串口通信协议

合集下载

串口通信协议

串口通信协议

串口通讯—通信协议所谓通信协议是指通信双方的一种约定。

约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。

因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。

目前,采用的通信协议有两类:异步协议和同步协议。

同步协议又有面向字符和面向比特以及面向字节计数三种。

其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。

一、物理接口标准1.串行通信接口的基本任务(1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。

在异步通信方式下,接口自动生成起止式的帧数据格式。

在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。

(2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。

所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。

因此串并转换是串行接口电路的重要任务。

(3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。

(4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。

在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。

(5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。

(6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。

这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。

2、串行通信接口电路的组成为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA 与TTL电平转换器以及地址译码电路组成。

串口通信协议

串口通信协议

串口通信协议1. 引言串口通信是一种常见的用于设备间数据传输的通信方式。

在许多嵌入式系统和电子设备中,串口通信被广泛应用。

为了确保设备间的数据传输顺利进行,需要定义一种协议来规定数据的格式和传输方式。

本文将介绍串口通信协议的基本原理和常用协议。

2. 串口通信原理串口通信是通过串行数据传输进行的,即逐个比特的传输数据。

数据在发送端经过串行转并行的过程,通过串口线路传输到接收端后再进行并行转串行的过程。

串口通信的核心是通过一对数据线(TX和RX)传输数据,常用的串口通信协议有RS232、RS485、UART等。

3. 串口通信协议的要素串口通信协议由以下几个要素组成:3.1. 数据帧数据帧是指在串口通信中传输的最小单位,一般由起始位、数据位、校验位和停止位组成。

起始位标志着数据传输的开始,数据位存储实际的数据信息,校验位用于数据的校验,停止位表示数据传输的结束。

3.2. 波特率波特率是指每秒钟传输的比特数,波特率越高,传输速度越快,但容易导致数据传输错误。

常见的波特率有9600、19200、38400等。

3.3. 校验方式校验方式用于检测数据传输过程中的错误,常见的校验方式有奇偶校验、偶校验、无校验等。

3.4. 控制流控制流用于控制数据的传输速率,常见的控制流有硬件流控和软件流控。

4. 常用的串口通信协议4.1. RS232RS232是一种串口通信协议,常用于计算机和外部设备之间的数据传输。

RS232协议使用一对差分信号线进行数据传输,信号范围为正负12V,支持半双工通信。

4.2. RS485RS485是一种串口通信协议,多用于多机通信系统。

RS485协议使用两条信号线进行数据传输,支持全双工通信。

4.3. UARTUART是一种简单的串口通信协议,常用于单片机和外部设备之间的数据传输。

UART协议没有硬件流控和校验功能,数据传输速率较低。

5. 串口通信的应用串口通信协议广泛应用于各种电子设备和嵌入式系统中,常见的应用包括:•与计算机进行数据传输:通过串口连接计算机和外部设备,实现数据的传输和通信。

