数学图形的平移(附答案)

合集下载

2024年数学五年级下册图形的平移与旋转基础练习题(含答案)

2024年数学五年级下册图形的平移与旋转基础练习题(含答案)

2024年数学五年级下册图形的平移与旋转基础练习题(含答案)试题部分一、选择题:1. 下列哪个图形不是轴对称图形?()A. 长方形B. 正方形C. 椭圆D. 平行四边形2. 一个图形平移后,下列哪个属性不会发生改变?()A. 形状B. 大小C. 方向D. 位置3. 下列哪个现象属于旋转现象?()A. 拉抽屉B. 推门C. 滚动圆球D. 滑动滑板4. 将一个正方形绕着它的一个顶点旋转90度,得到的图形是?()A. 矩形B. 菱形C. 正方形D. 平行四边形5. 在平移现象中,下面哪个说法是正确的?()A. 平移前后图形的大小和形状会改变B. 平移前后图形的方向会改变C. 平移前后图形的位置会发生改变D. 平移前后图形的面积会改变6. 下列哪个图形可以通过平移得到另一个相同的图形?()A. 心形B. 数字“8”C. 英文字母“Z”D. 英文字母“B”7. 一个图形绕着某一点旋转180度,得到的图形与原图形()A. 重合B. 相似C. 全等D. 不确定8. 在平移过程中,下面哪个量是不变的?()A. 路程B. 速度C. 时间D. 方向9. 下列哪个图形可以通过旋转90度后与原图形重合?()A. 正三角形B. 正方形C. 长方形D. 梯形10. 一个图形平移3格,再旋转90度,平移2格,这个图形的最终位置与原来相比()A. 向右平移了5格B. 向左平移了5格C. 向上平移了5格D. 向下平移了5格二、判断题:1. 平移是指将一个图形上的所有点按照某个方向作相同距离的移动。

()2. 旋转是指将一个图形绕着某一点转动一个角度的图形变换。

()3. 平移和旋转都不会改变图形的大小和形状。

()4. 旋转180度后,图形的每个点都会与原来的点关于旋转中心对称。

()5. 平移和旋转都是刚体变换。

()6. 一个图形旋转360度后,会回到原来的位置。

()7. 平移和旋转都可以改变图形的位置。

()8. 旋转过程中,图形的大小和形状会发生改变。

平移小学数学练习题

平移小学数学练习题

平移小学数学练习题平移是数学中常见的几何变换之一,它将一个图形沿着特定的方向平行地移动一定的距离。

在小学数学教学中,平移是一个重要的概念,通过练习平移,可以帮助学生巩固对平移概念的理解,并提升他们的几何思维能力。

接下来,我们来进行一些平移练习题。

题目一:将图形A沿着向右平移3个单位,得到图形B。

请你画出图形B。

答案及解析:根据题意,我们需要将图形A向右平移3个单位。

在平移过程中,图形A的形状不发生改变,只是位置发生了变化。

因此,我们只需要将图形A中的每个点向右平移3个单位即可。

画出图形B如下图所示:(插入图形B的图片)题目二:将图形C沿着向左平移2个单位,得到图形D。

请你画出图形D。

答案及解析:根据题意,我们需要将图形C向左平移2个单位。

同样地,图形C的形状不发生改变,只是位置发生了变化。

我们将图形C中的每个点向左平移2个单位,得到图形D如下图所示:(插入图形D的图片)题目三:将图形E沿着向上平移4个单位,得到图形F。

请你画出图形F。

答案及解析:根据题意,我们需要将图形E向上平移4个单位。

同样地,图形E 的形状不发生改变,只是位置发生了变化。

我们将图形E中的每个点向上平移4个单位,得到图形F如下图所示:(插入图形F的图片)通过以上练习题,我们加深了对平移概念的理解,并通过实际操作来提升了几何思维能力。

希望大家能在练习中加深对平移的理解,并能够灵活运用平移概念解决实际问题。

以上是关于平移小学数学练习题的内容,通过这些练习题的解答,我们对平移这一几何变换有了更全面的认识。

希望这些练习对你的数学学习有所帮助。

(新人教版)数学七年级下册:5.4《平移》教案和习题(含答案)

(新人教版)数学七年级下册:5.4《平移》教案和习题(含答案)

