立体几何典型例题精选(含答案)

合集下载

高中立体几何经典例题

高中立体几何经典例题

1、一个正方体的棱长为2cm,若其一条棱所在直线与与其相对的棱所在直线之间的距离为d,则d等于:A. 2cmB. 2√2cmC. 4cmD. 无法确定(答案)B2、一个圆锥的底面半径为r,高为h,其侧面展开图是一个半圆,则该圆锥的母线长l为:A. √(r2 + h2)B. 2rC. √((r2 + h2)/2)D. 无法仅通过r和h确定(答案)B3、一个直角三棱镜置于水平桌面上,其一个45°的角正对光源,光线从该角射入并在三棱镜内部发生全反射,若三棱镜的折射率为n,则入射光线与桌面的夹角θ应满足:A. θ < 45° - arcsin(1/n)B. θ > 45° + arcsin(1/n)C. θ = 45° - arcsin(1/n)D. θ在特定范围内与n有关,但无法直接给出表达式(答案)A4、一个球体与一个正方体内切,若正方体的棱长为a,则球体的体积V为:A. (4/3)π(a/2)3B. (4/3)πa3C. (1/6)πa3D. (1/8)πa3(答案)A5、一个圆柱体的高为h,底面半径为r,若将其侧面展开,得到的矩形长与宽之比为π:1,则h与r的关系为:A. h = 2πrB. h = πrC. h = rD. h = 2r(答案)D6、一个正四面体(所有面都是等边三角形)的棱长为a,则其外接球的半径R为:A. a√6/4B. a√2/2C. a√3/3D. a√6/3(答案)A7、一个长方体房间的长、宽、高分别为l、w、h,若一人站在房间的一个角上,能看到与之相对的另一个角的全貌,则必须满足的条件是:A. l2 + w2 ≤ h2B. l2 + w2 ≥ h2C. l + w ≤ hD. l2 + h2 ≤ w2(答案)A8、一个圆锥的底面直径为d,母线长为l,若用一个平面截该圆锥,截面为一个等腰三角形,且该三角形的顶角为60°,则圆锥的高h为:A. l/2B. √3d/4C. √(l2 - (d/2)2)D. 无法仅通过d和l确定(答案)C。

高三精选立体几何大题30题(含详细解答)

高三精选立体几何大题30题(含详细解答)

