积 CM3 π:圆周率 3.1415 Do:螺杆直径 CMST:射出行程 CM例:螺杆直径 42mm 射出行程 165mmV= π*(4.2÷2)2*16.5=228.6CM34.射出重量 Vw(g) 公式:Vw=V*η*δ即:射出重量=射出容积*比重*机械效率Vw:射出重量 g V:射出容积η:比重δ:机械效率例:射出容积=228.6CM3 机械效率=0.85 比重=0.92射出重量Vw=228.6*0.85*0.92=178.7G5.射出速度 S(CM/SEC)公式:S=Q/A即:射出速度=泵浦吐出量÷射出油缸有效面积S:射出速度 CM/SECA:射出油缸有效面积 CM2Q:泵浦吐出量 CC/REV公式:Q=Qr*RPM/60 (每分钟/L)即:泵浦吐出量=泵浦每转吐出量*马达回转数/每分钟Qr:泵浦每转吐出量(每回转/CC)RPM:马达回转数/每分钟例:马达转速 1000RPM/每分钟泵浦每转吐出量85 CC/RPM射出油缸有效面积 140 CM2S=85*1000/60/140=10.1 CM/SEC6.射出率 Sv(G/SEC)公式:Sv=S*Ao即:射出率=射出速度*螺杆截面积Sv:射出率G/SEC S:射出速度CM/SEC Ao:螺杆截面积例:射出速度=10CM/SEC 螺杆直径∮42面积=3.14159*4.2*4.2/4=13.85CM2Sv=13.85*10=138.5G/SEC第二章一.理论出容积:(π/4=0.785)(1)螺杆直径²*0.785*射出行程=理论射出容积(cm³);(2)理论射出容积/0.785/螺杆直径=射出行程(cm).二.射出重量:理论射出容积*塑料比重*射出常数(0.95)理想=射出重量(gr);三.射出压力:(1)射出缸面积²/螺杆面积²*系统最大压力(140kg/cm²)²=射出压力(kg/cm²);(2)射出缸直径²/螺杆直径²*系统最大压力(140kg/cm²)=射出压力(kg/cm²);(3)料管组合最大射出压力*实际使用压力(kg/cm²)/系统最大压力(140kg/cm²)=射出压力(kg/cm²).四.射出速率:(1)螺杆面积(cm²)*射出速度(cm/sec)=射出速率(cm³/sec);(2)螺杆直径(cm²)*0.785*射出速度(cm/sec)=射出速度(cm³/sec).五.射出速度:(1)射出速率(cm³/sec)/螺杆面积(cm²)=射出速度(cm/sec);(2)泵浦单转容积(cc/rev)*马达转速(rev/sec)/60(秒)/射出面积(cm²)=射出速度(cm/sec).(马达转速RPM:60HZ------1150,50HZ-----958)六.射出缸面积;(1)射出压力(kg/cm²)/系统最大压力(140kg/cm²)*料管面积(cm²)=射出缸面积(cm²);(2)单缸---(射缸直径²-柱塞直径²)*0.785=射出缸面积(cm²);双缸---(射缸直径²-柱塞直径²)*0.785*2=射出缸面积(cm²).七.泵浦单转容积:射出缸面积(cm²)*射出速度(cm/sec)*60秒/马达转速=泵浦单转容积(cc/sec).(马达转速RPM: 60HZ------1150,50HZ-----958)八.螺杆转速及油压马达单转容积:(1)泵浦单转容积(cc/rec)*马达转速(RPM)/油压马达单转容积=螺杆转速;(2)泵浦单转容积(cc/rec)*马达转速(RPM)/螺杆转速=油压马达单转容积.九.射出总压力:(1)系统最大压力(kg/cm²)*射出缸面积(cm²)=射出总压力(kg);(2)射出压力(kg/cm²)*螺杆面积(cm²)=射出总压力(kg).十.盎司及相关单位换算:(1)1盎司(oz)=28.375公克(gr);(2)1磅(ib)=16盎司(oz);(3)1公斤(kg)=2.2磅(ib);即:1斤=1.1磅;(4)1磅(ib)=454公克(gr)=0.454公斤(kg).十一.