《平移》教案一、教学目标1.经历观察、分析、操作、欣赏以及抽象、归纳等过程,以及与他人合作交流探索的过程,进一步发展空间观念,增强审美意识,学会用运动的观点分析问题.2.通过实例,认识图形平移,了解平移的特征,理解平移的含义,会进行点的平移.3.理解平移前后两个图形对应点连线平行且相等的性质,能解决简单的平移问题.二、教学重点与难点重点:图形平移的特征和作平移图形.难点:平移的性质探索和理解.三、教学过程(一)创设情境,引入新课1.感受平移,体验新知你坐过公车和搭过电梯吗?它是一种什么样的运动?这样的运动在生活中还有哪些现象?(活动1:学生讨论)2.观察图形,形成印象生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,并回答问题.(1)它们有什么共同的特点?(2)能否根据其中的一部分绘制出整个图案?(活动2:师生交流.)这些美丽的图案是由若干个相同的图案组合而成的,每个图形都有“基本图形”,而“基本图形”是什么?如第一个图形是中间一个正方形,上、下有正立与倒立的正三角形,下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.3.实践探索,得出新知探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案如:引导学生找规律,发现平移特征,回答下面问题:1、图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)2、经过平移,每一组对应点所连成的线段________.归纳 (活动3:分组讨论)平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. (2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点. (3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移简单归纳为两点:1.平移的方向. 2.平移的距离四、典例剖析,深化巩固1. 把鱼往左平移8cm.(假设每小格是1cm2)五、小结(学生回答):这节课你学了什么?知道了什么?学会了什么?六、课后作业必做题:教科书习题:3.6题《平移》习题1、决定平移的基本要素是____和____。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。

【北师大版】初二数学下册《3.1.1平移的定义及性质》习题课件(附答案)

【北师大版】初二数学下册《3.1.1平移的定义及性质》习题课件(附答案)
(2)说出三种平移方法(图中每个小正方形的边长都是1 cm); (3)画出(2)中平移时经过的区域(涂上阴影),你能求出平移过 程中阴影小正方形所经过区域(包括原来的)的面积吗?
解:(1)如图.
(2)(答案不唯一)如图,具体如下: 图①将阴影小正方形先向右平移2 cm, 再向下平移2 cm; 图②将阴影小正方形向右下方45°方向平移22 cm; 图③将阴影小正方形先向右平移1 cm,再向下平 移2 cm,最后向右平移1 cm.
3.1 图形的平移
第三章 图形的平移与旋转
பைடு நூலகம்
第1课时 平移的定义及性质
1 利用平移的性质判断线段的位置关系 2 利用平移的性质求阴影部分的面积 3 利用图形的位置变换探究平移过程及面积 4 利用平移的性质求多边形中的面积
12. 如图,△ABC是边长为3的等边三角形,将△ABC沿直 线BC向右平移,使B点与C点重合,得到△DCE,连 接BD,交AC于F. (1)猜想AC与BD的位置关系,并证明你的结论; (2)求线段BD的长.
所以△ABC的面积-△DBG的面积=△DEF的面积-
△DBG的面积. 所以阴影部分的面积与梯形GBEF的面积相等. 因为BE=5,EF=8,CG=3, 所以BG=EF-CG=5.
1 所以阴影部分的面积=(8+5)×5× =32.5. 2
14. 如图,将阴影小正方形在网格中平移到小正方形A的位置.
(1)画出平移后的阴影小正方形;
解:(1)AC⊥BD.证明如下: ∵△DCE由△ABC平移而成,且△ABC是等边三角形, ∴AC∥DE,CD=AB=BC,∠CDE=∠A=60°, ∠DCE=∠ABC=60°.
∴∠CBD=∠CDB.
又∵∠CBD+∠CDB=∠DCE, 1 ∴∠CDB= ∠DCE=30°. 2 ∴∠BDE=90°. ∵AC∥DE,

人教版四年级数学下册图形的平移(练习和答案)

人教版四年级数学下册图形的平移(练习和答案)

人教版四年级数学下册图形的平移(练习和答案)一、选择题。

1、将一个等腰三角形向左平移5厘米,在向下平移3厘米,得到的图形是()。

A、等边三角形B、直角三角形C、等腰三角形2、下列现象中,属于平移的是()。

A、乘坐直升电梯从一楼上到二楼B、李小璐在玩荡秋千C、冯毅在拧瓶盖3、下面图案中,()不可以通过过平移得到的。

4、如下图,如果整个圆的面积是36平方厘米,那么阴影部分的面积是()。

A、36平方厘米B、18平方厘米C、12平方厘米5、刘敏将一个小树的图形在方格图中先向上平移了6格,再向左平移了4格,然后又向右平移6格,再向下平移8格,最后向左平移了2格,此时小树图形所在的位置是()。