A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。

(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。

(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。

高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。

(精选试题附答案)高中数学第八章立体几何初步经典大题例题

(精选试题附答案)高中数学第八章立体几何初步经典大题例题

(名师选题)(精选试题附答案)高中数学第八章立体几何初步经典大题例题单选题1、已知三棱锥P−ABC,其中PA⊥平面ABC,∠BAC=120°,PA=AB=AC=2,则该三棱锥外接球的表面积为()A.12πB.16πC.20πD.24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC的外心为G,O为球心,所以OG⊥平面ABC,因为PA⊥平面ABC,所以OG//PA,设D是PA中点,因为OP=OA,所以DO⊥PA,因为PA⊥平面ABC,AG⊂平面ABC,所以AG⊥PA,因此OD//AG,PA=1,因此四边形ODAG是平行四边形,故OG=AD=12由余弦定理,得BC=√AB2+AC2−2AB⋅AC⋅cos120°=√4+4−2×2×2×(−1)=2√3,2⇒AG=2,由正弦定理,得2AG=√3√32所以该外接球的半径R满足R2=(OG)2+(AG)2=5⇒S=4πR2=20π,故选:C.小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.2、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果.由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.3、若一个正方体的体对角线长为a,则这个正方体的全面积为()A .2a 2B .2√2a 2C .2√3a 2D .3√2a 2答案:A分析:设正方体的棱长为x ,求出正方体的棱长即得解.解:设正方体的棱长为x ,则√3x =a ,即x 2=13a 2,所以正方体的全面积为6x 2=6×13a 2=2a 2. 故选:A4、《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,AC ⊥CD ,AC =BC +CD =2,当△BCD 的面积最大时,鳖臑ABCD 的表面积为( )A .√3+√62B .3+√62C .2+√3+√62D .3+√3+√62答案:D分析:根据题意可证明CD ⊥BC ,从而说明三角形BCD 是直角三角形,求得BD ,进而求得四个直角三角形的面积,可得答案.由题意可知:AB ⊥平面BCD ,CD ⊂平面BCD ,故AB ⊥CD ,又AC ⊥CD ,AC ∩AB =A,AB,AC ⊂平面ABC ,故CD ⊥平面ABC ,BC ⊂平面ABC ,故CD ⊥BC ,所以S △BCD =12BC ⋅CD ≤12×(BC+CD 2)2=12 ,当且仅当BC =CD =1时取得等号, 故BD =√1+1=√2 ,由AB ⊥平面BCD ,可知AB ⊥BD,AB ⊥BC ,故AB=√AC2−BC2=√4−1=√3 ,所以S△ABD=12AB⋅BD=√62,S△ABC=12AB⋅BC=√32,S△BCD=12BC⋅CD=12,S△ACD=12AC⋅CD=1,所以鳖臑ABCD的表面积为√62+√32+12+1=3+√3+√62,故选:D5、锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=7、b=8,m⃑⃑ =(12,cosA),n⃑=(sinA,−√32),且m⃑⃑ ⊥n⃑,则△ABC的面积为()A.√3B.3√3C.5√3D.10√3答案:D分析:先由向量垂直得到A=π3,利用余弦定理求出c=3或c=5,利用锐角三角形排除c=3,从而c=5,利用面积公式求出答案.由题意得:12sinA−√32cosA=0,故tanA=√3,因为A∈(0,π2),所以A=π3,由余弦定理得:cosA=64+c 2−492×8c =12,解得:c=3或c=5,当c=3时,最大值为B,其中cosB=49+9−642×7×3<0,故B为钝角,不合题意,舍去;当c=5时,最大值为B,其中cosB=49+25−642×7×5>0,故B为锐角,符合题意,此时S△ABC=12bcsinA=12×8×5×√32=10√3.故选:D6、过半径为4的球O表面上一点M作球O的截面,若OM与该截面所成的角是30°,则O到该截面的距离是()A.4B.2√3C.2D.1答案:C分析:作出球的截面图,根据几何性质计算,可得答案.作出球的截面图如图:设A为截面圆的圆心,O为球心,则OA⊥截面,AM在截面内,即有OA⊥AM,=2 ,故∠OMA=30∘,所以OA=4×12即O到该截面的距离是2,故选:C7、如图,点N为正方形ABCD的中心,ΔECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案:B解析:利用垂直关系,再结合勾股定理进而解决问题.如图所示, 作EO ⊥CD 于O ,连接ON ,过M 作MF ⊥OD 于F .连BF ,∵平面CDE ⊥平面ABCD .EO ⊥CD,EO ⊂平面CDE ,∴EO ⊥平面ABCD ,MF ⊥平面ABCD ,∴ΔMFB 与ΔEON 均为直角三角形.设正方形边长为2,易知EO =√3, ON =1 EN =2,MF =√32,BF =52,∴BM =√7.∴BM ≠EN ,故选B .小提示:本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角形.8、在正方体ABCD −A 1B 1C 1D 1中,E 为线段A 1B 1的中点,则异面直线D 1E 与BC 1所成角的余弦值为( )A .√55B .√105C .√155D .2√55答案:B分析:连接AD 1,AE ,得到AD 1//BC 1,把异面直线D 1E 与BC 1所成角转化为直线D 1E 与AD 1所成角,取AD 1的中点F ,在直角△D 1EF 中,即可求解.在正方体ABCD −A 1B 1C 1D 1中,连接AD 1,AE ,可得AD 1//BC 1,所以异面直线D 1E 与BC 1所成角即为直线D 1E 与AD 1所成角,即∠AD 1E 为异面直线D 1E 与BC 1所成角,不妨设AA 1=2,则AD 1=2√2,D 1E =AE =√5,取AD 1的中点F ,因为D 1E =AE ,所以EF ⊥AD 1,在直角△D 1EF 中,可得cos∠AD 1E =D 1F D 1E =√2√5=√105. 故选:B.9、若直线a //平面α,A ∉α,且直线a 与点A 位于α的两侧,B ,C ∈a ,AB ,AC 分别交平面α于点E ,F ,若BC =4,CF =5,AF =3,则EF 的长为( )A .3B .32C .34D .23答案:B分析:根据线面平行可得线线平行,从而可求EF =32. ∵BC //α,BC ⊂平面ABC ,平面ABC ∩α=EF ,∴EF //BC ,∴AF AC =EF BC ,即35+3=EF 4,∴EF =32. 故选:B.10、如图在正三棱锥S −ABC 中,M,N 分别是棱SC,BC 的中点,Q 为棱AC 上的一点,且AQ =12QC ,MN ⊥MQ ,若AB =2√2,则此正三棱锥S −ABC 的外接球的体积为( )A .12πB .4√33πC .8√3πD .4√3π 答案:D分析:根据题意证明SA,SB,SC 两两垂直,将三棱锥放入棱长为2的正方体,两者外接球体积相同,求得正方体外接球体积即可得出答案.