关模力:(1)曲手式:关模缸面积(cm²)*系统最大压力(140kg/cm²)/1000*曲手放大率(20-50)=关模力(Ton)(2)单缸直压式:关模缸面积(cm²)*系统最大压力(140kg/cm²)/1000=关模力(Ton)十二.道柱直径和关模力的公式:道柱直径²(cm²)*0.785*杨氏系数(scm4约1000kg/cm²)*4=关模力概值(Ton).十三.成品排列投影面积和关模力关系公式:成品排列投影面积(寸²)*标准厚度(1.5mm)/成品平均厚度(mm)*使用原料常数/PS原料常数(1)=关模力(Ton);(1)成品排列投影面影以射入浇口为圆心,长边为半径计算出直径;排列直径²(寸²)*0.785=成品排列投影面积(寸²).(2)使用原料常数,以概略经验值计算,以流动性良劣比PS好的列为1以下;比PS不好的列为1以上.如:ABS 1.05; AS 1.2; PMMA 1.3; PC 1.6; PBT 0.9;PP 0.7; PE 0.7-0.8;塑胶钢 0.8; NILON 0.7-0.9¨¨¨等.各种原料亦分不同等级,宜多了解只付参与.(3)和射出从向的成品部份之要求,如杯子的高度部份大约以投影面积的30%计算即可. 十四.托模力:托模缸面积(cm²)*系统最大压力(140kg/cm²)/1000=托模力(Ton)十五.电力单位:1马力(HP)=0.754千瓦(KW);1千瓦(KW)=1.326马力(HP)=1000瓦(W);1千瓦(KW)=1度电计量单位(1KW/Hr).十六.泵浦大小和马力关系:P=最大使用压力(如:125kg/cm².140kg/cm²);Q=油泵浦一分钟吐出量(L/min);Q=油泵浦单转容积(cc/rec)*马达转速(RPM)/1000=油泵浦一分钟吐出量(L/min).适用马力:P*Q/540=HP;P*Q/612=KW.所配合马达可达不降速的最高压力(LP):HP*450/Q=LP;KW*612/Q=LP.十七.计算使用电力:(马达容量+电热容量+烘干机容量)*用电常数(约40%)=实际每小时用电量(度,KW/Hr).第三章A:什么是注塑机的射出能力?射出能力=射出压力(kg/cm2)×射出容积(cm3)/1000B:什么是注塑机的射出马力?射出马力PW(KW)=射出压力(kg/cm2)×射出率(cm3/sec)×9.8×100%C:什么是注塑机的射出率?射出率V(cc/sec)=π/4×d2×γd2::料管直径γ:料的密度D:什么是注塑机的射胶推力?射胶推力F(kgf)=π/4(D12-D22)×P×2D 1:油缸内径 D2:活塞杆外径 P:系统压力E:什么是注塑机的射胶压力?射胶压力P(kg/cm2)=[π/4×(D12-D22)×P×2]/(π/4×d2)F:什么是注塑机的塑化能力?塑化能力W(g/sec)=2.5×(d/2.54)2×(h/2.54)×N×S×1000/3600/2h=螺杆前端牙深(cm) S=原料密度G:什么是系统压力?与注塑压力有什么区别?系统压力(kg/cm2)=油压回路中设定最高的工作压力H:射出速度?H:速度=距离/时间第四章1.锁模力F(TON)公式:F=Am*Pv/1000即:锁模力=模腔投影面积*充填压力÷1000 F:锁模力TON Am:模腔投影面积CM2Pv:充填压力KG/CM2(一般塑胶材料充填压力在150-350KG/CM2)(流动性良好取较底值,流动不良取较高值)充填压力/0.4-0.6=射出压力例:模腔投影面积270CM2 充填压力220KG/CM2锁模力=270*220/1000=59.4TON2.射出压力Pi(KG/CM2)公式:Pi=P*A/Ao即:射出压力=泵浦压力*射出油缸有效面积÷螺杆截面积Pi: 射出压力P:泵浦压力A:射出油缸有效面积Ao:螺杆截面积A= π*D2/4 D:直径π:圆周率3.14159例1:已知泵浦压力求射出压力?泵浦压力=75 KG/CM2 射出油缸有效面积=150CM2螺杆截面积=15.9CM2(∮45)Pi=75*150/15.9=707 KG/CM2例2:已知射出压力求泵浦压力?所需射出压力=900 KG/CM2 射出油缸有效面积=150CM2螺杆截面积=15.9CM2(∮45)泵浦压力P= Pi*Ao/A=900*15.9/150=95.4 KG/CM23.