A、回到原位置B、原位置向下平移了2格C、原位置向左平移了2格二、填空题。

1、如果对一个图形进行平移,平移后的图形的()和()不改变,只改变图形的()。

2、推拉抽屉是()运动。

(填“旋转”或者“平移”。

)3、如下图,长方形向()移动了()个格;六边形向()移动了()个格。

4、如下图,已知每个小方格的面积是1cm2,那么小船图形的面积是()。

三、判断题,对的打“√”,错的打“×”。

1、汽车在笔直的公路上行驶,车轮的运动是平移。

()2、一个图形如果先向上平移2格,再向左平移4格,然后向下平移4格,最后向右平移2格之后,这个图形会回到原来的位置。

()四、实际与操作。

1、如下图,小黄狗和小刺猬回家。

(1)小黄狗需要向()平移()格,再()向()平移()格才能回到小房子里;(2)小刺猬需要向()平移()格,再()向()平移()格才能回到小房子里。

2、如下图,根据提示作图和填空。

(1)画出下面箭头图形的轴对称图形;(2)把原来的箭头图形向右平移6格,再向下平移4格。

(3)如果每个小正方形的面积是2平方厘米,那么箭头图形的面积是()平方厘米。

五、解决问题。

万兴花园小区有一块长方形的小草坪。

现在小区物业公司为了美化小区环境,打算在小草坪里划出一块地种花,如下图阴影部分。

四年级上册数学试题-9.图形的平移 浙教版(含答案)

四年级上册数学试题-9.图形的平移 浙教版(含答案)

四年级上册数学一课一练-9.图形的平移一、单选题1.下列现象属于平移的是()A. 红旗飘动B. 电风扇叶转动C. 电梯2.下面这幅图中小旗从左上方到右下方是()的结果。

A. 旋转B. 平移C. 对称3.下面()运动是平移现象。

A. 转动的呼啦圈B. 电风扇的运动C. 拨算珠4.下面哪些图案不能通过平移得到?()A. B. C.5.下面各组图形中经过平移可以重合的是( )。

A.B.C.D.6.如图所示,四幅汽车标志设计中,能通过平移得到的是()。

A. B.C. D.7.观察变化规律,空白处应是()A. B. C.二、填空题8.物体平移后________不变,改变的是________。

9.平移图形时要注意移动的方向和________。

10.物体或图形在直线方向上移动,而本身没有发生方向上的改变,就可以近似地看作是________现象。

11.在传送带上,如果传送带的某部分向前移动了20米,传送带上的其他部分________移动了________米。

12.平移时,关键要________,找好对应的点。

三、解答题13.下面的图形分别是从哪张纸上剪下来的?14.移一移,说一说.①向( )平移了( )格.②向( )平移了( )格.③向( )平移了( )格.15.如图,三角形A´B´C´是三角形ABC平移后得到的,问三角形是怎么平移的?写出平移前后互相平行的线。

16.由图形A、B、C怎样变化才能得到图形A′、B′、C′.17.五(1)班同学在操场上体育课.张老师画一个边长20m的正方形,如图:.她让李强从点A出发,沿AB→BC→CD的方向走到D处,让王亮也从点A出发,沿AB→BC→CD→DA的方向走一圈回到A处.李强和王亮从出发到所到达地,在途中身体转过多少度?四、作图题18.将这个图形向左平移4格19.下面哪些图形可以通过平移与黑色的图形重合?圈出来。

五、综合题20.看图填一填.(1)蘑菇图可以先向________平移________格,再向________平移________格;也可以先向________平移________格,再向________平移________格。

七年级数学下册第7章 7.3 图形的平移 课时练习(含答案解析)

七年级数学下册第7章 7.3 图形的平移 课时练习(含答案解析)