因为在△SBC 中,M,N 分别是棱SC,BC 的中点,所以MN //SB ,因为MN ⊥MQ ,所以SB ⊥MQ ,因为三棱锥S −ABC 为正三棱锥,所以SB ⊥AC (对棱垂直),又因为MQ,AC ⊂面SAC ,MQ ∩AC =Q ,所以SB ⊥面SAC ,因为SA,SC ⊂面SAC ,所以SB ⊥SA,SB ⊥SC ,在Rt △SAB 中,SA 2+SB 2=AB 2,因为三棱锥S −ABC 为正三棱锥,所以△SBC 是等腰三角形,△ABC 是等边三角形,所以SB =SC ,AB =AC ,所以SA 2+SC 2=AC 2,即SA ⊥SC ,所以SA,SB,SC 两两垂直,将此三棱锥放入正方体中,此正方体的面对角线长等于AB 长,为2√2,则该正方体棱长为2,外接球半径R =√(22)2+(2√22)2=√3,正方体外接球体积V =43πR 3=43π×(√3)3=4√3π,此正三棱锥S −ABC 的外接球体积和正方体外接球体积相同,为4√3π.故选:D填空题11、如图所示,过三棱台上底面的一边A1C1,作一个平行于棱BB1的截面,与下底面的交线为DE.若D、E分别是AB、BC的中点,则V A1B1C1−DBEV A1B1C1−ABC=______.答案:37分析:证得S△A1B1C1=14S△ABC,然后结合棱台与棱柱的体积公式即可求出结果.因为BB1//平面DEC1A1,且平面BB1C1C∩平面DEC1A1=C1E,所以BB1//C1E,又因为B1C1//BE,所以四边形BB1C1E为平行四边形,所以B1C1=BE,且E分别是BC的中点,所以B1C1=1 2BC,同理A1B1=12AB,因此S△A1B1C1=14S△ABC,设上底面的面积为S,高为ℎ,则下底面的面积为4S,所以V A1B1C1−DBEV A1B1C1−ABC =13(S+√S⋅4S+4S)ℎ=37,所以答案是:37.12、两个平面最多可以将空间分为___________部分.答案:4分析:根据两个平面的位置关系分别计算出它们将空间分成的部分数即可得解. 两个平面的位置关系有平行和相交两种,当两个平面平行时,它们可将空间分成3部分,当两个平面相交时,它们可将空间分成4部分,所以两个平面最多可以将空间分为4部分.所以答案是:413、在四棱锥P-ABCD中,PA⊥平面ABCD,底面四边形ABCD为矩形.请在下面给出的5个条件中选出2个作为一组,使得它们能成为“在BC边上存在点Q,使得△PQD为钝角三角形”的充分条件___________.(写出符合题意的一组即可)①PA=2;②BC=3;③BC=√5;④AB=√2;⑤AB=1.答案:②④或②⑤或③⑤分析:设PA=a,AB=b,AD=c,BQ=x(0≤x≤c),则CQ=c−x,计算出PQ2,DQ2,PD2,若在BC边上存在点Q,使得△PQD为钝角三角形,则PQ2+DQ2<PD2,解不等式再根据已知条件可得答案.设PA=a,AB=b,AD=c,BQ=x(0≤x≤c),则CQ=c−x,因为PA⊥平面ABCD,底面四边形ABCD为矩形,所以PA⊥AQ,则PQ2=PA2+AQ2=PA2+AB2+BQ2=a2+b2+x2,DQ2=CD2+CQ2=b2+(c−x)2,PD2=PA2+AD2=a2+c2,若在BC边上存在点Q,使得△PQD为钝角三角形,则PQ2+DQ2<PD2,即a2+b2+x2+b2+(c−x)2<a2+c2,整理得x2−cx+b2<0(0<x<c),要使不等式有解,只需c2−4b2>0,即只需BC>2AB即可,因为①PA=2;②BC=3;③BC=√5;④AB=√2;⑤AB=1,所以②④或②⑤或③⑤.所以答案是:②④或②⑤或③⑤.14、所有棱长均为2的正三棱锥的体积为______.答案:23√2##2√23分析:棱长均为2的正三棱锥,分别求出棱锥的底面面积和高,代入棱锥体积公式,即可得到答案. 当三棱锥棱长均为2时,正三棱锥即为正四面体,如图,正四面体的底面积S=√34×22=√3,正四面体的高ℎ=PO=√PA2−AO2=√22−(23×√32×2)2=2√63,故正四面体的体积V=13⋅S⋅ℎ=2√23.所以答案是:2√2315、已知球O的半径为43,点A,B,C,D均在球面上,若△ABC为等边三角形,且其面积为√3,则三棱锥D−ABC的最大体积是___________.答案:2√33分析:根据三角形面积求出边长,即可求出三角形外接圆半径,继而可求出高的最大值,求出体积.设△ABC外接圆的圆心为O1,由△ABC是面积为√3的等边三角形,得12⋅|AB|2⋅sin60∘=√3,解得AB=2,则|O1B|=12×|AB|sin60∘=2√33.当三棱棱锥D−ABC体积最大时,球心O在DO1上,因此有|OO1|=√|OB|2−|O1B|2=23,所以|DO1|的最大值为43+23=2,三棱锥D−ABC的最大体积为V=13⋅S△ABC⋅|DO1|=13×√3×2=2√33.所以答案是:2√33.小提示:本题考查三棱锥的外接球问题,解题的关键是建立好勾股关系求出高.解答题16、如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点.(Ⅰ)求证:BC1//平面AD1E;(Ⅱ)求直线AA1与平面AD1E所成角的正弦值.答案:(Ⅰ)证明见解析;(Ⅱ)23.分析:(Ⅰ)证明出四边形ABC1D1为平行四边形,可得出BC1//AD1,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解 . (Ⅰ)[方法一]:几何法 如下图所示:在正方体ABCD −A 1B 1C 1D 1中,AB //A 1B 1且AB =A 1B 1,A 1B 1//C 1D 1且A 1B 1=C 1D 1, ∴AB //C 1D 1且AB =C 1D 1,所以,四边形ABC 1D 1为平行四边形,则BC 1//AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E ,∴BC 1//平面AD 1E ; [方法二]:空间向量坐标法以点A 为坐标原点,AD 、AB 、AA 1所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A −xyz ,设正方体ABCD −A 1B 1C 1D 1的棱长为2,则A (0,0,0)、A 1(0,0,2)、D 1(2,0,2)、E (0,2,1),AD 1⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),AE ⃑⃑⃑⃑⃑ =(0,2,1),设平面AD 1E 的法向量为n ⃑ =(x,y,z ),由{n →⋅AD 1→=0n →⋅AE →=0,得{2x +2z =02y +z =0, 令z =−2,则x =2,y =1,则n →=(2,1,−2).又∵向量BC 1⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),BC 1⃑⃑⃑⃑⃑⃑⃑ ·n ⃑ =2×2+0×1+2×(−2)=0, 又∵BC 1⊄平面AD 1E ,∴BC 1//平面AD 1E ; (Ⅱ)[方法一]:几何法延长CC 1到F ,使得C 1F =BE ,连接EF ,交B 1C 1于G , 又∵C 1F//BE ,∴四边形BEFC 1为平行四边形,∴BC 1//EF , 又∵BC 1//AD 1,∴AD 1//EF ,所以平面AD 1E 即平面AD 1FE , 连接D 1G ,作C 1H ⊥D 1G ,垂足为H ,连接FH ,∵FC 1⊥平面A 1B 1C 1D 1,D 1G ⊂平面A 1B 1C 1D 1,∴FC 1⊥D 1G , 又∵FC 1∩C 1H =C 1,∴直线D 1G ⊥平面C 1FH , 又∵直线D 1G ⊂平面D 1GF ,∴平面D 1GF ⊥平面C 1FH ,∴C 1在平面D 1GF 中的射影在直线FH 上,∴直线FH 为直线FC 1在平面D 1GF 中的射影,∠C 1FH 为直线FC 1与平面D 1GF 所成的角,根据直线FC 1//直线AA 1,可知∠C 1FH 为直线AA 1与平面AD 1G 所成的角. 