串口通信协议

串口通信协议

串口通信协议协议名称:串口通信协议一、引言串口通信协议是用于在计算机系统和外部设备之间进行数据传输的一种通信协议。

本协议旨在规范串口通信的数据格式、传输速率、数据校验和错误处理等方面的要求,以确保通信的稳定性和可靠性。

二、范围本协议适用于计算机系统与外部设备之间通过串口进行数据传输的场景。

三、术语定义1. 串口:计算机系统与外部设备之间进行数据传输的接口。

2. 波特率:串口通信中单位时间内传输的比特数。

3. 数据位:每个数据字节中包含的比特数。

4. 停止位:用于标识数据传输结束的比特。

5. 校验位:用于验证数据传输的正确性的比特。

6. 数据帧:串口通信中的数据传输单元,包含起始位、数据位、校验位和停止位。

四、协议规范1. 数据帧格式1.1 起始位:每个数据帧以一个起始位开始,取值为逻辑低电平。

1.2 数据位:每个数据帧包含8个数据位。

1.3 校验位:每个数据帧包含一个校验位,用于验证数据的正确性。

可选的校验方式包括奇偶校验、偶校验和无校验。

1.4 停止位:每个数据帧以一个或两个停止位结束,取值为逻辑高电平。

2. 波特率2.1 波特率的选择应根据实际需求和硬件支持来确定,常见的波特率包括9600、19200、38400、57600和115200等。

2.2 双方在通信前应协商并设置相同的波特率。

3. 数据传输3.1 发送方将数据按照数据帧格式发送给接收方。

3.2 接收方接收到数据后,根据数据帧格式解析数据。

3.3 发送方和接收方在数据传输过程中应遵循同步机制,确保数据的准确传输。

4. 错误处理4.1 发送方在发送数据时,应检测传输过程中的错误,并采取相应的错误处理措施,例如重新发送数据或通知接收方。

4.2 接收方在接收数据时,应检测传输过程中的错误,并采取相应的错误处理措施,例如请求重新发送数据或发送错误信息给发送方。

五、协议实施1. 硬件要求1.1 计算机系统和外部设备应支持串口通信功能。

1.2 串口线缆应符合标准规范,以确保信号传输的稳定性和可靠性。

串口协议有哪几种

串口协议有哪几种

串口协议有哪几种
串口协议是一种用于在计算机和外设之间进行数据通信的协议。

常见的串口协议有以下几种:
1. RS-232:RS-232是最早的一种串口协议,用于在计算机和外设之间通过串口进行通信。

它规定了通信的电气特性、物理连接、数据传输格式等。

2. RS-485:RS-485是一种多点通信协议,可以在一个总线上连接多个设备进行通信。

与RS-232相比,RS-485具有更长的传输距离和更高的传输速率。

3. RS-422:RS-422也是一种多点通信协议,类似于RS-485,但RS-422只支持全双工通信,而不支持半双工通信。

4. Modbus:Modbus是一种串口通信协议,广泛应用于工业自动化领域。

它支持点对点和多点通信,可以通过串口或网络进行数据传输。

5. SPI:SPI是一种同步串行通信协议,常用于将计算机与外设等短距离连接。

它使用4根信号线进行通信,包括时钟线、数据线、主从选择线和片选线。

6. I2C:I2C是一种串行通信协议,常用于连接计算机和外设。

它使用2根信号线进行通信,包括时钟线和数据线。

这些串口协议具有不同的特点和适用范围,可以根据具体应用选择合适的协议。

串口通信协议

串口通信协议

串口通信协议协议名称:串口通信协议一、协议目的本协议旨在规范串口通信的数据传输格式和通信机制,确保串口设备之间的稳定和可靠的数据交换。

二、协议范围本协议适合于使用串口进行数据通信的设备,包括但不限于计算机、嵌入式系统、传感器、控制器等。

三、协议要求1. 数据帧格式:采用异步串行通信方式,数据传输采用字节为单位,每一个数据帧包括起始位、数据位、校验位和住手位。

2. 波特率:协议支持多种波特率,包括但不限于9600、19200、38400、57600、115200等。

3. 数据位:支持数据位的设置,包括但不限于5位、6位、7位、8位。

4. 奇偶校验位:支持奇偶校验位的设置,包括但不限于无校验、奇校验、偶校验。

5. 住手位:支持住手位的设置,包括但不限于1位、1.5位、2位。

6. 数据传输方式:支持全双工和半双工两种传输方式。

7. 数据流控制:协议支持硬件流控和软件流控两种方式,可根据实际需求选择。

8. 错误处理:协议要求设备在接收到错误数据时能够进行错误处理,包括但不限于丢弃错误数据、重新请求数据等。

四、协议内容1. 数据帧格式- 起始位:1个起始位,表示数据帧的开始。

- 数据位:根据实际需求设置数据位长度。

- 校验位:1个校验位,用于校验数据的正确性。

- 住手位:根据实际需求设置住手位长度。

2. 数据传输- 数据传输采用点对点的方式,每一个设备都有惟一的地址。

- 发送方将数据按照数据帧格式发送给接收方,接收方在接收到完整的数据帧后进行解析。

- 发送方和接收方在传输前需要进行波特率、数据位、奇偶校验位、住手位等参数的商议。

3. 错误处理- 发送方在发送数据时,如果发现数据错误,应即将住手发送,并进行错误处理。

- 接收方在接收到错误数据时,应即将通知发送方,并进行错误处理。

- 错误处理方式可以根据实际需求进行定义,例如重新请求数据、丢弃错误数据等。

五、协议实施1. 设备创造商应根据本协议的要求设计和创造串口设备,并确保设备符合本协议的规范。

串口通信协议书

串口通信协议书

串口通信协议书甲方(以下简称“甲方”):_____________________地址:_____________________________________法定代表人(或授权代表):_________________职务:_____________________________________联系电话:_________________________________乙方(以下简称“乙方”):_____________________地址:_____________________________________法定代表人(或授权代表):_________________职务:_____________________________________联系电话:_________________________________鉴于甲方与乙方就串口通信技术的应用与合作达成一致,根据《中华人民共和国合同法》及相关法律法规的规定,双方本着平等、自愿、公平、诚实信用的原则,经协商一致,订立本协议书,以资共同遵守。