7.3 图形的平移一.选择题1.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.3.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位4.(2017•铜仁)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S25.(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣6.如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm27.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米8.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.39.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10 C.15 D.2010.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16 cm B.18 cm C.20 cm D.21 cm11.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是()A.增大B.减小C.不变D.不确定12.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是()A.①或②B.③或④C.⑤或⑥D.①或⑨13.如图,将周长为4的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.5 B.6 C.7 D.814.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24 B.40 C.42 D.48二.填空题15.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是.16.(2017•安丘市模拟)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.17.(2017•龙岩一模)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB 方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为.18.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为.19.如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为.三.解答题20.如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).(1)请在图中找出x轴、y轴及原点O的位置;(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是;(3)试求出△ABC的面积.21.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B 是否在边AE上.参考答案与解析一.选择题1.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等【分析】根据平移的性质即可得出结论.【解答】解:平移后的图形与原来的图形的对应点连线平行或在同一条直线上且相等.故选C.【点评】本题考查了平移的性质,牢记“连接各组对应点的线段平行且相等”是解题的关键.2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.【分析】把一个图形整体沿某一直线方向移动,得到的新图形与原图形的形状和大小完全相同.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.【点评】本题主要考查了平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.3.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.【点评】本题考查了坐标与图形变化﹣平移,利用对应点的平移规律确定图形的平移规律是解题的关键.4.(2017•铜仁市)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【分析】根据平行线间的距离相等可知△ABC,△PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.6.如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm2【分析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.【解答】解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ABED的面积=6×(1+3)=24cm2,∴△ABC纸片扫过的面积=6×(2+3)=30cm2,故选D.【点评】考查了平移的性质,本题的关键是得出四边形ACED的面积是三个△ABC 的面积.然后根据已知条件计算.7.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故选:C.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.8.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.3【分析】根据平移的性质可得BE=CF,然后列式其解即可.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=6,∴BE=(14﹣6)=4.故选B.【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.9.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10 C.15 D.20【分析】设点A到BC的距离为h,根据平移的性质可得AD=CF=2BC,然后求出CE=BC,再根据梯形的面积公式列式计算即可得解.【解答】解:设点A到BC的距离为h,=BC•h=5,则S△ABC∵△ABC沿BC方向平移的距离是边BC长的两倍,∴AD=CF=2BC,AD∥BF,∴CE=BC,∴四边形ACED的面积=(CE+AD)h=(BC+2BC)h=3×BC•h=3×5=15.故选C.【点评】本题考查了平移的性质,三角形的面积,熟记性质并确定出梯形的上、下底边的与BC的关系是解题的关键.10.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16 cm B.18 cm C.20 cm D.21 cm【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是()A.增大B.减小C.不变D.不确定【分析】根据平移的性质得到AA′∥BC,从而说明△A′CB的底边BC的长度不变,高不变,确定正确的选项.【解答】解:∵把△ABC沿BC方向平移,得到△A′B′C′,∴AA′∥BC,∴△A′CB的底边BC的长度不变,高不变,∴△A′CB的面积大小变化情况是不变,故选C.【点评】本题考查了平移的性质,解题的关键是了解平移前后对应点的连线平行且相等,难度不大.12.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是()A.①或②B.③或④C.⑤或⑥D.①或⑨【分析】根据平移的定义解答即可.【解答】解:根据题意可涂黑①和⑨,涂黑①时,可将左上和左下两个黑色正方形向右平移1个单位即可得;涂黑⑨时,可将左上和左下两个黑色正方形向右平移2个单位、再向下平移1个单位可得;故选:D.【点评】本题主要考查平移设计图案,熟练掌握平移的定义和性质是解题的关键.13.如图,将周长为4的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.5 B.6 C.7 D.8【分析】根据平移的性质可得DF=AC,AD=CF=1,再根据周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向向右平移1个单位得到△DEF,∴DF=AC,AD=CF=1,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+CF+AD=4+1+1=6.故选B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24 B.40 C.42 D.48【分析】根据平移的性质得S△ABC =S△DEF,BE=6,DE=AB=10,则可计算出OE=DE﹣DO=6,再利用S阴影部分+S△OEC=S梯形ABEO+S△OEC得到S阴影部分=S梯形ABEO,然后根据梯形的面积公式求解.【解答】解:∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC =S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=×(6+10)×6=48.故选D.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.二.填空题15.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是5.【分析】根据平移的性质可得BE=CF,然后列式其解即可.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=4,∴BE=(14﹣4)=5.故答案为:5【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.16.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为20cm.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为2.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,∴平移距离=8÷4=2.故答案为:2.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.18.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为3.【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=BC=3,于是得到AA′=3.【解答】解:∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=BC=3,∴AA′=3.故答案为3.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.19.如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为24.【分析】运用平移的观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于DC,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,则五个小矩形的周长之和=2(AB+BC)=2×(5+7)=24.故答案为:24.【点评】本题考查了平移的性质,矩形性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三.解答题20.如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).(1)请在图中找出x轴、y轴及原点O的位置;(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是(a+3,b﹣2);(3)试求出△ABC的面积.【分析】(1)利用A点坐标得出x轴、y轴及原点O的位置;(2)利用平移的性质得出平移后的△A1B1C1,进而得出点P的对应点P1的坐标;(3)利用△ABC所在矩形面积减去周围三角形面积得出即可.【解答】解:(1)如图所示:O点即为所求;(2)如图所示:△A1B1C1,即为所求;P1(a+3,b﹣2);故答案为:(a+3,b﹣2);=4×5﹣×5×2﹣×2×3﹣×2×4=8.(3)S△ABC【点评】此题主要考查了平移变换以及三角形面积求法等知识,利用平移的性质得出对应点位置是解题关键.21.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.【分析】(1)根据平行线的性质,以及等量代换证明∠ADC+∠C=180°,即可证得AD∥BC;(2)由直线AB∥CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,又由∠DBE=∠ABC,即可求得∠DBE的度数.(3)首先设∠ABD=∠DBF=∠BDC=x°,由直线AB∥CD,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得∠BEC与∠ADB的度数,又由∠BEC=∠ADB,即可得方程:x°+40°=80°﹣x°,解此方程即可求得答案.【解答】证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;(3)存在.设∠ABD=∠DBF=∠BDC=x°.∵AB∥CD,∴∠BEC=∠ABE=x°+40°;∵AB∥CD,∴∠ADC=180°﹣∠A=80°,∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.【点评】此题考查了平行线的性质与平行四边形的性质.此题难度适中,解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B 是否在边AE上.【分析】(1)根据图形平移的性质画出平移后的三角形即可;(2)连接AE和CE,利用矩形的面积减去三个顶点上三角形的面积即可得出S 的值,根据图形可得出点B的位置.【解答】解:(1)如图所示;(2)由图可知,S=5×4﹣×4×1﹣×2×4﹣×2×5=20﹣2﹣4﹣5=9.根据图形可知,点B不在AE边上.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3,0),(9,0); (2)平移后坐标依次为(2,0),(6,2),(10,0),(3,0),
(9,0),(3,– 3),(9,– 3)。 五、做一做 15.(1)80(可分别割成直角三角形和长方形或补直角三角形成长方
形)。 (2)80 六、小设计 16.略。
(二)命题意图
1、 选择题 1.本题考查用有序数对表示物体的位置及识图能力和有序数对在生活中
附:命题意图及参考答案
(一)参考答案
一、选择题
二、填空题 三、解答题 11.火车站(0,0),医院(– 2,– 2),文化宫(– 3,1),体育场(–
4,3),宾馆(2,2),市场(4,3),超市(2,– 3) 12.图略,AB∥CD,平行四边形。 13.略 四、试一试 14.(1)(2,3),(6,5),(10,3),(3,3),(9,3),
标系,并分别写出各地的坐标。
12.如图,描出A(– 3,– 2)、B(2,– 2)、C(– 2,1)、D(3, 1)四个点,线段AB、CD有什么关系?顺次连接A、B、C、D四点组成 的图形是什么图形? 13.建立两个适当的平面直角坐标系,分别表示边长为4的正方形的顶点
的坐标。
四、试一试(15分) 14.如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、
C、(-2,2),(1,7) D、(3,4),(2,-2)
12.已知M(1,-2),N(-3,-2)则直线MN与x轴,y轴的位置关系
分别为( )
A.相交,相交
B.平行,平行
C.垂直相交,平行 D.平行,垂直相交
13、点A(m,n)满足0,则点A在( )上
A、原点;B、坐标轴;C、x轴;D、y轴
二、填空题(每空2分,共20分)
平面直角坐标系
(时间:45分钟 满分:100分)姓名
一、选择题(每小题2分,共26分) 1.课间操时,小华、小军、小刚的位置如图,小华对小网说,如果我的
位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可 以表示成( )
A.(5,4) B.(4,5) C.(3,4) D.(4,3)
(第1题图) (第2题图)
A.y<0 B.y>0 C.y≤0 D.y≥0
5.线段CD是由线段AB平移得到的。点A(–1,4)的对应点为C(4,
7),则点B(– 4,– 1)的对应点D的坐标为( )
A.(2,9) B.(5,3)
C.(1,2) D.(– 9,– 4)
Hale Waihona Puke 6.一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(–
1.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,
用(3,3)表示右眼,那么嘴的位置可以表示成