设正方体的棱长为2,则C 1G =C 1F =1,D 1G =√5,∴C 1H =√5=√5,∴FH =√1+(√5)2=√5,∴sin∠C 1FH =C 1H FH=23,即直线AA 1与平面AD 1E 所成角的正弦值为23.[方法二]:向量法接续(I)的向量方法,求得平面平面AD 1E 的法向量n ⃑ =(2,1,−2),又∵AA 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2),∴cos <n ⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ >=n ⃑ ⋅AA 1⃑⃑⃑⃑⃑⃑⃑⃑ |n ⃑ |⋅|AA 1⃑⃑⃑⃑⃑⃑⃑⃑ |=−43×2=−23, ∴直线AA 1与平面AD 1E 所成角的正弦值为23.[方法三]:几何法+体积法如图,设B 1C 1的中点为F ,延长A 1B 1,AE,D 1F ,易证三线交于一点P . 因为BB 1∥AA 1,EF ∥AD 1,所以直线AA 1与平面AD 1E 所成的角,即直线B 1E 与平面PEF 所成的角. 设正方体的棱长为2,在△PEF 中,易得PE =PF =√5,EF =√2, 可得S △PEF =32.由V 三棱锥B 1−PEF =V 三棱锥P−B 1EF ,得13×32⋅B 1H =13×12×1×1×2, 整理得B 1H =23. 所以sin∠B 1EH =B 1H B 1E =23.所以直线AA 1与平面AD 1E 所成角的正弦值为23.[方法四]:纯体积法设正方体的棱长为2,点A 1到平面AED 1的距离为h , 在△AED 1中,AE =√5,AD 1=2√2,D 1E =3, cos∠AED 1=D 1E 2+AE 2−AD 122D 1E⋅AE=2×3×√5=√55, 所以sin∠AED 1=2√55,易得S △AED 1=3.由V E−AA 1D 1=V A 1−AED 1,得13S △AD 1A 1⋅A 1B 1=13S △AED 1⋅ℎ,解得ℎ=43, 设直线AA 1与平面AED 1所成的角为θ,所以sinθ=ℎAA 1=23.【整体点评】(Ⅰ)的方法一使用线面平行的判定定理证明,方法二使用空间向量坐标运算进行证明; (II )第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁;方法四不作任何辅助线,仅利用正余弦定理和体积公式进行计算,省却了辅助线和几何的论证,不失为一种优美的方法. 17、已知正方体ABCD −A ′B ′C ′D ′.(1)G 是△BA ′C ′的重心,求证:直线DG ⊥平面BA ′C ′;(2)若AB =1,动点E 、F 在线段AD 、D ′C ′上,且DE =D ′F =a ,M 为AB 的中点,异面直线EF 与DM 所成的角为arccos√210,求a 的值.答案:(1)证明见解析(2)√24分析:(1)根据空间向量,以B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑ =i ,B ′B ⃑⃑⃑⃑⃑⃑⃑ =j ,B ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =k ⃑ 为基底,用基底向量表示其他向量,根据向量的数量积为0判断线线垂直,进而证明线面垂直.(2)以空间直角坐标系,写成点的坐标,根据向量的夹角与异面直线夹角间的关系,列出方程即可求解.(1)证明:设B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑ =i ,B ′B ⃑⃑⃑⃑⃑⃑⃑ =j ,B′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =k ⃑ , 显然i ⋅j =0,j ⋅k ⃑ =0,k ⃑ ⋅i =0,因为G 是△BA ′C ′的重心,所以B ′G ⃑⃑⃑⃑⃑⃑⃑ =13(i +j +k ⃑ ),故DG ⃑⃑⃑⃑⃑ =B ′G ⃑⃑⃑⃑⃑⃑⃑ −B ′D ⃑⃑⃑⃑⃑⃑⃑ =B ′G ⃑⃑⃑⃑⃑⃑⃑ −(B ′B ⃑⃑⃑⃑⃑⃑⃑ +BA ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ )=13(i +j +k ⃑ )−(j +i +k )=−23(i +j +k ⃑ ) A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =k ⃑ −i ;DG ⃑⃑⃑⃑⃑ ⋅A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =−23(k ⃑ 2−i 2)=0,得DG ⃑⃑⃑⃑⃑ ⊥A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ , 同理DG ⃑⃑⃑⃑⃑ ⋅A ′B ⃑⃑⃑⃑⃑⃑⃑ =0,得DG ⃑⃑⃑⃑⃑ ⊥A ′B⃑⃑⃑⃑⃑⃑⃑ . 因为A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ 不平行于A ′B⃑⃑⃑⃑⃑⃑⃑ ,所以直线DG ⊥平面BA ′C ′. (2)以D 为坐标原点,射线DA 、DC 、DD ′分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,于是E(a,0,0),F(0,a,1),M (1,12,0),则EF⃑⃑⃑⃑⃑ =(−a,a,1),DM ⃑⃑⃑⃑⃑⃑ =(1,12,0).于是cos⟨EF⃑⃑⃑⃑⃑ ,DM ⃑⃑⃑⃑⃑⃑ ⟩=|EF⃑⃑⃑⃑⃑ ⋅DM ⃑⃑⃑⃑⃑⃑⃑ ||EF⃑⃑⃑⃑⃑ |⋅|DM ⃑⃑⃑⃑⃑⃑⃑ |=12a √52⋅√2a 2+1=√210,解得a =√24,所以a 的值为√24.18、如图所示,在四棱锥P −ABCD 中,底面ABCD 为正方形,E 为侧棱PC 的中点.(1)求证:经过A 、B 、E 三点的截面平分侧棱PD ;(2)若PA ⊥底面ABCD ,且PA =AD =2,求四面体ABEP 的体积. 答案:(1)证明见解析;(2)23.分析:(1)设截面ABE 与侧棱PD 交于点F ,连结EF,AF ,证明CD//EF.即得F 为PD 的中点,即截面ABE 平分侧棱PD ;(2)取PB 中点H ,连EH ,证明EH ⊥平面PAB ,即得解. (1)证明:设截面ABE与侧棱PD交于点F,连结EF,AF.因为底面ABCD为矩形,所以AB//CD.又AB⊄平面PCD,且CD⊂平面PCD,所以AB//平面PCD.又AB⊂平面ABE,且平面ABE∩平面PCD=EF,所以AB//EF.又因为AB//CD,所以CD//EF.因为E为PC的中点,所以F为PD的中点,即截面ABE平分侧棱PD. (2)∵PA⊥平面ABCD,BC⊆平面ABCD,∴BC⊥PA,又BC⊥AB,∴BC⊥平面PAB.取PB 中点H ,连EH , ∵E 是PC 中点,∴EH//BC ,即EH =1且EH ⊥平面PAB , 又Rt △PAB 的面积S =12PA ⋅AB =2.∴四面体ABEP 的体积V =V E−PAB =13⋅S ⋅EH =23.小提示:方法点睛:求几何体的体积常用的方法有:(1)规则的公式法;(2)不规则的割补法;(3)等体积法. 要根据已知条件灵活选择方法求解.19、如图,在正三棱柱ABC −A 1B 1C 1中,D 为棱AA 1的中点.若截面△BC 1D 是面积为6的直角三角形,求此三棱柱的表面积.答案:24√2+4√3分析:设AD =b,AB =a ,根据△BC 1D 是面积为6的直角三角形,由{BD 2+C 1D 2=BC 1212⋅BD ⋅C 1D =6求解.解:设AD =b,AB =a ,则BD =C 1D =√a 2+b 2,BC 1=√a 2+4b 2.由题意得{BD 2+C 1D 2=BC 12,12⋅BD ⋅C 1D =6, 即{a 2+b 2+a 2+b 2=a 2+4b 2,a 2+b 2=12,解得{a =2√2,b =2, 从而S 表=4×3×2√2+2×2√2×2√2×√34=24√2+4√3.。