第一条协议目的1.1 本协议旨在明确甲乙双方在串口通信技术领域内的合作范围、权利义务及合作方式等事项。

第二条合作内容2.1 甲方同意向乙方提供串口通信技术及相关技术支持。

2.2 乙方同意按照本协议约定的条件使用甲方提供的串口通信技术,并支付相应的费用。

第三条技术提供与技术支持3.1 甲方应保证所提供的串口通信技术符合国家相关技术标准和行业规范。

3.2 甲方应提供必要的技术支持和培训,以确保乙方能够正确使用串口通信技术。

第四条合作期限4.1 本协议自双方签字盖章之日起生效,有效期至____年____月____日。

第五条费用及支付方式5.1 乙方应按照本协议约定向甲方支付串口通信技术使用费,具体金额为:________________。

5.2 乙方应于本协议生效后____天内,将上述费用支付至甲方指定账户。

串口通信协议

串口通信协议

串口通信协议协议名称:串口通信协议一、引言本协议旨在规范串口通信的数据格式、传输规则和通信协议,以确保串口通信的稳定性、可靠性和互操作性。

本协议适用于各种串口设备之间的数据传输。

二、术语定义1. 串口:指计算机或其他设备用于与外部设备进行数据传输的接口。

2. 数据帧:指在串口通信中传输的数据单元,包含起始位、数据位、校验位和停止位。

3. 波特率:指单位时间内传输的位数,用来衡量串口通信的速度。

4. 奇偶校验:指用于检测和纠正数据传输中的错误的校验机制。

三、协议规范1. 数据帧格式1.1 起始位:每个数据帧以一个起始位开始,用于标识数据帧的开始。

1.2 数据位:数据位用于传输实际的数据,可以是8位或更少。

1.3 奇偶校验位:为了保证数据传输的准确性,可以在数据位之后添加一个奇偶校验位。

1.4 停止位:每个数据帧以一个或多个停止位结束,用于标识数据帧的结束。

2. 通信流程2.1 发送端将数据按照数据帧格式封装,并通过串口发送。

2.2 接收端接收到数据后,根据数据帧格式进行解析。

2.3 接收端校验数据的完整性和准确性,如果校验失败,则丢弃该数据。

2.4 接收端根据协议定义的命令或数据进行相应的处理。

2.5 发送端和接收端可以通过握手协议来确认通信的建立和终止。

3. 数据传输规则3.1 发送端和接收端必须使用相同的波特率进行通信。

3.2 发送端和接收端必须使用相同的数据帧格式进行数据传输。

3.3 发送端和接收端必须按照协议规定的顺序发送和接收数据。

3.4 发送端和接收端必须遵守协议规定的通信流程。

四、示例以下是一个基于本协议的串口通信示例:发送端:1. 设置波特率为9600bps。

2. 封装数据帧,包含起始位、数据位、奇偶校验位和停止位。

3. 通过串口发送数据。

接收端:1. 设置波特率为9600bps。

2. 接收串口数据。

3. 根据数据帧格式解析数据。

4. 进行奇偶校验,如果校验失败,则丢弃该数据。

5. 根据协议定义的命令或数据进行相应的处理。

串口通信协议

串口通信协议

串口通信协议协议名称:串口通信协议1. 引言串口通信协议是一种用于在计算机和外部设备之间进行数据传输的标准化协议。

本协议旨在规定串口通信的数据格式、传输速率、错误检测和纠正机制等方面的要求,以确保可靠的数据传输和互操作性。

2. 范围本协议适用于使用串行通信接口进行数据传输的各类设备,包括但不限于计算机、嵌入式系统、传感器、执行器等。

3. 术语和定义3.1 串口:指用于串行数据传输的计算机接口,常见的串口标准包括RS-232、RS-485等。

3.2 波特率:指串口通信中的数据传输速率,单位为波特(bps)。

3.3 数据帧:指串口通信中的数据单元,包含起始位、数据位、校验位和停止位等信息。

3.4 奇偶校验:指用于检测和纠正传输过程中出现的错误的校验机制。

4. 通信参数4.1 波特率:通信双方协商确定的数据传输速率,常见的波特率包括9600、19200、38400等。

4.2 数据位:每个数据帧中用于传输数据的位数,常见的数据位数包括8位、7位等。

4.3 奇偶校验:用于检测和纠正传输过程中出现的错误,常见的奇偶校验方式包括奇校验、偶校验、无校验等。

4.4 停止位:用于标识数据帧的结束,常见的停止位数包括1位、2位等。

5. 数据格式5.1 起始位:每个数据帧的起始位置,用于同步数据传输。

5.2 数据位:每个数据帧中用于传输数据的位数。

5.3 奇偶校验位:用于校验数据传输过程中的错误。

5.4 停止位:用于标识数据帧的结束。

6. 错误检测和纠正6.1 奇偶校验:接收端通过校验位对接收到的数据进行校验,以检测传输过程中的错误。

6.2 重传机制:当发生错误时,发送端将重新发送数据帧,以确保数据的正确传输。

7. 传输协议7.1 数据传输流程:发送端将数据按照数据帧格式进行封装,通过串口发送给接收端,接收端将接收到的数据帧进行解析和处理。

7.2 数据传输控制:发送端和接收端通过握手信号进行数据传输的控制和同步。

8. 安全性8.1 数据加密:对敏感数据进行加密处理,以确保数据的安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

串口通信协议串口通信的概念非常简单,串口按位(bit)发送和接收字节。

尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

什么是串口串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal SerialBus或者USB混淆)。

