半导体器件物理 第二章1-3.

合集下载

半导体物理第二章ppt课件

半导体物理第二章ppt课件

引进有效质量,半导体中的电子所受的外力与
加速的关系和牛顿第二定律类似。
3、引进有效质量的意义:

a= f
m
* n
可以看出有效质量概括了半导体内
部势场的作用,使得在解决半导体中电子在
外力作用下的运动规律时,可以不涉及半导
体内部势场的作用。
课堂练习:习题3(P58)
2.6.3 状态密度、态密度有效质量、电导有效质量
近出现了一些空的量子状态,在外电场的作用下, 停留在价带中的电子也能够起导电的作用,把价带 中这种导电作用等效于把这些空的量子状态看做带 正电荷的准粒子的导电作用,常称这些空的量子状 态为空穴
2.3.2 金属、半导体、绝缘体的能带
2.4 半导体的带隙结构
间接能隙结构—即价带的最高 点与导带的最低点处于K空间 的不同点
3、 测不准关系
当微观粒子处于某一状态时,它的力学量(坐 标、动量、能量等)一般不具有确定的数值。
如: p g xh 同 一 粒 子 不 可 能 同 时 确 定 其 坐 标 和 动 量
测不准原理告诉我们,对微观粒子运动状态分 析,需用统计的方法。
4、 波函数
波函数 r ,t 描述量子力学的状态
= hk m
h2k 2 E
2m
对于波矢为k的运动状态,自由电子的能量E和动
量P,速度v均有确定的数值,因此,波矢量 k可
用以描述自由电子的运动状态,不同的k值标致
自由电子的不同状态。
6、 单原子电子
电子的运动服从量子力学,处于一系列特定的 运动状态---量子态,要完全描述原子中的一个电 子的运动状态,需要四个量子数。
氧的电子组态表示的意思:第一主轨道上有两个电子 ,这两个电子的亚轨道为s,(第一亚层);第二主轨 道有6个电子,其中有2个电子分布在s 亚(第一亚层) 轨道上,有4个电子分布在p亚轨道上(第二亚层)

第2章 半导体物理概论

第2章 半导体物理概论
《半导体材料及工艺》
河南科技大学
第二章 半导体物理概论
2.1 半导体中电子的能量状态 2.2 半导体的导电性 2.3 半导体中的额外载流子
2.1 半导体中电子的能量状态
2.1.1 能带理论 2.1.2 半导体的能带结构 2.1.3 半导体中的载流子 2.1.4 载流子的有效质量
2.1.1 能带理论
2.1.2 半导体的能带结构
禁带宽度:导带底与价带顶之间的间隙。
直接禁带
间接禁带
直接带隙半导体
价带的极大值和导带的极小 值都位于k空间的同一点上 价带的电子跃迁到导带时, 只要求能量的改变,而电子 的准动量不发生变化,称为 直接跃迁 直接跃迁对应的半导体材料 称为直接禁带半导体 例子:GaAs,GaN,ZnO
有些半导体中,既有n型杂质又有p型杂质 N型杂质和P型杂质先相互补偿,称为杂质补偿效应
EC ED Eg EA EV
(4)载流子热平衡条件
温度一定时,两种载流子浓度乘积等于本征浓度 的平方。
np = ni
2 2 2 2
ni为本征载流子浓度 本征半导体 n型半导体 p型半导体
相邻原子壳 层形成交叠
共有化运动
多电子原子能级
晶体是由大量的原子组成,由于原子间距离很小, 原来孤立原子的各个能级将发生不同程度的交叠: 1. 电子不再完全局限于某一个原子,形成“共有化” 电子。 2. 原来孤立的能级便分裂成彼此相距很近的N个能 级,准连续的,可看作一个能带
自由电子的电子状态
+4 +4 +4
额外的电子
+4 +5 +4 +4
P替位式掺入Si中,其 中四个价电子和周围的 硅原子形成了共价键, 还剩余一个价电子 相当于形成了一个正电 中心P+和一个多余的 价电子

