实验二 进程控制
1407070225--郭飞--(二)进程的控制实验

实验二进程管理(二)进程的控制实验一、实验目的1、掌握进程另外的创建方法2、熟悉进程的睡眠、同步、撤消等进程控制方法二、实验内容1、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容2、利用wait( )来控制进程执行顺序三、实验过程进入LINUX系统。
打开虚拟机,在vi中编写程序,在终端输入文件名,执行指令,得出运行结果。
1.运行程序:2.运行实验结果:四、回答问题(1)可执行文件加载时进行了哪些处理?可执行文件加载时首先是创建一个新进程的fork系统调用,然后用于实现进程自我终止的exit系统调用;改变进程原有代码的exec系统调用;用于将调用进程挂起并等待子进程终止的wait系统调用;获得进程标识符的getpid系统调用等处理过程。
(2)什么是进程同步?wait( )是如何实现进程同步的?a.我们把异步环境下的一组并发进程因直接制约而互相发送消息、进行互相合作、互相等待,使得各进程按一定的速度执行的过程称为进程间的同步。
b.首先程序在调用fork()建立一个子进程后,马上调用wait(),使父进程在子进程调用之前一直处于睡眠状态,这样就使子进程先运行,子进程运行exec()装入命令后,然后调用wait(0),使子进程和父进程并发执行,实现进程同步。
五、实验总结通过进程创建和进程控制两节课实验,让我们掌握了进程的基本概念及其含义,了解了系统是怎样创建进程的,首次调用新进程时,其入口地址在哪,应该开始从哪执行;搞明白可执行文件加载时进行的那些处理,进一步深刻认识到进程同步的概念以及wait()实现进程同步的方式方法。
六、参考程序#include<stdio.h>#include<unistd.h>main( ){int pid;pid=fork( ); /*创建子进程*/switch(pid){case -1: /*创建失败*/printf("fork fail!\n");exit(1);case 0: /*子进程*/ execl("/bin/ls","ls","-1","-color",NULL); printf("exec fail!\n");exit(1);default: /*父进程*/ wait(NULL); /*同步*/printf("ls completed !\n");exit(0);}}。
操作系统实验二:进程管理

操作系统实验二:进程管理操作系统实验二:进程管理篇一:操作系统实验报告实验一进程管理一、目的进程调度是处理机管理的核心内容。
本实验要求编写和调试一个简单的进程调度程序。
通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。
二、实验内容及要求1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。
可根据实验的不同,PCB结构的内容可以作适当的增删)。
为了便于处理,程序中的某进程运行时间以时间片为单位计算。
各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。
2、系统资源(r1…rw),共有w类,每类数目为r1…rw。
随机产生n进程Pi(id,s(j,k)t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。
3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。
建立进程就绪队列。
4、编制进程调度算法:时间片轮转调度算法本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。
在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。
三、实验环境操作系统环境:Windows系统。
编程语言:C#。
四、实验思路和设计1、程序流程图2、主要程序代码//PCB结构体struct pcb{public int id; //进程IDpublic int ra; //所需资源A的数量public int rb; //所需资源B的数量public int rc; //所需资源C的数量public int ntime; //所需的时间片个数public int rtime; //已经运行的时间片个数public char state; //进程状态,W(等待)、R(运行)、B(阻塞)//public int next;}ArrayList hready = new ArrayList();ArrayList hblock = new ArrayList();Random random = new Random();//ArrayList p = new ArrayList();int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数//r为可随机产生的进程数(r=m-n)//a,b,c分别为A,B,C三类资源的总量//i为进城计数,i=1…n//h为运行的时间片次数,time1Inteval为时间片大小(毫秒)//对进程进行初始化,建立就绪数组、阻塞数组。