大多数计算机包含两个基于RS232的串口。

串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。

同时,串口通信协议也可以用于获取远程采集设备的数据。

串口通信的概念非常简单,串口按位(bit)发送和接收字节。

尽管比按字节(b yte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

它很简单并且能够实现远距离通信。

比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。

典型地,串口用于ASCII码字符的传输。

通信使用3根线完成:(1)地线,(2)发送,(3)接收。

由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。

其他线用于握手,但是不是必须的。

串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。

对于两个进行通行的端口,这些参数必须匹配:a,波特率:这是一个衡量通信速度的参数。

它表示每秒钟传送的bit的个数。

例如300波特表示每秒钟发送300个bit。

当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。

这意味着串口通信在数据线上的采样率为4800Hz。

通常电话线的波特率为14400,28800和36600。

波特率可以远远大于这些值,但是波特率和距离成反比。

高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。

b,数据位:这是衡量通信中实际数据位的参数。

当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。

如何设置取决于你想传送的信息。

比如,标准的ASCII码是0~127(7位)。

扩展的ASCII码是0~255(8位)。

如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。

每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。

由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。

c,停止位:用于表示单个包的最后一位。

典型的值为1,1.5和2位。

由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。

因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。

适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。

d,奇偶校验位:在串口通信中一种简单的检错方式。

有四种检错方式:偶、奇、高和低。

当然没有校验位也是可以的。

对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。

例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。

如果是奇校验,校验位位1,这样就有3个逻辑高位。

高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。

这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。

什么是RS-232RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。

可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。

用于驱动和连线的改进,实际应用中RS-232的传输长度或者速度常常超过标准的值。

RS-232只限于PC串口和设备间点对点的通信。

RS-232串口通信最远距离是50英尺。

DB-9针连接头-------------\ 1 2 3 4 5 /\ 6 7 8 9 /-------从计算机连出的线的截面。

RS-232针脚的功能:数据:TXD(pin 3):串口数据输出(Transmit Data)RXD(pin 2):串口数据输入(Receive Data)握手:RTS(pin 7):发送数据请求(Request to Send)CTS(pin 8):清除发送(Clear to Send)DSR(pin 6):数据发送就绪(Data Send Ready)DCD(pin 1):数据载波检测(Data Carrier Detect)DTR(pin 4):数据终端就绪(Data Terminal Ready)地线:GND(pin 5):地线其他RI(pin 9):铃声指示什么是RS-422RS-422(EIA RS-422-AStandard)是Apple的Macintosh计算机的串口连接标准。

RS-422使用差分信号,RS-232使用非平衡参考地的信号。

差分传输使用两根线发送和接收信号,对比RS-232,它能更好的抗噪声和有更远的传输距离。

在工业环境中更好的抗噪性和更远的传输距离是一个很大的优点。

什么是RS-485RS-485(EIA-485标准)是RS-422的改进,因为它增加了设备的个数,从10个增加到32个,同时定义了在最大设备个数情况下的电气特性,以保证足够的信号电压。