射出容积V(CM3)公式:V= π*Do2/4*ST即:射出容积=螺杆截面积*射出行程V:射出容积CM3 π:圆周率Do:螺杆直径CMST:射出行程CM例:螺杆直径42mm 射出行程165mmV= π*4.2*4.2/4*16.5=228.6CM34.射出重量G公式:Vw=V*η*δ即:射出重量=射出容积*比重*机械效率Vw:射出重量G V:射出容积η:比重δ:机械效率例:射出容积=228.6 CM3 机械效率=0.85 比重=0.92射出重量Vw=228.6*0.85*0.92=178.7G5.射出速度S(CM/SEC)公式:S=Q/A即:射出速度=泵浦吐出量÷射出油缸有效面积S:射出速度CM/SEC Qr:泵浦吐出量(每回转/CC)CC/REVA:射出油缸有效面积CM2 Q=Qr*RPM/60 (每分钟/L)Q:泵浦吐出量RPM:马达回转数/每分钟例:马达转速1000RPM 泵浦吐出量85 CC/REV射出油缸有效面积140 CM2S=85*1000/60/140=10.1 CM/SEC6.射出率Sv(G/SEC)公式:Sv=S*Ao即:射出率=射出速度*螺杆截面积Sv:射出率G/SEC S:射出速度CM/SEC Ao:螺杆截面积例:射出速度=10CM/SEC 螺杆直径∮42螺杆截面积=3.14159*4.2*4.2/4=13.85CM27.圆的计算圆的面积S=πR2(R为圆半径)圆的周长=2πR(R为圆半径)或πH(H为直径)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
―240g注塑机液压系统的设计与计算大型塑料注射机目前完全由液压控制。
其基本工作原理是:粒状塑料通过料斗进入螺杆推进器,螺杆旋转将物料向前推动,同时,由于螺杆配有电加热器,物料熔化成粘液状态。
在此之前,夹紧机构已关闭。
模具关闭,当物料在螺旋桨的前端形成一定压力时,注射机构开始将液态物料以高压注入模具腔中,然后在一定的压力保持和冷却期间,打开模具以弹出模制的塑料产品。
完成一个动作周期。
现在以240g注塑机为例进行液压系统设计计算。
塑料注射器的工作周期为:夹紧→注射→保压→冷却→模子→喷射∣→螺杆预塑进料其中,合模的作用分为:快速合模,缓慢合模和合模。
夹紧时间相对较长,直到打开模具的时间就是夹紧阶段。
1. 240g注塑机液压系统设计要求及相关设计参数1.1液压系统要求(1)合模动作应平稳,两个模具合上时不应有冲击;(2)合模时,合模机构应保持合模压力,以防止在注射过程中合模冲开。
注射后,注射机构应保持注射压力,以用塑料填充空腔;(3)在预塑料进给过程中,螺杆旋转,并且将物料推入螺杆的前端。
此时,螺杆和注射机构一起向后移动。
为了使螺杆前端的塑料具有一定的密度,注射机构必须具有一定的抗退缩性。
(4)为确保安全生产,系统应配备安全联锁装置。
1.2液压系统设计参数240g注塑机的液压系统的设计参数如下:螺丝直径38mm螺丝行程:200mm最大注射压力143MPa螺杆驱动功率5KW螺杆转速61r / min注射座行程240mm注射座最大推力26kN 最大夹紧力(夹紧力)910kN 开启力44kN 移动模板最大行程350mm 快关速度0.1m / s 慢关速度0.02m / s 开模速度快0.13m / s 开模速度慢0.03m / s 注射速度0.07m / s 注射座前进速度0.06m / s 注射座向后移动速度0.08m / s2.液压执行原始负载力负载和扭矩计算2.1液压缸负载力的计算(1)夹紧缸的加载力锁模缸在合模过程中承受的载荷较小,其外载荷主要是可动模及其连杆部件的起动惯性力和导轨的摩擦力。
夹紧模具时,活动模具停止移动,其外部负载为给定的夹紧力。
打开模具时,液压缸必须克服给定的模具打开力和运动部件的摩擦力。
(2)注射座移动缸的负载力在前进和后退注射座椅的过程中,座椅换档油缸还必须克服摩擦阻力和惯性力。
仅当喷嘴接触模具时,才必须满足注射座的最大推力。