立体几何大题练习(附答案)

立体几何大题练习(附答案)

1.(本小题总分值14分)如图,在四棱锥 P ABCD 中,底面ABCD 是正方形,侧棱PD 底面ABCD, PD DC 1, E 是PC 的中点,作EF PB 交PB 于点F.(I)证实: PA //平面EDB; (II)证实:PB ,平面EFD; (III)求三棱锥P DEF 的体积.2 .(本小题总分值(m)求三棱锥(I )求证:B 118.(本小题总分值14分)如右图,在直角梯形ABCD中, B=90 °,1DC//AB,BC=CD= -AB=2 , G 为线段AB 的中点,将VADG 沿GD 2折起,使平面ADG 平面BCDG,得到几何体A-BCDG.(1)假设E,F分别为线段AC,AD的中点,求证:EF//平面ABG;(2)求证:AG 平面BCDG;(3)求V C-ABD 的值.4、(本小题总分值14分)如图4, AA是圆柱的母线, AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点, AA AB 2.(1)求证:BC 平面A〔AC ;(2)求三棱锥A ABC的体积的最大值.图4C (n ) 求证:EF 面PAC;〔出〕求三棱锥B-PAC的体积.6 .〔本小题总分值14分〕如图,平行四边形ABCD中,CD 1, BCD 60,且BD CD ,正方形ADEF 和平面ABCD成直二面角,G, H是DF , BE的中点.〔I〕求证:BD 平面CDE ;〔n〕求证:GH 〃平面CDE;〔出〕求三棱锥D CEF的体积.7.〔本小题总分值14分〕右图是一个直三棱柱〔以A i B i C i为底面〕被一平面所截得到的几何体,截面为ABC.A i B i = B i C i = l, ZAi B i C i = 90 ,AA i = 4,BB i=2, CC i=3.(I)设点O是AB的中点,证实:OC//平面A i B i C i;(II)求此几何体的体积.8 .(本小题总分值i4分)如图,在正方体ABCD—A i B i C i D i中,E、F为棱AD、AB的中点.(i )求证:EF//平面CB i D i;(2)求证:平面CAA i C■平面CB i D i.9 .(本小题总分值i4分)如图i ,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF 平面ABCD,连结局部线段后围成一个空间几何体,如图2.(I)求证:BE〃平面ADF ;(n)求三棱锥F BCE的体积.图图-10 .(本小题总分值14分)在直三棱柱ABC ABG中,AD 平面ABC,其垂足D落在直线A〔B上.(I )求证:BC A1B ;(n)假设AD J3, AB BC 2, P为AC的中点,求三棱锥P ABC的体积.B1…1 .解:(1)证实:连结AC, AC交BD于O,连结EO••・底面ABCD是正方形,,点O是AC的中点在PAC中,EO是中位线,,PA // EO而EO 平面EDB且PA 平面EDB,所以,PA //平面EDB.(2)证实:PD,底面ABCD 且DC 底面ABCD,,PD DCPD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,.DE PC ①同样由PD,底面ABCD,得PDXBC•••底面ABCD是正方形,有DCXBC,,BC,平面PDC 而DE 平面PDC, BC DE ②由①和②推得DE 平面PBC而PB 平面PBC, . DE PB又EF PB 且DE EF E,所以PB ,平面EFD................................ 8分(3) . PD DC 1,由 PD ,平面 ABCD,PDXBC,又.BCXCD, PDACD = D,BC± PC.-CL 2f在Z^BDE 中,DE -------- , BD22221 DE2 BE 2 BD 2 — 2 而由(2), PB,平面EFD,••.BC,平面 PCD,3 c-一 2 0,即 DEL BE.2PBXDE,因而 DEL 平面 BEF,2在 RtABPD 中,BF BP BD , BF1 1 . V DE EF PF 32 2.解:(I)证实:连结 BD ,那么 BD // B 1D 1,ABCD 是正方形,,AC BD. CE 面 ABCD,,CE BD .又 A .CE C, BD 面 ACE. . AE 面 ACE, . . BD AE ,• .B 1D 1 AE .(n)证实:作BB 1的中点F,连结AF 、CF 、EF.• •・E 、F 是 CC 、BB 1 的中点,,CE?B 1F , • •・四边形B 〔FCE 是平行四边形,, CF// B 1E .E,F 是 CC 、BB 1 的中点,,EF//BC ,又 BC//AD , EF //AD ...............14分136;Rt 革EFEF. AF I CF C , B 1EI ED E ,,平面 ACF 〃面 B 1DE .又 AC 平面 ACF , . . AC 〃面 B 1DE .4证实:二.是底面圆周上异于 A, B 的任意 柱底面圆的直径, •••BCXAC,……2 分,.AA1,平面 ABC , BC i 平面 ABC, . AAiXBC,…… 4 分•.AA i AAC=A , AA 1 i 平面 AA i C, AC i 平面 AA1 C, . EC ,平面AA1C.……6分 (2)解法 1 :设 AC=x ,在 RtMBC 中,BC = J AB 2 AC 2 h x 2(o<x<2),……7 分....1 一 … 1 11 -~~2故 V ARABC = —S VABC AA 1— — AC BC AA 1 _x \ 4x (0<x<2),13 3 23即 V A 「ABC =4“ x 2 1 \/x 2 (4 x 2):J (x 2~2)2~4 . ……11 分 23 33,-0<x<2 , 0<x 2<4 ,「.