有了多个设备的能力,你可以使用一个单个RS-422口建立设备网络。

出色抗噪和多设备能力,在工业应用中建立连向PC机的分布式设备网络、其他数据收集控制器、HMI或者其他操作时,串行连接会选择RS-485。

RS-485是RS-422的超集,因此所有的RS-422设备可以被RS-485控制。

RS-485可以用超过4000英尺的线进行串行通行。

DB-9 引脚连接-------------\ 1 2 3 4 5 /\ 6 7 8 9 /-------从计算机连出的线的截面。

RS-485的引脚的功能数据:1(DATA-) 2(DATA+)地线:5什么是握手RS-232通行方式允许简单连接三线:Tx、Rx和地线。

但是对于数据传输,双方必须对数据定时采用使用相同的波特率。

尽管这种方法对于大多数应用已经足够,但是对于接收方过载的情况这种使用受到限制。

这时需要串口的握手功能。

在这一部分,我们讨论三种最常用的RS-232握手形式:软件握手、硬件握手和Xmodem。

a,软件握手:我们讨论的第一种握手是软件握手。

通常用在实际数据是控制字符的情况,类似于GPIB使用命令字符串的方式。

必须的线仍然是三根:Tx,Rx和地线,因为控制字符在传输线上和普通字符没有区别,函数SetXModem允许用户使能或者禁止用户使用两个控制字符XON和OXFF。

这些字符在通信中由接收方发送,使发送方暂停。

例如:假设发送方以高波特率发送数据。

在传输中,接收方发现由于CPU忙于其他工作,输入buffer已经满了。

为了暂时停止传输,接收方发送XOFF,典型的值是十进制19,即十六进制13,直到输入buffer空了。

一旦接收方准备好接收,它发送XON,典型的值是十进制17,即十六进制11,继续通信。

输入buffer半满时,L abWindows发送XOFF。

此外,如果XOFF传输被打断,LabWindows会在buffer达到75%和90%时发送XOFF。

显然,发送方必须遵循此守则以保证传输继续。

b,硬件握手:第二种是使用硬件线握手。

和Tx和Rx线一样,RTS/CTS和DT R/DSR一起工作,一个作为输出,另一个作为输入。

第一组线是RTS(Request to Send)和CTS(Clear toSend)。

当接收方准备好接收数据,它置高RTS线表示它准备好了,如果发送方也就绪,它置高CTS,表示它即将发送数据。

另一组线是DTR(DataTerminal Ready)和DSR(Data SetReady)。

这些现主要用于Modem通信。

使得串口和Modem通信他们的状态。

例如:当Modem已经准备好接收来自P C的数据,它置高DTR线,表示和电话线的连接已经建立。

读取DSR线置高,PC 机开始发送数据。

一个简单的规则是DTR/DSR用于表示系统通信就绪,而RTS/CT S用于单个数据包的传输。

在LabWindows,函数SetCTSMode使能或者禁止使用硬件握手。

如果CTS模式使能,LabWindows使用如下规则:当PC发送数据:RS-232库必须检测CTS线高后才能发送数据。

当PC接收数据:如果端口打开,且输入队列有空接收数据,库函数置高RTS和DTR。

如果输入队列90%满,库函数置低RTS,但使DTR维持高电平。

如果端口队列近乎空了,库函数置高RTS,但使DRT维持高电平。

如果端口关闭,库函数置低RTS和DTR。

c,XModem握手:最后讨论的握手叫做XModem文件传输协议。

这个协议在M odem通信中非常通用。

尽管它通常使用在Modem通信中,XModem协议能够直接在其他遵循这个协议的设备通信中使用。

在LabWindows中,实际的XModem应用对用户隐藏了。

只要PC和其他设备使用XModem协议,在文件传输中就使用Lab Windows的XModem函数。

函数是XModemConfig,XModemSend和XModemRe ceive。

XModem使用介于如下参数的协议:start_of_data、end_of_data、neg_ack、w ait_delay、start_delay、max_tries、packet_size。

这些参数需要通信双方认定,标准的XModem有一个标准的定义:然而,可以通过XModemConfig函数修改,以满足具体需要。

这些参数的使用方法由接收方发送的字符neg_ack确定。

这通知发送方其准备接收数据。

它开始尝试发送,有一个超时参数start_delay;当超时的尝试超过max_ties次数,或者收到接收方发送的start_of_data,发送方停止尝试。

如果从发送方收到start_of_data,接收方将读取后继信息数据包。

包中含有包的数目、包数目的补码作为错误校验、packet_size字节大小的实际数据包,和进一步错误检查的求和校验值。

在读取数据后,接收方会调用wait_delay,然后想发送方发送响应。

如果发送方没有收到响应,它会重新发送数据包,直到收到响应或者超过重发次数的最大值max_tries。

如果一直没有收到响应,发送方通知用户传输数据失败。

由于数据必须以pack_size个字节按包发送,当最后一个数据包发送时,如果数据不够放满一个数据包,后面会填充ASCII码NULL(0)字节。

这导致接收的数据比原数据多。

在XModem情况下一定不要使用XON/XOFF,因为XModem发送方发出包的数目很可能增加到XON/OFF控制字符的值,从而导致通信故障。

相关文档
最新文档