最新实验二-实验报告(进程管理)

最新实验二-实验报告(进程管理)实验目的:1. 理解操作系统中进程的概念及其特性。
2. 掌握进程管理的基本原理和方法。
3. 学习进程创建、撤销、阻塞和唤醒等操作。
4. 熟悉进程间的同步与通信机制。
实验环境:- 操作系统:Linux/Unix- 编程语言:C/C++- 开发工具:GCC编译器,GDB调试器实验内容:1. 创建进程:编写程序,使用系统调用fork()创建子进程,并观察父进程与子进程的行为差异。
2. 进程撤销:实现一个程序,通过系统调用exit()或abort()撤销进程,并观察其对进程组和会话的影响。
3. 进程阻塞与唤醒:设计并实现一个父进程和多个子进程的程序,其中子进程执行阻塞操作(如sleep()),父进程负责唤醒这些子进程。
4. 进程同步:利用信号量或管程等同步机制,实现两个并发进程的同步操作。
5. 进程通信:通过管道(PIPE)、消息队列、共享内存等IPC机制,实现进程间的信息交换。
实验步骤:1. 设计并编写创建进程的程序代码。
2. 在Linux环境下使用GCC编译程序,并记录编译过程。
3. 运行程序,使用GDB等工具调试程序,并观察fork()的执行效果。
4. 实现进程撤销的程序,并记录exit()和abort()的不同行为。
5. 编写进程阻塞与唤醒的程序,并通过实验观察不同进程状态的变化。
6. 完成进程同步的代码实现,并测试死锁及其解决方法。
7. 编写并测试进程通信的程序,确保信息能够正确传递。
实验结果:- 展示创建进程前后的系统状态变化,包括进程表和内存分配情况。
- 记录进程撤销后,父进程收集子进程状态的输出。
- 展示进程阻塞与唤醒的输出结果,验证进程状态转换的正确性。
- 展示进程同步的实验结果,包括死锁的产生与解决。
- 展示进程通信的测试结果,验证信息传递的准确性。
实验分析:- 分析进程创建和撤销的系统资源变化。
- 讨论进程阻塞与唤醒机制的效率和应用场景。
- 探讨进程同步与通信的复杂性及其在多线程编程中的重要性。
操作系统实验2——进程控制

实验2 进程控制一、实验目的加深对进程概念的理解,明确进程和程序和区别;进一步认识并发执行的实质;分析进程争用资源的现象。
二、实验内容1. 熟悉Linux进程控制常用命令。
2. 输入进程创建、控制的程序并调试程序。
三、实验预备知识1. 进程控制常用命令(1)ps 命令功能:查看目前的系统中有哪些进程,以及它们的执行情况。
常用命令格式及功能如下:ps 查看系统中属于自己的进程ps au 查看系统中所有用户的进程ps aux 查看系统中包含系统内部的及所有用户的进程主要输出列说明:USER:进程所有者的用户名PID:进程号TTY:进程从哪个终端启动TIME:此进程所消耗的CPU时间COMMAND:正在执行的命令或进程名称(2)top 命令功能:动态显示进程,实时监测进程状态。
与ps命令相似,只是top命令在执行后会以指定的时间间隔来刷新显示信息,以使top所显示的进程状态总是当前时刻的。
(3)kill 命令功能:结束或终止进程。
常用命令格式及功能如下:kill 5302 杀死PID为5302的进程kill -9 5302 强行杀死PID为5302的进程(4)echo $变量名功能:查看外壳变量的设定值。
例:echo $$ 显示当前进程PID2.常用系统调用函数常用系统调用函数、程序的说明、参数及定义如下:(1)fork()函数功能:创建一个新进程函数格式:int fork()其中返回int取值意义如下:小于0:创建失败0: 创建成功,在子进程中返回0值大于0: 创建成功,在父进程中返回子进程id值-1:创建失败(2)wait()函数功能:父进程等待子进程终止,以便对子进程进行善后处理。
函数格式:int wait(int *statloc)参数定义:statloc 指出子进程终止状态码的位置。
若不关心子进程的终止状态,可传递一个空指针。
返回值:正常返回时,为终止子进程的PID;错误返回时为-1;其他为0。
实验2 进程控制

实验二进程控制1.学时:2,课外学时8。
2.实验类型:设计性实验3.实验目的:(1)加深对进程概念的理解,明确进程与程序的区别。
(2)进一步认识并发执行的实质。
(3)分析进程争用资源的现象,学习解决进程互斥的方法。
(4)熟悉linux下gcc工具的使用4.实验内容:题目一 4个fork。
写出以下程序输出结果,并画出进程家族树(必须编号)。
#include <unistd.h>int main(void){fork();fork();fork();fork();putchar('A');}题目二父进程不创建孙子进程。
如果父进程需要创建3子进程,但不想创建孙子进程。
编写程序,并画出进程家族树。
题目三父进程创建4个进程。
如果父进程需要创建4个进程,画出所有可能进程家族树。