(3)注射缸负荷力 喷射缸的负载力在整个喷射过程中都会发生变化,并且仅需要最大负载力即可进行计算。
Fw =4πd ²p在公式中,d -----螺杆直径,从给定参数已知:d = 0.038m ; p ------喷嘴处的最大注射压力,已知p = 162MPa 。
由此,获得Fw = 180kN 。
每个液压缸的外部负载力的计算结果如表1所示。
以液压缸的机械效率为0.9,找到相应的作用在活塞上的负载力,并在表1中列出。
表1各液压缸的负荷力液压缸名称 工作条件 液压缸外负荷kN F w活塞上的加载力kN F夹紧缸夹紧 90 100夹紧 910 1011 模子4449。
2.2进给液压马达的负载转矩计算Tw =πn 2c p =606114.321053⨯⨯⨯= 783N •米将液压马达的机械效率设为0.95,则其负载转矩T =m ηw T =95.0783= 824N •米 3.液压系统主要参数的计算。
3.1初选系统的工作压力240g 注塑机是一种小型液压机。
当负载最大时,它处于夹紧模式。
此时,高压油由助力缸提供。
在其他工作条件下,负载不会太高。
请参考设计手册,初步确定液压系统的工作压力为6.5MPa 。
3.2计算液压缸的主要结构尺寸(1)确定夹紧缸的活塞和活塞杆的直径当夹紧缸达到最大负载时,处于夹紧模式,其负载为889kN ,并在活塞杆上施加压力。
活塞直径 D =()]1p π[p 4221ϕ--F此时1p 是增压缸提供的增压机油入口压力,初始增压比为5,则1p = 5×6.5兆帕= 32.5MPa ,模式锁定时回油很小,所以P 2≈0,夹紧缸活塞直径为d H =m64105.3214.31010114⨯⨯⨯⨯= 0.199m ,乘D H = 0.2m根据表2—5取d / D = 0.7,然后活塞杆直径d H = 0.7×0.2m = 0.14m ,取d H = 0.15m 。
为了简化设计和方便加工,将增压缸的缸体和夹紧缸体集成在一起(见图1),增压缸的活塞直径也为0.2m 。
根据增压比,活塞杆的直径为5。
d z =52h D =52.02=0.089m ,d ž= 0.09m (2)注射座活动缸的活塞和活塞杆的直径拧紧可动缸的最大负荷时,此时的缸回油量通过节流阀,但流量极小,因此背压为零,其活塞杆直径为d h =14P F π=m 63105.610294⨯⨯⨯⨯π= 0.075m ,取D ÿ= 0.01m 从给定的设计参数知道,注射座的往复速度比为0.08 / 0.06 = 1.33。
表2—6得到d / D = 0.5,则活塞杆的直径为:= 0.5×0.01m = 0.05m(3)确定注射缸的活塞和活塞杆的直径当液态塑料填充模具型腔时,注射缸的负载达到最大值213KN 。
此时,注射活塞的移动速度也大约为零,并且回油极小;因此,后备压力可以忽略不计,因此d s =14P F π=m 64105.610184⨯⨯⨯⨯π= 0.188m ,走D s = 0.20m 活塞杆的直径通常与螺杆的外径相同,取d s = 0.038m 。
3.3计算液压马达的排量液压马达是单向旋转的,其油直接返回油箱,这被认为是零出口压力和0.95的机械效率。
V 中号=m W P T ηπ12=r m /95.010*******.3235⨯⨯⨯⨯= 0.8×10-3米3/ r 3.4计算液压执行器的实际工作压力根据液压缸的最终结构尺寸和液压马达的排量,计算出每种工况下液压执行器的实际工作压力,请参见表2。
3.5计算液压执行器的实际所需流量根据液压缸的最终结构尺寸或液压马达的排量及其运动速度或旋转速度,计算出液压执行器的实际所需流量,请参见表3。
4制定系统计划并绘制液压系统图(1)确定执行机构本机作用机构上的螺杆为单向旋转,其他机构为线性往复运动,每个线性运动机构均由单活塞杆双作用液压缸直接驱动,螺杆由液压马达驱动,从给定的设计参数可以看出,合模所需的最大力为910KN。
为此,提供了一个加压液压缸,以便在合模时获得局部高压,以确保合模力。
(2)夹紧缸动作回路夹紧缸需要它实现快速,缓慢,合模和开模动作。