当 x 2=2,即 x = 五时, 三棱锥A 1-ABC 的体积的最大值为 -.……14分35(1)证实:在三角形 PBC 中,E 是PC 中点.F 为PB 中点所以 EF//BC , BC 面ABC, EF 面ABC, 所以 EF 〃面ABC ……4分,四边形ADEF 是平行四边形,AF // ED ,(3)S ABD - AB AD 2 •2VA BDE VE ABD1S ~ SABDCE1S3 SABDCE2 3又AB 是.O 的直径,所以BC AC …… ⑵ ……7分 由(1) (2)得 BC 面PAC 因EF//BC BC 面PAC ,所以EF 面PAC ……9分(出)因PA OO 所在的平面,AC 是PC 在面ABC 内的射影,1V B PACV P ABC S ABC PA37 . (1)证实:作OD //.交片81于口,连C 1D .那么 OD // BB 1 // CC 1 .作BH(n) PA BC面ABC 面ABCBC PA所成角 PCA 450,PA=AC11分在Rt ABC 中,E 是PC 中点,BAC -, AC BC 2412分Q O 是AB 的中点,OD1-(AA 1 BB 1) 3 CC 1 .2那么ODCQ 是平行四边形,OC // C 1D .……4分Q C 1D 平面 C 1B 1A 且 OC 平面C1B1A ,OC // 面 A 1B 1C 1.(2)如图,过B 作截面BA 2c 2CC 1 于 A 2,//面ABG,分别交AA1,Q CC 1 面 BA 2c 2, CC 1BH ,那么BH 平面AC .又Q A 2B AB 1 1 , BC 2B 1c l 1 , BH --, 2V B AA 2C 2C1 S A A 2c 2c3BH 1 1 厂J.21 (1 2) '2 -3 2 22PCA 即为PC 与面ABC'.2----- …14分3所求几何体体积为:V V B AACC . 八八 2 J 2 J8 .〔本小题总分值14分〕折叠之后平行关系不变. BC 平面ADF , AD 平面 • .BC//平面 ADF ,V AB|C 1 A2BC 21八, SA A 1B 1C 1BB 1 - 2 1〔1〕证实:连结 BD .在长方体AC i 中, 对角线BD//B 1D 1. 又Q E 、F 为棱AD 、AB 的中点, ・.EF //BD . . .EF //BD 1. 又 B 1D 1 平面 CBD 1, EF 平面 CB 1D 1,,EF//平面 CB 1D 1. (2) Q 在长方体 AC [中,AA 1,平面 A 1B 1C 1D 1,而 B 1D 1 平面 A 1B 1C 1D 1, . AA iX B i D i . 又Q 在正方形 A 1B 1C 1D 1 中,A 1C 1 XB 1D 1, .. B 1D 1,平面 CAA 1C 1. 又Q B 1D 1 平面 CB 1D 1,,平面 CAA 1C 1,平面 CB 〔D 1. 14分9 .〔本小题总分值14分〕 证实:〔I 〕证法一:取 DF 中点为G,连结AG, EG 中, 八 1一 八 一八.CE — DF ,,EG 〃CD 且 EG CD 2 又•••AB 〃CD 且AB CD,,EG 〃AB 且 EG AB四边形ABEG 为平行四边形,,BE//AG. BE 平面ADF , AG 平面 ADF,. ・BE 〃平面 ADF ,证法二:由图1可知BC // AD , CE//DFV A 1B 1C 1 A 2BC 2同理CE〃平面ADF ................... 4分. BCI CE C , BC , CE 平面BCE ,,平面BCE 〃平面ADF ......... 6分. BE 平面BCE ,,BE 〃平面ADF ......... 7 分(II)解法1:V F BCE V B CEF .................... 8分由图1可知BC CD.平面DCEF 平面ABCD ,平面DCEF I平面ABCD CDBC 平面ABCD,..BC 平面DCEF ,1 1由图 1 可知DC CE 1 S CEF -CE DC .................. ........... 12 分2 2V F BCE V B CEF 3 BC S CEF解法2:由图1可知CD BC , CD CEBCI CE C. .CD 平面BCE ,. DF //DC点F到平面BCE的距离等于点D到平面BCE的距离为1 ,由图1可知BC CE 1 S BCE 1-BC CE 2BCE 1 … c 13 CD S BCE 6解法3:过E作EH FC ,垂足为H , ....................... 8分由图1可知BC CD•••平面DCEF 平面ABCD,平面DCEFI 平面ABCD CD11分A B11分BC 平面 ABCD,. BC 平面 DCEF ,EH 平面 DCEF.BC EH,EH 平面BCF 1 、5S BCF -BC DF —, .......... 12 分 2 2又 BD CD. .BD ¥® CDE(n )证实:连结 EA ,那么G 是AE 的中点••• EAB 中,GH // AB又 AB//CD . GH //CD . .GH 〃平面CDE 11分 由 BC FC , FC .DC 2 DF 2 5, 在 CEF 中,由等面积法可得 EHV F BCE V E BCF EH S BCF13分 14分 6.(本小题总分值14分)(I )证实:平面 ADEF 平面ABCD ,交线为ADED AD• .ED 平面ABCDED BD2〔出〕解:设Rt BCD中BC边上的高为h1 1 -依题意:一2 h 1 32 23• • h —2_ ___ _____ .. 一、. .3即:点C到平面DEF的距离为- ---------------- 10•V D CEF V C DEF .32,33分------- 14 分。