半导体器件物理第二章能带和载流子 共50页

半导体器件物理第二章能带和载流子 共50页
26
两种分布函数及适用范围
费米分布函数 公式:
1
f(E)
= 1+exp(
E-EF k0 T
)
玻耳兹曼分布函数
公式:
-E fB(E)=A e k0T
其中A=e
EF k0T
k0是玻耳兹曼常数,T是绝 对温度,EF费米能级或费米 能量。
适用:在E-EF>>k0T处, 量子态为电子占据的几率很 小时
4、 电子共有化运动的产生是由于不同原子的相似壳层间的 交叠
14
共有化运动的强弱 决定于 uk(r) 形式(扩展性)
共有化运动弱 内层电子
“紧束缚近似”
共有化运动强 外层电子(价电子) “近自由电子近似”
15
能级的分裂和能带的形成
原子能级分裂为能带的示意图 N个原子互相靠近结合成晶体后,每个电子都要受到周
GaAs 、InP、AlxGa1-xAs、 Gaxln1-xAsyP1-y
2
§2.2 基本晶体结构
基本立方晶体单胞 金刚石结构 闪锌矿结构 金刚石结构和闪锌矿结构的区别
3
金刚石晶格结构
Si,Ge,C 等IV族元素,原子 正四面体结构:每个原
的最外层有四个价电子
子周围有四个最近邻的
特点:对一定的半导体材料,乘积n0p0是一定的。换言 之, 当半导体处于热平衡状态时,载流子浓度的乘积保 持 恒定,如果电子浓度增加,空穴浓度就要减少,反之 亦然。
适用:热平衡状态下的非简并半导体
30
本征载流子浓度: 式中, Eg=Ec-Ev
ni n0p0NCN12exp2E k0gT
B取代Si后,从别的 硅原子中夺取一个价 电子,产生一个负电 中心(B-)和一个空穴。

半导体器件物理复习纲要word精品文档5页

半导体器件物理复习纲要word精品文档5页

第一章 半导体物理基础能带:1-1什么叫本征激发?温度越高,本征激发的载流子越多,为什么?1-2试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征及引入空穴的意义。

1-4、设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E v (k)分别为:2222100()()3C k k k E k m m -=+和22221003()6v k k E k m m =-;m 0为电子惯性质量,1k a π=;a =0.314nm ,341.05410J s -=⨯⋅,3109.110m Kg -=⨯,191.610q C -=⨯。

试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量。

题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、准粒子、荷正电:+q ; 、空穴浓度表示为p (电子浓度表示为n ); 、E P =-E n (能量方向相反)、m P *=-m n *。

空穴的意义:引入空穴后,可以把价带中大量电子对电流的贡献用少量空穴来描述,使问题简化。

1-4、①禁带宽度Eg 根据dk k dEc )(=2023k m +2102()k k m -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =22106k m ;∴Eg =E min -E max =221012k m =222012m a π =23423110219(1.05410)129.110(3.1410) 1.610π----⨯⨯⨯⨯⨯⨯⨯=0.64eV②导带底电子有效质量m n2222200022833C d E dk m m m =+=;∴ 22023/8C n d E m m dk == ③价带顶电子有效质量m ’ 22206V d E dk m =-,∴2'2021/6V n d E m m dk ==- 掺杂:2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?2-3、什么叫受主?什么叫受主电离?2-4、何谓杂质补偿?杂质补偿的意义何在?题解:2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。

