立体几何中线面平行地经典方法经典的题目(附详细解答).doc

合集下载

立体几何中线面平行的经典方法

立体几何中线面平行的经典方法

高中立体几何证明平行的专题(基本方法) 立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。

(2)利用三角形中位线的性质。

(3)利用平行四边形的性质。

(4)利用对应线段成比例。

(5)利用面面平行,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、PD 的中点.求证:AF∥平面PCE;(第1题图)A B C A B2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥ CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;(2) 利用三角形中位线的性质4、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。

求证:PA∥平面BDE(.3)利用平行四边形的性质9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O//平面A1BC1;10、在四棱锥P-ABCD 中,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ∥平面PBC(4)利用对应线段成比例12、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =ND BN,求证:MN ∥平面SDC13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN 求证:MN∥平面BEC(5)利用面面平行14、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠= ,PB=BC=CA ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =.(1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;。

立体几何文科经典题证明线面平行精选题.doc

立体几何文科经典题证明线面平行精选题.doc

线面平行一“线线平行”与“线面平行”的转化问题(一)中位线法:当直线上没有中点,平面内有一个中点的时候, ( 如例 1 求证:PB //平面AEC P、 B 为顶点,平面AEC内 E 为中点)采用中位线法。

具体做法:如例 1,平面AEC的三个顶点,除中点 E 外,取 AC的中点 O,连接 EO,再确定由直线 PB和中点 E、O、 D 确定的 PBD(连接 PBD的a第三边 BD),在 PBD中, EO为PB的中位线。

规范写法: a // b, a, b, b //b例 1 如图,在底面为平行四边形的四棱锥P ABCD 中,点E是 PD 的中点 .求证: PB // 平面 AEC ;例 2 三棱柱ABC A1 B1C1中,D 为 AB 边中点。

求证:AC1∥平面CDB1;C1B1 A1C BDA【习题巩固一】1. (2011 天津文)如图,在四棱锥P ABCD 中,底面ABCD为平行四边形,O为AC中点PMD COM 为 PD 中点.(Ⅰ)证明: PB ACM A明:B11)证12011 四川文)如图,在直三棱柱ABC-A1B1C1BC中,∠ BAC=90°, AB=AC=AA1=1,延长 A1C1至点 P,使 C1P=A1C1,连接 AP交棱 CC1于 D.(Ⅰ)求证: PB1 ∥平面 BDA1;(二)平行四边形法:当直线上有一个中点(如例1证明:FO CDEEF //GH,EF GH , EFGH 是平行四边形EH // FG ,EH ,FG, EH //ABCDEF O ABCD1CDE P ABCD CDE EF // BC FO2AB / /DCM PADM // 面PBCⅠ) 证明:∥平EF面PAD;(II)若H是AD的中点,证明:∥平面;EA PHC【习题巩固二】1. 【2010·北京文数】如图,正方形ABCD和四边形 ACEF所在的平面互相垂直 .EF 2 2013 年高考山东卷(文))如图, 四棱锥P ABCD 中, AB∥ CD , AB 2CD ,E 为PB的中点 ( Ⅰ) 求证 : CE∥平面PAD;3. (2012 广东)如图 5 所示,在四棱锥P ABCD 中,AB 平面PAD ,AB / /CD,PD AD ,E 是PB 中点,F是DC 上的点,且DF 1 AB, PH 为PAD 中AD 边上的高。

专题20立体几何中的平行与垂直问题(解析版)