高中几何体试题及答案解析

高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。

解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。

答案:V = abc。

试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。

解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。

设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。

该向量的模即为三角形ABC的面积的两倍。

答案:三角形ABC的面积为√3。

试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。

解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。

答案:V = (1/3)πr²h。

试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。

解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。

答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。

试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。

解析:圆柱的体积可以通过公式V = πr²h来计算。

答案:V = πr²h。

结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。

掌握这些基础知识对于解决更复杂的几何问题至关重要。

希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。

高考数学立体几何部分典型例题

高考数学立体几何部分典型例题

(一)1.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ).A.92+14π B.82+14πC.92+24π D.82+24π命题意图:考察空间几何体的三视图,三视图为载体考察面积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析由三视图可知:原几何体为一个长方体上面放着半个圆柱,其中长方体的长宽高分别为5,4,4,圆柱的底面半径为2,高为5,所以该几何体的表面积为:2+1S=5×4+2×4×4+2×5×4+π× 2 2π×2×5×2=92+14π.答案 A2.(本小题满分12 分)命题人:贺文宁如图所示,平面ABCD⊥平面BCEF,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.(12 分)(1)求证:AF∥平面CDE;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值;(3)求直线EF 与平面ADE 所成角的余弦值.命题意图:线面平行的位置关系,线面角、二面角的求法易错点:(1)直接建系,不去证明三条线两两垂直(2)数据解错(3)线面角求成正弦值(1)证明法一取CE 的中点为G,连接D G,FG.∵BF∥CG 且BF=CG,∴四边形BFGC 为平行四边形,则B C∥FG,且BC=FG.∵四边形ABCD 为矩形,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 分∴BC∥AD 且BC=AD,∴FG∥AD 且FG=AD,∴四边形AFGD 为平行四边形,则A F∥DG.∵DG? 平面CDE,AF?平面CDE,∴AF∥平面CDE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3 分(2)解∵四边形ABCD 为矩形,∴BC⊥CD,又∵平面ABCD⊥平面BCEF,且平面ABCD∩平面BCEF=BC,BC⊥CE,∴DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分为y 轴,CD 所在直线为z为x 轴,CE 所在直线以C 为原点,CB 所在直线,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分轴建立如图所示的空间直角坐标系根据题意我们可得以下点的坐标:→=(-2,0,0), A(2,0,4),B(2,0,0),C(0,0,0),D (0,0,4),E(0,4,0),F(2,2,0),则AD→=(0,4,-4). DE设平面ADE 的一个法向量为n1=(x1,y1,z1),则→AD·n1=0,→DE·n1=0,∴-2x=0,4y1-4z1=0,取z1=1,得n1=(0,1,1).∵DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→∴平面BCEF 的一个法向量为C D=(0,0,4).设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cosα=→CD·n1→|CD | |·n1|4==4× 22,2因此,平面ADE 与平面BCEF 所成锐二面角的余弦值为22 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.9 分(3)解根据(2)知平面ADE 的一个法向量为→=(2,-2,0),n1=(0,1,1),∵EF∴cos 〈E→F,n1〉=1〉=→EF·n1-2 1=,⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分=-→ 22 2× 2|EF | |·n1|设直线E F 与平面ADE 所成的角为θ,→则cos θ=|sin 〈EF,n1〉|=3 ,2因此,直线E F 与平面ADE 所成角的余弦值为32 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12分(二)2.某几何体三视图如图所示,则该几何体的体积为( ).ππA.8-2πB.8-πC.8-2 D.8-4命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析这是一个正方体切掉两个1圆柱后得到的几何体,且该几何体的高为2,V 4=2 ×π×1×2=8-π,故选B.3-12答案 B3.(本小题满分12 分)命题人:贺文宁如图所示,四边形ABCD 是边长为 1 的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段A N 上是否存在点S,使得ES⊥平面AMN?若存在,求线段A S的长;若不存在,请说明理由.命题意图:异面直线所成角;利用空间向量解决探索性问题易错点:(1)异面直线所成角容易找错(2)异面直线所成角的范围搞不清(3)利用空间向量解决探索性问题,找不到突破口解(1)如图以D为坐标原点,建立空间直角坐标系D-xyz.依题意得 D (0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),1B(1,1,0),N(1,1,1),E( ,1,0),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分2→1所以NE=(-,0,-1),2→AM=(-1,0,1).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分设直线N E 与AM 所成角为θ,→→则c osθ=|cos〈N E,AM 〉|⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3 分1 →→=|N E ·A M |=→→|N E||·A M |25× 22=1010 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分10所以异面直线N E 与AM 所成角的余弦值为10 .(2)如图,假设在线段AN 上存在点S,使得ES⊥平面AMN,连接A E.→→→因为A N=(0,1,1),可设AS=λAN=(0,λ,λ),→1又EA=( ,-1,0),2→→→1所以ES=EA+AS=( ,λ-1,λ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分2由ES⊥平面AMN,得→→E S·A M=0,→→E S·A N=0,即12-+λ=0,λ-1 +λ=0,→→1 1 1故λ=,此时AS=(0,,2),| A S|=2 222 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分经检验,当A S=2时,ES⊥平面AMN. 2在线段A N 上存在点S,使得ES⊥平面AMN,此时A S=22 .⋯⋯⋯⋯⋯⋯12 分(三)1.一个多面体的三视图如图所示,则该多面体的体积为( ).23 47A. 6 C.6 D.73 B.命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析如图,由三视图可知,该几何体是由棱长为2 的正方体右后和左下分别截去一个小三棱锥得到的,其体积为1 1 23V=2×2×2-2××1×1×1=× 3 . 32答案 A4.(本小题满分12 分)命题人:贺文宁如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P 分别为A B,CB 的中点,M 为底面△OBF 的重心.(1)求证:平面ADF⊥平面CBF;(2)求证:PM∥平面AFC;(3)求多面体CD-AFEB 的体积V.命题意图:面面垂直,线面平行的判定,空间几何体的体积易错点:(1)判定时条件罗列不到位失分(2)求体积时不会分割(1)证明∵矩形ABCD 所在的平面和平面ABEF 互相垂直,且CB⊥AB,∴CB⊥平面ABEF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分又AF? 平面ABEF,所以CB⊥AF,又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=3,2 2 2∴AF +BF =AB ,得AF⊥BF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分BF∩CB=B,∴AF⊥平面CFB,又∵AF? 平面ADF;∴平面ADF⊥平面CBF . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分(2)证明连接O M 延长交B F 于H,则H为B F 的中点,又P为C B 的中点,∴PH∥CF,又∵CF? 平面AFC,PH ?平面AFC,∴PH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6 分P O,则P O∥AC,连接又∵AC? 平面AFC,PO?平面AFC,PO∥平面AFC,PO∩PH=P,∴平面POH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分又∵PM? 平面POH,∴PM∥平面AFC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.8 分(3)解多面体CD-AFEB 的体积可分成三棱锥C-BEF 与四棱锥F-ABCD 的体积之和在等腰梯形ABEF 中,计算得EF=1,两底间的距离E E1=3 2 .1 1 1所以V C △BEF×CB=-BEF=×1×3S×3 23×1=23,121 V F-ABCD=3S1矩形ABCD×EE1=×2×1×33=23,⋯⋯⋯⋯⋯⋯⋯10 分35 3所以V=V C-BEF+V F-ABCD=12 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12 分(四)5.一个几何体的三视图如图所示,则该几何体的体积为________.命题意图:考察空间几何体的三视图,三视图为载体考察体积解析由题意可得,几何体相当于一个棱长为2的正方体切去一个角,角的相邻2 22三条棱长分别是1,2,2,所以几何体的体积为8- 3 .=3答案22 36.(本小题满分12 分)命题人:贺文宁在平行四边形ABCD 中,AB=6,AD=10,BD=8,E 是线段A D 的中点.如图所示,沿直线BD 将△BCD 翻折成△BC′D,使得平面BC′D⊥平面ABD.(1)求证:C′D⊥平面ABD;(2)求直线BD 与平面BEC′所成角的正弦值.命题意图:空间几何体的“翻折”问题,考察学生空间想象能力和知识迁移能力易错点:把平面图形转化为空间几何体,数据错误,垂直平行关系错误(1)证明平行四边形ABCD 中,AB=6,AD=10,BD=8,沿直线BD 将△BCD翻折成△BC′D,可知C′D=CD=6,BC′=BC=10,BD=8,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分即BC′2=C′D2+BD2∴C′D⊥BD.又∵平面BC′D⊥平面ABD,平面BC′D∩平面ABD=BD,C′D? 平面BC′D,∴C′D⊥平面ABD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)解由(1)知C′D⊥平面ABD,且CD⊥BD,如图,以D为原点,建立空间直角坐标系D-xyz.则D(0,0,0),A(8,6,0),B(8,0,0),C′(0,0,6).⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵E 是线段A D 的中点,→∴E(4,3,0),BD=(-8,0,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→→在平面BEC′中,BE=(-4,3,0),BC′=(-8,0,6),设平面BEC′法向量为n=(x,y,z),→∴B E·n=0,→BC′·n=0,即-4x+3y=0,-8x+6z=0,令x=3,得y=4,z=4,故n=(3,4,4).⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分设直线BD 与平面BEC′所成角为θ,则→sin θ=|cos 〈n,BD〉|=→|n·B D|→=3 4141 .|n||BD |3 41∴直线B D 与平面BEC′所成角的正弦值为41 .⋯⋯⋯⋯⋯⋯12 分。