半导体器件物理教案课件

半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。

第二章 半导体物理和半导体器件物理基础图文

第二章 半导体物理和半导体器件物理基础图文
温度升高使半导体导电能力增强,电阻率下降
如室温附近的纯硅(Si),温度每增加8℃,电阻
率相应地降低50%左右
反之,纯净半导体在低温下的电阻率很高,呈
现出绝缘性
几种材料电阻率与温度的关系:
绝 缘 体
R
半导体
T
微量杂质含量可以显著改变半导体的导电能力 以纯硅中每100万个硅原子掺进一个Ⅴ族杂质(比 如磷)为例,这时 硅的纯度仍高达99.9999%,但电 阻率在室温下却由大约214,000Ωcm降至0.2Ωcm以下 适当波长的光照可以改变半导体的导电能力 如在绝缘衬底上制备的硫化镉(CdS)薄膜,无光照 时的暗电阻为几十MΩ,当受光照后电阻值可以下 降为几十KΩ 此外,半导体的导电能力还随电场、磁场等的作用而 改变即半导体的导电能力可以由外界控制
电离受主 B 价带空穴
使空穴摆脱受主束缚的能 量就是受主的电离能 受主杂质B的电离能很小, 只有0.045eV,因此受主 上的空穴几乎都能全部电 离,形成自由导电的空穴。
3.有机半导体
有机半导体通常分为有机分子晶体、有机分子络 合物和高分子聚合物。 酞菁类及一些多环、稠环化合物,聚乙炔和环化 脱聚丙烯腈等导电高分子,他们都具有大π键结 构。
2.2 半导体中的载流子
2.2.1 半导体的能带
量子态和能级
电子的微观运动服从不同于一般力学的量子力学规律, 其基本的特点包含以下两种运动形式: (1)电子做稳恒的运动,具有完全确定的能量。这种恒 稳的运动状态称为量子态,相应的能量称为能级。 (2)一定条件下(原子间相互碰撞,或者吸收光能量 等),电子可以发生从一个量子态转移到另一个量子态 的突变,这种突变叫做量子跃迁。 **量子态的最根本的特点是只能取某些特定的值,而不能 取随意值。

半导体器件物理 教案 课件

半导体器件物理 教案 课件

半导体器件物理教案课件PPT第一章:半导体简介1.1 半导体的定义与特性1.2 半导体材料的分类与应用1.3 半导体的导电机制第二章:PN结与二极管2.1 PN结的形成与特性2.2 二极管的结构与工作原理2.3 二极管的应用电路第三章:晶体三极管3.1 晶体三极管的结构与类型3.2 晶体三极管的工作原理3.3 晶体三极管的特性参数与测试第四章:场效应晶体管4.1 场效应晶体管的结构与类型4.2 场效应晶体管的工作原理4.3 场效应晶体管的特性参数与测试第五章:集成电路5.1 集成电路的基本概念与分类5.2 集成电路的制造工艺5.3 常见集成电路的应用与实例分析第六章:半导体器件的测量与测试6.1 半导体器件测量基础6.2 半导体器件的主要测试方法6.3 测试仪器与测试电路第七章:晶体二极管的应用7.1 二极管整流电路7.2 二极管滤波电路7.3 二极管稳压电路第八章:晶体三极管放大电路8.1 放大电路的基本概念8.2 晶体三极管放大电路的设计与分析8.3 晶体三极管放大电路的应用实例第九章:场效应晶体管放大电路9.1 场效应晶体管放大电路的基本概念9.2 场效应晶体管放大电路的设计与分析9.3 场效应晶体管放大电路的应用实例第十章:集成电路的封装与可靠性10.1 集成电路封装技术的发展10.2 常见集成电路封装形式与特点10.3 集成电路的可靠性分析与提高方法第十一章:数字逻辑电路基础11.1 数字逻辑电路的基本概念11.2 逻辑门电路及其功能11.3 逻辑代数与逻辑函数第十二章:晶体三极管数字放大器12.1 数字放大器的基本概念12.2 晶体三极管数字放大器的设计与分析12.3 数字放大器的应用实例第十三章:集成电路数字逻辑家族13.1 数字逻辑集成电路的基本概念13.2 常用的数字逻辑集成电路13.3 数字逻辑集成电路的应用实例第十四章:半导体存储器14.1 存储器的基本概念与分类14.2 随机存取存储器(RAM)14.3 只读存储器(ROM)与固态硬盘(SSD)第十五章:半导体器件物理在现代技术中的应用15.1 半导体器件在微电子技术中的应用15.2 半导体器件在光电子技术中的应用15.3 半导体器件在新能源技术中的应用重点和难点解析重点:1. 半导体的定义、特性及其导电机制。