2.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点
的坐标为 ;点B在y轴上,位于原点的下方,距离坐标原点5个
单位长度,则此点的坐标为 ;点C在y轴左侧,在x轴下方,距
离每个坐标轴都是5个单位长度,则此点的坐标为 。
的应用。 2.本题考查平行于x轴、y轴的直线上的点的坐标的特点及观察能力。
3.本题考查x轴上点的特点及思维的全面性。 4.本题考查象限内点的特点 5.本题考查用坐标表示平移及抽象思维能力。 6.本题考查用坐标确定点
二、填空题 7.本题考查用有序数对表示物体的位置及识图能力和数学在生活中的应
用意识。 8.本题考查用坐标确定点及x、y轴上点的特点。 9.本题考查图形平移后坐标的变化。
_______________ 6.在x轴上的任一点的纵坐标是 ________ ,y轴上的任一点的 横坐标为_____ 点A(-2,3)到x轴的距离为 _______ ,到y轴的距离是 _________
三、解答题(每小题10分,共30分) 11.如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐
2.如图,下列说法正确的是( )
A.A与D的横坐标相同。
B.C与D的横坐标相同。
C.B与C的纵坐标相同。
D.B与D的纵坐标相同。
3.若x轴上的点P到y轴的距离为3,则点P的坐标为( )
A.(3,0) B.(3,0)或(–3,0)
C.(0,3) D.(0,3)或(0,–3)
4.如果点P(5,y)在第四象限,则y的取值范围是( )
2,-3),(-2,1),(2,1),则第四个顶点的坐标为(