专题20立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

必修二立体几何线线平行、面面平行、线面垂直判定及性质练习

必修二立体几何线线平行、面面平行、线面垂直判定及性质练习

必修二立体几何线线平行、面面平行、线面垂直判定及性质练习本文档将介绍必修二立体几何中关于线线平行、面面平行、线面垂直的判定方法和性质,并提供相关练题。

一、线线平行的判定和性质1. 判定方法- 定理1:若两线的任意一对对应角相等,则这两条线平行。

定理1:若两线的任意一对对应角相等,则这两条线平行。

- 定理2:若一条直线与两平行线相交,则所成的对应角相等。

定理2:若一条直线与两平行线相交,则所成的对应角相等。

2. 性质- 平行线之间的距离相等。

- 平行线截取的两个平行线段成比例。

- 平行线相交的任意两对内错角相等,外错角相等。

- 平行线与一个横截线相交,所成的相应角、对应角均相等。

二、面面平行的判定1. 判定方法- 定理3:若两平面有一对平行线,则这两个平面平行。

定理3:若两平面有一对平行线,则这两个平面平行。

- 定理4:若两平面分别与一直线平行,则这两个平面平行。

定理4:若两平面分别与一直线平行,则这两个平面平行。

2. 性质- 平行面之间的距离相等。

三、线面垂直的判定1. 判定方法- 定理5:一条直线与平面垂直的充分必要条件是直线与平面内的任意一条短线都垂直。

定理5:一条直线与平面垂直的充分必要条件是直线与平面内的任意一条短线都垂直。

2. 性质- 垂直于同一平面的两条直线平行。

四、练题1. 若两线段的长度相等,能判断这两条线段平行吗?若能,请说明理由。

2. 若两平行线上的两点与另外一直线上的两点分别相连,那么这四条线段相交于一点还是两点?请说明理由。

3. 若两平面平行,能判断这两个平面之间的距离吗?请说明理由。

以上是必修二立体几何中关于线线平行、面面平行、线面垂直的判定方法和性质的介绍及练题。

通过理解和练这些内容,你将更好地掌握立体几何的基本概念和性质。

希望对你有帮助!。

第8章立体几何专题3 平行的证明常考题型专题练习——【含答案】

第8章立体几何专题3 平行的证明常考题型专题练习——【含答案】

1平行的证明【方法总结】1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.3. 应用线面平行的性质定理时,应着力寻找过已知直线的平面与已知平面的交线.4. 有时为了得到交线还需作出辅助平面,而且证明与平行有关的问题时,常与公理4等结合起来使用.【分题型练习】考向一 证明线面平行例1、如图,四棱锥P ABCD -中,90BAD ABC ︒∠=∠=,证明:BC ∥平面PAD1【答案】证明过程见详解;【解析】因为四棱锥P ABCD -中,90︒∠=∠=BAD ABC ,所以BC AD ∥,因为AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD ; 例2、如图,四棱锥P ABCD -中,底面ABCD 为矩形,F 是AB 的中 点,E 是PD 的中点,//PB 平面AEC【答案】证明见解析【解析】连接BD ,设BD 与AC 的交点为O ,连接EO . 因为四边形ABCD 为矩形,所以O 为BD 的中点, 又因为E 为PD 的中点,所以//EO PB ,因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .1例3、如图,已知四棱锥P ABCD -的底面为直角梯形, //AB DC 且12DCAB =,M 是PB 的中点,证明: //MC 平面PAD【答案】证明见解析【解析】证明:取PA 中点为N ,因为,N M 分别是,PA PB 中点,所以1//2MN AB ,又因为1//2DC AB ,所以MN //DC , 所以四边形MNDC 为平行四边形,所以//MC ND ,ND ⊂平面PAD ,MC ⊄平面PAD ,所以//MC 平面PAD . 例4、如图,在四面体A BCD -中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =求证://PQ 平面BCD .1【答案】证明见解析【解析】如下图所示,取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连接OP 、OF 、FQ .3AQ QC =,3AQ DF QC FC ∴==,//QF AD ∴,且14QF AD =. O 、P 分别为BD 、BM 的中点,//OP AD ∴,且12OP DM =. M 为AD 的中点,14OP AD ∴=. //OP QF ∴且OP QF =,四边形OPQF 是平行四边形,//PQ OF ∴. PQ ⊄平面BCD ,OF ⊂平面BCD ,//PQ ∴平面BCD .【巩固练习】11.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,点M 为PC 中点,证明://PA 平面BDM ;【答案】(1)证明见解析;(2)证明见解析 【解析】连接AC 交BD 于点O ,连接OM , 因为底面ABCD 为平行四边形,所以O 为AC 中点. 在PAC ∆中,又M 为PC 中点,所以//OM PA .又PA ⊄平面BDM ,OM ⊂平面BDM ,所以//PA 平面BDM .2.如图,在三棱锥A -BCD 中,点M ,N 分别在棱AC ,CD 的中点,求证:AD 平面BMN【答案】详见解析1【解析】证明:在ACD 中,因为M,N 分别为棱AC ,CD 的中点, 所以//MN AD ,又AD ⊄平面BMN ,MN ⊂平面BMN ,所以AD平面BMN .3.四棱锥P ABCD -中,底面ABCD 为菱形,求证://CD 平面PAB【答案】详见解析【解析】因为四边形ABCD 是平行四边形,所以//CD AB , 又因为AB平面PAB ,CD ⊄平面PAB ,所以//CD 平面PAB 。