半导体器件物理学习资料二

半导体器件物理学习资料二
半导体器件物理学习资料二 上海电子信息职业技术学院
半导体器件物理
第二章 P-N结
当两块半导体结合形成P-N结时,按照费米能级的意义,
电子将从费米能级高的N区流向费米能级低的P区,空穴则从
P区流向N区。因而EFn不断下移,而EFp不断上移,直至 EFn=EFp。
这时,P-N结中有统 一的费米能级EF,P-N结 处于平衡状态,其能带图 如图所示。
半导体器件物理
● —— 本章重点
第二章 P-N结
P-N结的能带图 P-N结的特点
P-N结的直流特性
半导体器件物理学习资料二 上海电子信息职业技术学院
半导体器件物理
第二章 P-N结
P-N结
采用合金、扩散、离子注入等制造工艺,可 以在一块半导体中获得不同掺杂的两个区域,这 种P型和N型区之间的冶金学界面称为P-N结。
因为V(x)表示点x处的电势,而-qV(x)则表示电子在x点的 电势能,因此P-N结势垒区的能带如图所示。 可见,势垒区中能带变化趋势与电势变化趋势相反。
半导体器件物理学习资料二 上海电子信息职业技术学院
半导体器件物理 2.3 P-N结直流特性
平衡P-N结
第二章 P-N结
一定宽度和势垒高度的 势垒区;
合金结和高表面浓度的浅 扩散结一般可认为是突变结, 而低表面浓度的深扩散结一般 可认为是线性缓变结。
半导体器件物理学习资料二 上海电子信息职业技术学院
半导体器件物理
P-N结能带图
第二章 P-N结
扩散
当半导体形成P-N结时,由于结两边存在着载流子浓度梯度, 导致了空穴从P区到N区,电子从N区到P区的扩散运动。
半导体器件物理
第二章 P-N结
nn0 N区平衡多数载流子——电子浓度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
• 70年代以来,制备结的主要技术是硅平面工艺。硅平 面工艺包括以下主要的工艺技术: • 1950年美国人奥尔(R.Ohl)和肖克莱(Shockley)发 明的离子注入工艺。 • 1956年美国人富勒(C.S.Fuller)发明的扩散工艺。 • 1960年卢尔(H.H.Loor)和克里斯坦森(Christenso n)发明的外延工艺。 • 1970年斯皮勒(E.Spiller)和卡斯特兰尼(E.Castella ni)发明的光刻工艺。正是光刻工艺的出现才使硅器件 制造技术进入平面工艺技术时代,才有大规模集成电 路和微电子学飞速发展的今天。 • 上述工艺和真空镀膜技术,氧化技术加上测试,封装 工艺等构成了硅平面工艺的主体。
线性缓变结:在线性区
N ( x) ax
2.1 热平衡PN结
2.1 热平衡PN结
p
漂移
p
EC
n
EC EF EV
n
E
扩散 q 0
p
扩散 漂移
EF EV
n
EC EF Ei EV
(a)在接触前分开的P型和N型硅的能带图 图2-3
(b)接触后的能带图
2.1 热平衡PN结