题目四进程创建。
编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示“a“;两个子进程分别显示字符”b“和字符“c”。
试观察记录屏幕上的显示结果,并分析原因。
题目五子进程利用exec函数执行特定操作。
用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容;利用wait( )来控制进程执行顺序。
5.实验指导一)所涉及的系统调用1.fork( )创建一个新进程。
系统调用格式:pid=fork( )参数定义:fork( )返回值意义如下:0:在子进程中,pid变量保存的fork( )返回值为0,表示当前进程是子进程。
>0:在父进程中,pid变量保存的fork( )返回值为子进程的id值(进程唯一标识符)。
-1:创建失败。
如果fork( )调用成功,它向父进程返回子进程的PID,并向子进程返回0,即fork( )被调用了一次,但返回了两次。
此时OS在内存中建立一个新进程,所建的新进程是调用fork( )父进程(parent process)的副本,称为子进程(child process)。
实验二Windows进程控制

实验步骤与调试过程Windows所创建的每个进程都是以调用CreateProcess()API函数开始和以调用ExitProcess()或TerminateProcess()API函数终止。
1. 创建进程本实验显示了创建子进程的基本框架。
该程序只是再一次地启动自身,显示它的系统进程ID和它在进程列表中的位置。
步骤1:登录进入Windows XP Professional。
步骤2:在“开始”菜单中单击“程序”→“Microsoft Visual Studio 6.0”→“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。
步骤3:新建Win32 Console Application项目proccreate,再新建C++文件proccreate,将清单2-1复制到文件中。
清单2-1创建子进程清单程序见下面的主要算法和程序清单步骤4:编译,链接,运行。
步骤6:在工具栏单击“Execute Program”(执行程序) 按钮,或者按Ctrl + F5键,或者单击“Build”菜单中的“Execute proccreate.exe”命令,执行proccreate.exe 程序。
步骤7:按Ctrl + S键可暂停程序的执行,按Ctrl + Pause (Break) 键可终止程序的执行。
清单2-1展示的是一个简单的使用CreateProcess() API函数的例子。
首先形成简单的命令行,提供当前的EXE文件的指定文件名和代表生成克隆进程的号码。
大多数参数都可取缺省值,但是创建标志参数使用了:CREATE_NEW_CONSOLE, // 使用新的控制台标志,指示新进程分配它自己的控制台,这使得运行示例程序时,在任务栏上产生许多活动标记。
然后该克隆进程的创建方法关闭传递过来的句柄并返回main() 函数。
在关闭程序之前,每一进程的执行主线程暂停一下,以便让用户看到其中的至少一个窗口。
实验二 进程管理(linux)

实验二进程管理(Linux)一、实验类型本实验为设计性实验。
二、实验目的与任务1)加深对进程概念的理解,明确进程和程序的区别。
2)进一步认识并发执行的实质三、预习要求1)进程的概念2)进程控制的概念及内容3)进程的并发执行4)熟悉互斥的概念5)用到的Linux函数有:fork(),lockf()等。
四、实验基本原理使用fork()系统调用来创建一个子进程,父进程和子进程并发执行,交替输出结果。
使用lockf()系统调用对临界区进行加锁操作,实现对共享资源的互斥使用。
五、实验仪器与设备(或工具软件)实验设备:计算机一台,软件环境要求: Linux操作系统和gcc编译器。
六、实验内容1)进程的创建编写一段程序,使用系统调用fork( ) 创建两个子程序。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。
运行程序10次,观察记录屏幕上的显示结果,并分析原因。
2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。
如果在程序中使用系统调用lockf()来给每一个进程加锁,可以实现进程间的互斥,观察并分析出现的现象。