立体几何中线面平行的经典方法 经典题(附详细解答)

立体几何中线面平行的经典方法 经典题(附详细解答)

DB A 1A F高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。

(2)利用三角形中位线的性质。

(3)利用平行四边形的性质。

(4)利用对应线段成比例。

(5)利用面面平行,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA(第1题图)4、如图所示, 四棱锥P -ABCD 底面是直角梯形,,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点,证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。

分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。

立体几何中线面平行地经典方法+经典的题目(附详细解答)

立体几何中线面平行地经典方法+经典的题目(附详细解答)

高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。

(2)利用三角形中位线的性质。

(3)利用平行四边形的性质。

(4)利用对应线段成比例。

(5)利用面面平行,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(第1题图)FGGCDECDEFDE B 1A 1C 1C AB M (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。

分析:连MD交GF于H,易证EH是△AMD的中位线6、如图,ABCD是正方形,O是正方形的中心,E是PC 的中点。

线面平行判定练习(总结较全)

线面平行判定练习(总结较全)

线面平行判定练习(总结较全)第1题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b // B.a b ⊥ C.a ,b 相交但不垂直 D.a ,b 异面答案:A.第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11A C 上的线段,求证:11E F //平面AC .答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,11A E ∴平行且等于AE ,11D F 平行且等于DF ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD ,∴11E F //平面ABCD .第5题. 如图,在正方形ABCD 中,BD 的圆心是A ,半径为AB ,BD 是正方形ABCD 的对角线,正方形以AB 所在直线为轴旋转一周.则图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得几何体的体积之比为 .答案:111∶∶第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PMAN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC , ∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //.PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形, EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DBDB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面//// ⇒111B CD A BD 平面平面//.第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:(1)AC //平面MNP ,BD //平面MNP ; (2)平面MNP 与平面ACD 的交线AC //.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PDBD MNP BD MNP PN MNP⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 MNP ACD AC 即平面与平面的交线//.第13题. 如图,线段AB ,CD 所在直线是异面直线,E ,F ,G ,H 分别是线段AC ,CB ,BD ,DA 的中点.(1) 求证:EFGH 共面且AB ∥面EFGH ,CD ∥面EFGH ; (2) 设P ,Q 分别是AB 和CD 上任意一点,求证:PQ 被平面EFGH 平分.答案:证明:(1)∵E ,F ,G ,H 分别是AC ,CB ,BD ,DA 的中点.,EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面. CD EH ∵//,CD ⊄平面EFGH ,EH ⊂平面EFGH , CD ∴//平面EFGH .同理AB //平面EFGH .(2)设PQ平面EFGH =N ,连接PC ,设PCEF M =.PCQ △所在平面平面EFGH =MN ,CQ ∵//平面EFGH ,CQ ⊂平面PCQ ,CQ MN ∴//.EF ∵ 是ABC △是的中位线,M ∴是PC 的中点,则N 是PQ 的中点,即PQ 被平面EFGH 平分.第14题. 过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( ) A.都平行B.都相交且一定交于同一点 C.都相交但不一定交于同一点 D.都平行或都交于同一点答案:D.第15题. a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( ) A.过A 且平行于a 和b 的平面可能不存在 B.过A 有且只有一个平面平行于a 和b C.过A 至少有一个平面平行于a 和b D.过A 有无数个平面平行于a 和b答案:A.第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 . 答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .答案:m n ∶.第18题. 如图,空间四边形ABCD 的对棱AD 、BC 成60的角,且AD BC a ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于E 、F 、G 、H . (1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?答案:(1)证明:BC ∵//平面EFGH ,BC ⊂平面ABC , 平面ABC 平面EFGH EF =,BC EF ∴//.同理BC GH //, EF GH ∴//,同理EH FG //, ∴四边形EGFH 为平行四边形. (2)解:∵AD 与BC 成60角,∴60HGF ∠=或120,设:AE AB x =,∵EF AEx BC AB==, BC a =,∴EF ax =,由1EH BEx AD AB==-, 得(1)EH a x =-.∴sin 60EFGH S EF EH =⨯⨯四边形(1)2ax a x =⨯-⨯22()2a x x =-+2211()24x ⎡⎤=--+⎢⎥⎣⎦. 当12x =时,28S a =最大值, 即当E 为AB的中点时,截面的面积最大,最大面积为28a .第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME ∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α内,B ,C 在β内,点E ,F 分别在AB ,CD 上,且AE EB CF FDm n ==∶∶∶. 求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论. (1) 当AB ,CD 共面时,如图(a )αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,CD 异面时,如图(b ),过点A 作AH CD // 交β于点H .在H 上取点G ,使AG GH m n =∶∶,连接EF ,由(1)证明可得GF HD //,又AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α.又EF ⊂面EFG ,∴EF //平面α.第22题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βαααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第23题. 三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB 、CD 都平行,则截面MNPQ 的周长是( ).A.4a B.2aC.32aD.周长与截面的位置有关答案:B.第24题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( ). A.a b // B.a b ⊥C.a 、b 相交但不垂直 D.a 、b 异面答案:A.第25题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E 、F 分别是PA 、BD 上的点且:PE EA BF =答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA=∴, 又由已知PE BF EAFD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM , 又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第26题. 如图,长方体1111ABCD A B C D -中,平面ABCD .答案:证明:如图,分别在AB 和CD 上截得11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD ,∴11E F //平面ABCD .第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -为正方体, 所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外. 求证:b α//.答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ=,所以a c //.因为a b //, 所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题. 如图,直线AA ',BB ',CC '相交于O ,AO AO =',BO B O =',CO C O ='. 求证:ABC //平面ABC '''.答案:提示:容易证明AB AB //'',AC AC //''. 进而可证平面ABC //平面ABC '''.第30题. 直线a 与平面α平行的充要条件是( ) A.直线a 与平面α内的一条直线平行 B.直线a 与平面α内两条直线不相交C.直线a 与平面α内的任一条直线都不相交 D.直线a 与平面α内的无数条直线平行答案:C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用标准文案高中立体几何证明平行的专题( 基本方法 )立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。