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FEDCBA 立体几何专题复习热点一:直线与平面所成的角例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,3AE =.(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC ===2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图.(1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.热点二:二面角例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值.变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小.变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.热点三:无棱二面角例3.如图三角形BCD 与三角形MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,3AB =(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且114BK BB =,134CM CC =. 求:平面AKM 与ABCD 所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,AB =2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2014·四川,18] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.2.[2014·湖南卷] 如图所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1­OB1­D的余弦值.3.[2014·江西19] 如图1-6,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD. (2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P-ABCD 的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.M OH FED C B A 立体几何专题复习 答案例1.(2014,广二模)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ,则sin θ=cos ,n AE ⋅=n AE n AE6=. ……………11分 ∴23cos 1sin θθ=-=,sin tan 2cos θθθ== ……………13分 ∴直线AE 与平面BDE 2 ……………14分 变式1:(2013湖北8校联考)(1)取BD 中点F ,连结,EF AF ,则11,,60,2AF EF AFE ==∠=……………2分由余弦定理知22222113121cos 60,22AE AF EF AE AE EF ⎛⎫=+-⋅⋅=+=∴⊥ ⎪⎝⎭………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分(2)以E 为原点建立如图示的空间直角坐标系,则31),(1,,0)2A C -,11(1,,0),(1,,0)22B D --- ………8分设平面ABD 的法向量为n (,,)x y z =,由00n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得201302x x y =⎧⎪⎨+=⎪⎩,取3z ,则3,(0,3)y =-∴=-n . 136(1,,),cos ,2||||AC AC AC AC =--∴<>==-n n n ……11分故直线AC 与平面ABD 10. …………12分变式2:(2014福建卷)解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD . …………3分 又CD ⊂平面BCD ,∴AB ⊥CD . …………4分 (2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . ……6分以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12.则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1).…………7分设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). …………9分设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. …………11分 即直线AD 与平面MBC 所成角的正弦值为63. …………12分例2.(2014,广东卷):(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DCDE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CFF E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:(2014浙江卷)解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . …………2分 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . …………4分 (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG . 由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.…………6分在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD .在Rt △ACD 中,由DC =2,AC =2,得AD = 6.在Rt △AED 中,由ED =1,AD =6,得AE =7.…………7分在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23. …………9分在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23. …………11分在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF =32. …………13分所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.…………14分方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴, 建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).…………7分由⎩⎪⎨⎪⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).…………9分由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2).…………11分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32. …………13分由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6. …………变式4:(2014全国卷) 19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面 AA 1C 1⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C . …………2分连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC 1⊥A 1B . ……4分(注意:这个定理我们不能用) (2) BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. …………6分又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3. …………8分作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 ­ AB ­ C 的平面角.…………10分 由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1D DF=15,……12分 所以cos ∠A 1FD =14. …………13分所以二面角A 1 ­ AB ­ C 的大小为arccos 14. …………14分方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B . …………4分(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为 |CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2cc 2+(2-a )2=c . …………6分又依题设,A 到平面BCC 1B 1的距离为3,所以c =3, 代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3). …………8分 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0, -p +3r =0,且-2p +q =0. 令p =3,则q =23,r =1,所以n =(3,23,1).…………10分又p =(0,0,1)为平面ABC 的法向量,…………11分故 cos 〈n ,p 〉=n ·p |n ||p |=14. …………13分所以二面角A 1 ­ AB ­ C 的大小为arccos 14. …………14分例3. 无棱二面角(2010年江西卷)解法一:(1)取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD .又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO ∥AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则∠AEB 就是AM 与平面BCD 所成的角.OB =MO 3MO ∥AB ,MO//面ABC ,M 、O 到平面ABC 的距离相等,作OH ⊥BC 于H ,连MH ,则MH ⊥BC ,求得:OH=OCsin600=2,MH=2,利用体积相等得:5A MBC M ABC V V d --=⇒=。

相关文档
最新文档