(1)进程的创建参考程序如下:#include<stdio.h>main(){int p1,p2;while((p1=fork())==-1); //p父进程p1子进程1if(p1!=0){while(((p2=fork())==-1); //p父进程p2子进程2if(p2==0) putchar('b');else putchar('c');}else putchar('a');}运行结果:略cab bca bac分析:原因:Fork()函数有三个返回值:1.-1 执行不成功2.0 表示当前正在执行子进程3.其他数值表示当前正在执行父进程,值是子进程的进程标识符PID4.获取当前进程的标识符getpid()5.获取当前进程的父进程的标识符getppid()(2)进程的控制参考程序如下#include<stdio.h>main(){int p1,p2,i;while ((p1=fork())==-1); // 父进程p,子进程p1if(p1==0){for(i=0;i<500;i++)printf("child_p1_ %d\n",i);}else{while((p2=fork())==-1);//父进程p,子进程p2if(p2==0)for(i=0;i<500;i++)printf("chind_p2_ %d\n",i);else for(i=0;i<500;i++)printf("father_p_%d\n",i);}}运行结果:略分析:由于函数printf()输出和字符串之间不会被中断,因此字符串内部的字符顺序输出不变。
实验2 进程观察实验

实验2 进程观察实验实验2进程观察实验实验二进程观察实验(二):进程的控制实验目的1、了解进程创建后对进程控制的系统调用,可实现对进程的有效控制2、掌握进程的睡眠、同步、撤消等进程控制方法实验内容1、通过相关命令,对进程的状态进行控制。
2、编写程序,采用fork()建立一个子进程。
采用有关的系统调用掌控进程的状态。
观测并分析多进程的继续执行次序及状态切换。
实验基础一、进程的掌控进程因创建而存在,因执行完成或异常原因而终止.在进程的生命周期中,进程在内存中有三种基本状态:就绪,执行,阻塞.进程状态的转换是通过进程控制原语来实现的。
linux操作系统提供更多了适当功能的系统调用及命令,去同时实现用户层的进程掌控。
二、相关的命令(1)呼吸选定时间继续执行格式:#sleepxx为选定呼吸的秒数。
(2)完结或中止进程kill注意:按下^z,暂停正在执行的process。
键入”bg”,将所暂停的process置入background中继续执行。
例:#gccfile1&^zstopped#bg(4)查阅正在background中继续执行的process继续执行格式:#jobs(5)结束或终止在background中的进程kill执行格式:#kill%n基准:kill%1中止在background中的第一个jobkill%2中止在background中的第二个job三、相关的系统调用在linux中fork()就是一个非常有价值的系统调用,但在linux中创建进程除了fork()之外,也需用与fork()协调采用的exec()。
1、exec()系列系统调用exec()系列,也可以用作崭新程序的运转。
fork()只是将父进程的用户级上下文拷贝到崭新进程中,而exec()系列可以将一个可以继续执行的二进制文件全面覆盖在崭新进程的用户级上下文的存储空间上,以修改崭新进程的用户级上下文。
exec()系列中的系统调用都顺利完成相同的功能,它们把一个崭新程序放入内存,去发生改变调用进程的继续执行代码,从而构成崭新进程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四进程控制
【实验目的】
1、掌握进程的概念,明确进程和程序的区别。
2、认识和了解并发执行的实质。
3、分析进程争用资源的现象,学习解决进程互斥的方法。
【实验内容】
1、进程的创建(必做题)
编写一段程序,使用系统调用fork( )创建两个子进程,在系统中有一个父进程和两个子进程活动。
让每个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果,并分析原因。
<参考程序>
# include<stdio.h>
main()
{ int p1, p2;
while((p1=fork())= = -1);
if(p1= =0)
putchar(‘b’);
else
{ while((p2=fork())= =-1);
if(p2= =0)
putchar(‘c’);
else
putchar( ‘a’);
}
}
2、修改已编写的程序,将每个进程的输出由单个字符改为一句话,再观察程序执行时屏幕上出现的现象,并分析其原因。
(必做题)
<参考程序>
# include<stdio.h>
main()
{ int p1, p2, i;
while((p1=fork())= = -1);
if(p1= =0)
for(i=0;i<500;i++)
printf(“child%d\n”,i);
else
If(p2= =0)
for(i=0;i<500;i++)
printf(“son%d \n”,i);
else
for(i=0;i<500;i++)
printf(“daughter%d \n”,i);
}
}
3、编写程序创建进程树如图1和图2所示,在每个进程中显示当前进程识别码和父进程识别码。
(必做题)
【思考题】
1、系统是怎样创建进程的?
2、当首次调用新创建进程时,其入口在哪里?
3、当前运行的程序(主进程)的父进程是什么?