(2) 利用三角形中位线的性质。

(3) 利用平行四边形的性质。

(4)利用对应线段成比例。

(5) 利用面面平行,等等。

(1)通过“平移”再利用平行四边形的性质1.如图,四棱锥 P- ABCD的底面是平行四边形,点 E、F 分别为棱 AB、 PD 的中点.求证: AF∥平面 PCE;分析:取 PC的中点 G,连 EG.,FG,则易证 AEGF是平行四边形PFE A DB C(第 1 题图)2、如图,已知直角梯形ABCD中, AB∥ CD,AB⊥ BC,AB= 1,BC= 2,CD= 1+ 3 ,过 A 作 AE⊥ CD,垂足为E, G、 F 分别为 AD、CE 的中点,现将△A DE沿 AE 折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面 CDE;(Ⅱ)求证:FG∥面BCD;分析:取DB的中点 H,连 GH,HC则易证 FGHC是平行四边形DD E F CGFCG EA B A B3、已知直三棱柱ABC- A B C 中, D, E, F 分别为 AA, CC , AB 的中点,1 1 1 1 1M为 BE的中点 , AC ⊥ BE. 求证:(Ⅰ) C1D⊥BC;(Ⅱ) C1D∥平面 B1FM.C1分析:连 EA,易证 C1EAD是平行四边形,于是MF//EA B1E A 1M D实用标准文案4、如图所示 , 四棱锥P底面是直角梯形, ABCDBA AD ,CD AD , CD=2AB,E为PC的中点, 证明: EB //平面PAD ;分析 : :取 PD的中点 F,连 EF,AF 则易证 ABEF是平行四边形(2)利用三角形中位线的性质5、如图,已知E、F、G、M分别是四面体的棱AD 、 CD 、 BD 、 BC 的中点,求证:AM ∥平面 EFG 。