它的运动方向直接由电动液压换向阀控制。
快速移动时,需要更大的流量。
只要有少量的流量供应即可缓慢夹紧模具。
锁模后,机油由增压缸供油。
(3)液压马达动作回路螺钉不需要反向旋转,因此液压马达可以沿一个方向旋转。
由于对速度的要求很高,所以稳定性程度不太高,因此采用旁路节流调速方法。
(4)喷油缸工作回路喷油缸的运动速度也很快,对稳定性的要求不高,因此也采用了旁路节流调速方法。
由于在预成型过程中需要背压,并且在杆腔出口处串联有一个背压阀。
(5)注射座移动缸工作回路注射座动缸采用回油节流调速回路。
当流程要求其处于浮动状态时,因此,采用具有Y型中性功能的电磁换向阀。
(6)安全联锁措施为了确保安全生产,该系统配有安全门。
行程阀安装在安全门的底部,用于控制夹紧缸的操作。
将行程阀插入控制夹紧油缸换向的液压阀控制回路上,安全门没有关闭时,行程阀不会被按下,液压换向阀无法进入控制油,电动液压换向阀也无法改变方向。
模具缸无法关闭。
只有当操作员离开,关闭安全门并按下行程阀时,夹紧缸才能关闭模具从而确保人身安全。
(7)液压源的选择液压系统需要在整个工作周期内大幅度地改变机油需求。
另外,合模注射后需要保压时间长,因此选择双泵供油系统。
当液压缸快速运转时,两个泵同时供油,在低速或维持压力下运行时,可以使用小型泵单独供油,这样可以减少功率损耗并提高系统效率。
确定液压执行器和基本回路后,将它们有机组合。
删除重复对于冗余组件,用于控制液压马达的换向阀与泵的卸荷阀组合在一起,因此一个阀可用于双重用途。
考虑注意在射击缸和夹紧缸之间需要顺序动作。
两回路接头与单向顺序阀及其他串联连接一些辅助组件构成了240g注塑机的完整液压系统图,请参见系统示意图及其作用周期表格,请参见原理图下方的表格。
5.液压元件的选择5.1液压泵的选择(1)液压泵工作压力的确定p≥P1 +∑△P对于冗余组件,用于控制液压马达的换向阀与泵的卸荷阀组合在一起,因此一个阀可用于双重用途。
考虑注意在射击缸和夹紧缸之间需要顺序动作。
两回路接头与单向顺序阀及其他串联连接一些辅助部件构成了240g注塑机的完整液压系统图,如图2所示,其作用周期表见表4。
5.1液压泵的选择(1)液压泵工作压力的确定p≥P1 +∑△PP1是液压执行器的最高工作压力。
对于该系统,最高工作压力是增压缸锁止时的压力。
进气压力,P1 = 6.5MPa;∑△P是泵与执行器之间的总管道损失。
从系统图中可见。
单向阀和换向阀从泵到增压缸串联连接。
∑△P = 0.5MPa。
液压泵的工作压力为Pp =(6.5 + 0.5)MPa = 7MPaq≥K(∑qmax)(2)液压泵流量的确定p从工作状态图可以看出,系统的最大流量出现在快速夹紧状态下,∑qmax = 3L / s。
采取泄漏部门q= 3.6L / s(216L /分钟)K为1.2以获得液压泵流量p选择YYB-BC171 / 48B双叶片泵,压力为7MPa时,大型泵的流量为157.3L / min,小型泵的流量为44.1L / min。
5.2电机功率的确定在整个动作周期中,注射机系统的压力和流速会发生变化,并且所需功率也会发生很大变化。
为了满足整个工作周期的要求,电机功率根据较大的功率部分确定。
从工况图可以看出,快速喷射工况为系统的压力和流量相对较大。
此时,大小泵同时参与工作,小型泵排出油(保证锁除外)除模具压力外,还通过顺序阀供应压力油。
给注射缸,大,小泵汇合推动注射气缸向前移动。
先前的计算是已知的,小的泵供应压力Pp1 = 7MPa,考虑到大型泵的供油压力Pp2 =(5.9 + 0.5)= 6.4MPa,取泵的总效率速率,泵的总驱动功率为P =p ppqpqpη2 211+= 21.924千瓦考虑到短的注射时间,但是3s,电机通常允许短期过载25℅,这样,可以减小电动机功率。
P = 21.924×100/125= 17.54ķw ^检查其他常见情况时,液压泵的驱动功率小于或接近此值。
不良产品样品,选择一个18KW的电动机。
5.3液压阀的选择液压阀的选择主要基于阀的工作压力和通过阀的流量。