A、(2,2); B、(3,2);
C、
(2,-3);
D、(2,3)
11、△DEF(三角形)是由△ABC平移得到的,点A(-1,-
4)的对应点为D(1,-1),则点B(1,1)的对应点E、点
C(-1,4)的对应点F的坐标分别为(

A、(2,2),(3,4); B、(3,4),(1,7);
1,2)、(3,– 1),则第四个顶点的坐标为( )
A.(2,2) B.(3,2)
C.(3,3) D.(2,3)
7.点M(-3,-5)向上平移7个单位到点M1的坐标为(
)
A.(-3,2) B.(-2,-12)
C.(4,-5 )
D.(-10,-5)
8. 已知A(1,-1),B(2,0.5),C(-2,3),D(-1,-3),
E(0,-3),F(4,-1.5),G(5,0)其中在第四象限的点有( )
个。
A.1 B.2 C.3
D.4
9.点M在y轴的左侧,到x轴,y轴的距离分别是3和5,则点M的
坐标是( )
A.(-5,3)
C.(5,3)或(-5,3)
B。
(-5,-3)
D。(-5,3)或(-5,-3)
10、一个正方形在平面直角坐标系中三个顶点的坐标为(-
五、做一做 15.本题意在综合考查点的坐标、图形平移后的坐标变化等内容,并通
过探究活动考查分析问题、解决问题能力及未知转化为已知的思 想。
六、小设计 16.本题通过创设具体情景,调动学生学习数学的兴趣,考查学生能否
利用所学的知识描述物体的位置,并考查通过具体的动手操作解决 问题的能力。
10.本题考查如何建立适当的直角坐标系并用坐标确定点的位置及逻辑 思维能力。
三、解答题 11.本题考查用坐标表示地理位置。 12.本题考查用坐标确定点及平行直线上的点的坐标特点和画图、识图
的能力。 13.本题考查同一图形在不同的直角坐标系下各点的坐标。
四、试一试 14.本题意在综合考查点的坐标、图形平移后的坐标变化及绘图能力。
G的坐标。(2)源源想把房子向下平移3个单位长度,你能帮他办到 吗?请作出相应图案,并写出平移后的7个点的坐标。 五、做一做(15分) 15.如图,四边形ABCD各个顶点的坐标分别为 (– 2,8),(– 11, 6),(– 14,0),(0,0)。 (1)确定这个四边形的面积,你是怎么做的/ (2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的 四边形面积又是多少? 六、小设计(10分) 16.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点 位置的一个方法,并画图说明。
(第1题图) (第4题图)
3.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫
眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为

4.如图,小强告诉小华图中A、B两点的坐标分别为(– 3,5)、(3,
5),小华一下就说出了C在同一坐标系下的坐标

5 若电影院中的5排2号记为(5,2),则3排5号记为
相关文档
最新文档