A分析:连 MD交 GF于 H,易证 EH是△ AMD的中位线 EB G DM FC6、如图, ABCD是正方形, O是正方形的中心, E 是 PC的中点。

求证: PA ∥平面 BDE7.如图,三棱柱ABC— A1B1C1中, D 为 AC的中点 .求证: AB1// 面 BDC1;分析:连B1C 交 BC1于点 E,易证 ED是△ B1AC的中位线8、如图,平面ABEF 平面ABCD ,四边形ABEF 与ABCD都是直角梯形,BADFAB 900 , BC // 1AD ,BE//1AF , G, H 分别为 FA, FD 的中点2 2(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ) C , D , F , E 四点是否共面?为什么?实用标准文案( .3 ) 利用平行四边形的性质9.正方体 ABCD — A 1B 1C 1D 1 中 O 为正方形 ABCD 的中心, M 为 BB 1 的中点,求证: D 1O// 平面 A 1BC 1;分析:连 D 1B 1 交 A 1C 1 于 O 1 点,易证四边形 OBB 1O 1 是平行四边形D10、在四棱锥 P-ABCD 中, AB ∥ CD , AB=1DC , E 为 PD 中点 .A2求证: AE ∥平面 PBC ;E分析:取 PC 的中点 F ,连 EF 则易证 ABFE BC是平行四边形P11、在如图所示的几何体中,四边形 ABCD 为平行四边形,∠ACB=90 ,EA⊥平面ABCD, EF ∥AB,FG∥BC,EG∥AC. AB =2EF .(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE ;(Ⅱ)若AC=BC =2AE , 求二面角A - BF - C的大 小.( I )证法一:因为 EF//AB , FG//BC , EG//AC , ACB90 ,所以EGF 90 , ABC∽ EFG .由于 AB=2EF ,因此, BC=2FC ,连接 AF ,由于 FG//BC , FG1BC2实用标准文案在ABCD中, M 是线段 AD 的中点,则AM//BC ,且 AM 1 BC2因此 FG//AM 且 FG=AM ,所以四边形 AFGM 为平行四边形,因此 GM//FA 。