p 型电中性区 边界层 边界层 n 型电中性区 耗尽区
(c) 与(b)相对应的空间电荷分布 图2-3
电场 定义为电势 的负梯度
电势与电子势能的关系为 可以把电场表示为(一维) 取 表示静电势。Ei q E q
1 dEi d q dx dx
氧化工艺: 1957年人们发现硅表面的二氧化硅层具有阻止杂质向硅内扩散的 作用。这一发现直接导致了硅平面工艺技术的出现。 在集成电路中二氧化硅薄膜的作用主要有以下五条: (1)对杂质扩散的掩蔽作用; (2)作为MOS器件的绝缘栅材料; (3)器件表面钝化作用; (4)集成电路中的隔离介质和绝缘介质; (5)集成电路中电容器元件的绝缘介质。 硅表面二氧化硅薄膜的生长方法:热氧化和化学气相沉积方法。
离子注入技术: 将杂质元素的原子离化变成带电的杂质离子,在强电 场下加速,获得较高的能量(1万-100万eV)后直接 轰击到半导体基片(靶片)中,再经过退火使杂质激 活,在半导体片中形成一定的杂质分布。 离子注入技术的特点:
(1)低温; (2)可精确控制浓度和结深; (3)可选出一种元素注入,避免混入其它杂质; (4)可在较大面积上形成薄而均匀的掺杂层; (5)控制离子束的扫描区域,可实现选择注入,不需掩膜技术; (6)设备昂贵。
N Si
N+
N Si
(i)蒸发/溅射金属
(j) P-N 结制作完成
引言
突变结与线性缓变结
Na
Na Nd
Na Nd
-ax
xj
xj 0 x -Nd
0
x
(a)突变结近似(实线)的窄扩散结 (虚线)
图 2.2
(b)线性缓变结近似(实线)的 深扩散结(虚线)
引言
突变结:
0 x x j , N ( x) N a x j x, N ( x) N d
引言
• 由同种物质构成的结叫做同质结(如硅),由不同 种物质构成的结叫做异质结(如硅和锗)。由同种 导电类型的物质构成的结叫做同型结(如P-硅和P型硅、P-硅和P-型锗),由不同种导电类型的物质 构成的结叫做异型结(如P-硅和N-硅、P-硅和N- 锗)。因此PN结有同型同质结、同型异质结、异型 同质结和异型异质结之分。广义地说,金属和半导 体接触也是异质结,不过为了意义更明确,把它们 叫做金属-半导体接触或金属-半导体结(M-S结)。
光刻工艺: 光刻工艺是为实现选择掺杂、形成金属电极和布线,表面钝化 等工艺而使用的一种工艺技术。 光刻工艺的基本原理是把一种称为光刻胶的高分子有机化合物 (由光敏化合物、树脂和有机溶剂组成)涂敷在半导体晶片表 面上。受特定波长光线的照射后,光刻胶的化学结构发生变化。 如果光刻胶受光照(曝光)的区域在显影时能够除去,称之为 正性胶;反之如果光刻胶受光照的区域在显影时被保留,未曝 光的胶被除去称之为负性胶;
扩散工艺:由于热运动,任何物质都有一种从浓度高处向浓度低 处运动,使其趋于均匀的趋势,这种现象称为扩散。 常用扩散工艺:液态源扩散、片状源扩散、固-固扩散、双温区锑 扩散。 液态源扩散工艺:使保护气体(如氮气)通过含有扩散杂质的液 态源,从而携带杂质蒸汽进入高温扩散炉中。在高温下杂质蒸汽 分解,在硅片四周形成饱和蒸汽压,杂质原子通过硅片表面向内 部扩散。
引言
• 采用硅平面工艺制备PN结的主要 工艺过程
N Si
N+
光刻胶
SiO 2
N+
N Si
N+
(a)抛光处理后的型硅晶片
紫外光
(b)采用干法或湿法氧化 工艺的晶片氧化层制作
(c)光刻胶层匀胶及坚膜
掩模板
光刻胶
光刻胶 SiO2
SiO2
N Si N+
SiO 2
N Si
N
+
n Si
N+
(d)图形掩膜、曝光
(e) 曝光后去掉扩散窗口 (f)腐蚀SiO2后的晶片 胶膜的晶片
引言
•采用硅平面工艺制备结的主要工艺过程
SiO2
N Si N+
P Si
N+
SiO2
N Si
(g)完成光刻后去胶的晶片
金属 P Si N+
SiO2
(h)通过扩散(或离子注入)形成 P-N结
金属 P Si
金 属 SiO2
外延工艺: 外延是一种薄膜生长工艺,外延生长是在单晶衬 底上沿晶体原来晶向向外延伸生长一层薄膜单晶层。 外延工艺可以在一种单晶材料上生长另一种单晶 材料薄膜。 外延工艺可以方便地形成不同导电类型,不同杂质浓度, 杂质分布陡峭的外延层。 外延技术:汽相外延、液相外延、分子束外延 (MBE)、热壁外延(HWE)、原子层外延技术。
半导体器件物理
第二章 P-N结
引言
• PN结是几乎所有半导体器件的基本单元。除金 属-半导体接触器件外,所有结型器件都由PN 结构成。PN结本身也是一种器件-整流器。PN 结含有丰富的物理知识,掌握PN结的物理原理 是学习其它半导体器件器件物理的基础。 • 由P型半导体和N型半导体实现冶金学接触(原 子级接触)所形成的结构叫做PN结。 • 任何两种物质(绝缘体除外)的冶金学接触都 称为结(junction),有时也叫做接触(conta ct).
相关文档
最新文档