【实验报告】
1、列出调试通过程序的清单,分析运行结果。
2、给出必要的程序设计思路和方法(或列出流程图)。
3、回答思考题。
4、总结上机调试过程中所遇到的问题和解决方法及感想。
#include<stdio.h>
main()
{int p1,p2,p3;
while((p1=fork())==-1);
if(p1==0)
{
while((p2=fork())==-1);
if(p2==0)
{
父进程
图1 进程树
图2 进程树
if(p3==0)
{
printf("Process ID=%d,%c\n",getpid(), 'd');
}
else
printf("Process ID=%d,child Process ID=%d,%c\n",getpid(),p3, 'c'); }
else
printf("Process ID=%d,child Process ID=%d,%c\n",getpid(),p2, 'b');
}
else
printf("Process ID=%d,child Process ID=%d,%c\n",getpid(),p1,'a');
}
【实验相关资料】
一、进程概念
1.进程
UNIX中,进程既是一个独立拥有资源的基本单位,又是一个独立调度的基本单位。
一个进程实体由若干个区(段)组成,包括程序区、数据区、栈区、共享存储区等。
每个区又分为若干页,每个进程配置有唯一的进程控制块PCB,用于控制和管理进程。
PCB的数据结构如下:
⑴进程表项(Process Table Entry)。
包括一些最常用的核心数据,如: 进程标识符PID、用户标识符UID、进程状态、事件描述符、进程和U区在内存或外存的地址、软中断信号、计时域、进程的大小、偏置值nice、指向就绪队列中下一个PCB的指针P_Link、指向U区进程正文、数据及栈在内存区域的指针。
⑵ U区(U Area)。
用于存放进程表项的一些扩充信息。
每一个进程都有一个私用的U区,其中含有:进程表项指针、真正用户标识符u-ruid(read user ID)、有效用户标识符u-euid(effective user ID)、用户文件描述符表、计时器、内部I/O参数、限制字段、差错字段、返回值、信号处理数组。
由于UNIX系统采用段页式存储管理,为了把段的起始虚地址变换为段在系统中的物理地址,便于实现区的共享,所以还有:
⑶系统区表项。
以存放各个段在物理存储器中的位置等信息。
系统把一个进程的虚地址空间划分为若干个连续的逻辑区,有正文区、数据区、栈区等。
这些区是可被共享和保护的独立实体,多个进程可共享一个区。
为了对区进行管理,核心中设置一个系统区表,各表项中记录了以下有关描述活动区的信息:区的类型和大小、区的状态、区在物理存储器中的位置、引用计数、指向文件索引结点的指针。
⑷进程区表
系统为每个进程配置了一张进程区表。
表中,每一项记录一个区的起始虚地址及指向系统区表中对应的区表项。
核心通过查找进程区表和系统区表,便可将区的逻辑地址变换为物理地址。
2.进程映像
UNIX系统中,进程是进程映像的执行过程,也就是正在执行的进程实体。
它由三部分组成:
⑴用户级上、下文。
主要成分是用户程序;
⑵寄存器上、下文。
由CPU中的一些寄存器的内容组成,如PC,PSW,SP及通用寄存器等;
⑶系统级上、下文。
包括OS为管理进程所用的信息,有静态和动态之分。
3.进程树
在UNIX系统中,只有0进程是在系统引导时被创建的,在系统初启时由0进程创建1进程,以后0进程变成对换进程,1进程成为系统中的始祖进程。
UNIX利用fork( )为每个终端创建一个子进程为用户服务,如等待用户登录、执行SHELL命令解释程序等,每个终端进程又可利用fork( )来创建其子进程,从而形成一棵进程树。
可以说,系统中除0进程外的所有进程都是用fork( )创建的。
二、所涉及的中断调用
1、fork()
创建一个新的子进程。
其子进程会复制父进程的数据与堆栈空间,并继承父进程的用户代码、组代码、环境变量、已打开的文件代码、工作目录和资源限制。
系统调用格式:
int fork()
如果Fork成功则在父进程会返回新建立的子进程代码(PID),而在新建立的子进程中则返回0。
如果fork失败则直接返回-1。
2、wait()
等待子进程运行结束。
如果子进程没有完成,父进程一直等待。
wait( )将调用进程挂起,直至其子进程因暂停或终止而发来软中断信号为止。
如果在wait( )前已有子进程暂停或终止,则调用进程做适当处理后便返回。
系统调用格式:
int wait(status)
int *status;
其中,status是用户空间的地址。
它的低8位反映子进程状态,为0表示子进程正常结束,非0则表示出现了各种各样的问题;高8位则带回了exit( )的返回值。
exit( )返回值由系统给出。
核心对wait( )作以下处理:
(1)首先查找调用进程是否有子进程,若无,则返回出错码;
(2)若找到一处于“僵死状态”的子进程,则将子进程的执行时间加到父进程的执行时间上,并释放子进程的进程表项;
(3)若未找到处于“僵死状态”的子进程,则调用进程便在可被中断的优先级上睡眠,等待其子进程发来软中断信号时被唤醒。
3、exit()
终止进程的执行。
系统调用格式:
void exit(status)
int status;
其中,status是返回给父进程的一个整数,以备查考。
为了及时回收进程所占用的资源并减少父进程的干预,UNIX/LINUX利用exit( )来实现进程的自我终止,通常父进程在创建子进程时,应在进程的末尾安排一条exit( ),使子进程自我终止。
exit(0)表示进程正常终止,exit(1)表示进程运行有错,异常终止。
如果调用进程在执行exit( )时,其父进程正在等待它的终止,则父进程可立即得到其返回的整数。
核心须为exit( )完成以下操作:
(1)关闭软中断
(2)回收资源
(3)写记帐信息
(4)置进程为“僵死状态”。