又 FA平面 ABFE ,GM平面 ABFE ,所以 GM//平面 AB 。

(4) 利用对应线段成比例12、如图: S 是平行四边形 ABCD 平面外一点, M 、 N 分别是SA 、 BD 上的点,且AM =BN,SM ND求证: MN ∥平面 SDC分析:过 M 作 ME//AD ,过 N 作 NF//AD利用相似比易证 MNFE 是平行四边形13、如图正方形 ABCD 与 ABEF 交于 AB , M ,N 分别为 AC 和 BF 上的点且 AM=FN 求证: MN ∥ 平面 BECC分析:过 M 作 MG//AB ,过 N 作 NH/ABB利用相似比易证 MNHG 是平行四边形EDMN(5) 利用面面平行AF14、如图,三棱锥 PABC 中, PB底面 ABC ,BCA 90 , , E 为 PCPB=BC=CA 的中点, M 为 AB 的中点,点 F 在 PA 上,且 AF 2FP .( 1)求证: BE 平面 PAC ; ( 2)求证: CM / / 平面 BEF ;分析 : 取 AF 的中点 N ,连 CN 、 MN ,易证平面CMN//EFB直线、平面平行的判定及其性质经典题(附详细解答)一、选择题1.下列条件中 , 能判断两个平面平行的是( )A .一个平面内的一条直线平行于另一个平面 ;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2. E ,F ,G 分别是四面体 ABCD 的棱 BC ,CD ,DA 的中点,则此四面体中与过 E ,F ,G 的截面平行的棱的条数是A . 0B. 1C . 2 D3. 直线 a , b,c 及平面 , ,使 a // b 成立的条件是( A . a // , bB . a // , b //C . a // c, b // c . 3)D . a // , b 4.若直线 m 不平行于平面,且 m ,则下列结论成立的是( ) A . 内的所有直线与 m 异面 B. 内不存在与 m 平行的直线 C .内存在唯一的直线与 m 平行D . 内的直线与 m 都相交5.下列命题中,假命题的个数是()① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤a 和b 异面,则经过 b存在唯一一个平面与平行A . 4B . 3C. 2 D . 16.已知空间四边形 ABCD 中, M , N 分别是 AB, CD 的中点,则下列判断正确的是( )A . MN1 BC B.MN1 AC BCAC22 C . MN1AC BCD.MN1 AC BC22二、填空题7.在四面体 ABCD 中, M ,N 分别是面△ ACD ,△ BCD 的重心,则四面体的四个面中与 MN 平行的是 ________.8.如下图所示,四个正方体中, A ,B 为正方体的两个顶点, M ,N ,P分别为其所在棱的中点,能得到AB// 面 MNP 的图形的序号的是①②③④9.正方体ABCD-A B CD中,E为DD中点,则BD和平面ACE位置关系是.1 1 1 1 1 1三、解答题10. 如图,正三棱柱 ABC A1 B1C1的底面边长是2,侧棱长是3,D是 AC的中点 . 求证:B1C //平面 A1 BD .C1A1 B1CDA B11.如图,在平行六面体 ABCD-A1B1C1D1中, E,M,N,G分别是 AA1,CD,CB,CC1的中点,求证:( 1)MN// B1D1;( 2)AC1// 平面EB1D1;( 3)平面EB1D1// 平面BDG.参考答案一、选择题1. D【提示】当l 时,内有无数多条直线与交线l 平行,同时这些直线也与平面平行 . 故 A, B, C 均是错误的2. C【提示】棱 AC, BD与平面 EFG平行,共 2 条 .3. C【提示】 a // , b , 则 a // b 或 a, b 异面;所以 A 错误;a // , b // , 则 a // b 或 a, b 异面或 a,b 相交,所以 B 错误;a // , b ,则 a // b 或 a, b 异面,所以 D 错误;a // c,b // c,则 a // b ,这是公理4 C正确. ,所以4. B【提示】若直线m不平行于平面,且 m ,则直线 m于平面相交,内不存在与 m平行的直线 .5. B【提示】②③④错误 . ②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行 . ③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上.6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边.二、填空题7.平面ABC,平面ABD【提示】连接AM并延长,交CD于 E,连结 BN并延长交 CD于 F,由重心性质可知,E、 F重合为一点,且该点为CD的中点 E,由EM=EN=1得 MN∥ AB.因此, MN∥平面 ABC且MA NB 2MN∥平面 ABD.8.①③【提示】对于①,面 MNP//面 AB,故 AB// 面 MNP.对于③, MP//AB, 故 AB// 面 MNP,对于②④,过 AB 找一个平面与平面MNP相交, AB与交线显然不平行,故②④不能推证AB// 面 MNP. 9.平行【提示】连接 BD交 AC于 O,连 OE,∴ OE∥ B D 1, OEC平面 ACE,∴ B D1∥平面ACE. 三、解答题10.证明:设 AB 1与A1B相交于点P,连接PD,则P为AB1中点,D 为 AC中点,PD// B1C .又PD平面A1B D,B1C //平面 A 1B D11. 证明:( 1)M、 N分别是 CD、 CB的中点,MN//BD又BB1// DD1, 四边形 BB1D1D 是平行四边形 .所以 BD//B 1D1. 又 MN//BD,从而 MN//B1D1(2)(法 1)连 A1C1, A1C1交 B1D1与 O点四边形 A1B1C1D1为平行四边形,则 O点是 A1C1的中点E 是 AA1的中点, EO是 AA1 C1的中位线, EO//AC1.AC1面 EB1D1, EO 面 EB1D1,所以 AC1// 面 EB1D1(法 2)作 BB 中点为 H 点,连接 AH、 C H,E、 H 点为 AA 、 BB 中点,1 1 1 1所以 EH// C1D1,则四边形 EHCD 是平行四边形,所以ED//HC11 1 1又因为 EA// B H,则四边形 EAHB是平行四边形,所以EB//AH1 1 1AH HC1=H,面AHC1//面EB1D1.而AC1面AHC1,所以AC1//面EB1D1 ( 3)因为 EA// B1H,则四边形EAHB1是平行四边形,所以EB1//AH因为 AD// HG,则四边形ADGH是平行四边形,所以DG//AH,所以 EB1//DG又BB1// DD1,四边形BB1D1D是平行四边形.所以BD//B1D1.BD DG=G,面EB1D1//面BDG。

相关文档
最新文档