stm32串口通信协议简单教程
stm32跑RT-thread之串口操作简介

UART 设备 UART 简介UART( Uni versal Asynchronous Receiver/Tra nsmitter)通用异步收发传输器,UART 作为异步串口通信协议的一种,工作原理是将传输数据的每个字符 一位接一位地传输。
是在应用程序开发过程中使用频率最高的数据总线。
UART 串口的特点是将数据一位一位地顺序传送,只要 实现双向通信,一根线发送数据的同时用另一根线接收数据。
几个重要的参数,分别是波特率、起始位、数据位、停止位和奇偶检验位,对 于两个使用UART 串口通信的端口,这些参数必须匹配,否则通信将无法正常 完成。
UART 串口传输的数据格式如下图所示:2根传输线就可以UART 串口通信有? 起始位:表示数据传输的开始,电平逻辑为 “0 。
?数据位:可能值有5、6、7、8、9,表示传输这几个bit 取值为8,因为一个ASCII 字符值为8位。
?奇偶校验位:用于接收方对接收到的数据进行校验,校验 为偶数(偶校验)或奇数(奇校验),以此来校验数据传送的正确性, 要此位也可以。
? 停止位:表示一帧数据的结束。
电平逻辑为“ 1”。
?波特率:串口通信时的速率,它用单位时间内传输的二进制代码的有效位(bit)数来表示,其单位为每秒比特数 bit/s(bps)4800、9600、14400、38400、115200 等, 115200表示每秒钟传输115200位数据。
访问串口设备应用程序通过RT-Thread 提供的I 关接口如下所示:I/O 位数据。
一般 “ 1 ”的位数使用时不需。
常见的波特率值有 数值越大数据传输的越快,波特率为设备管理接口来访问串口硬件,相查找串口设备应用程序根据串口设备名称获取设备句柄,进而可以操作串口设备,查找 设备函数如下所示,rt_device_t rt_device_find( const char* name);描述返回©找到对应设备将返回相应的S 备句柄/*接收模式参数*/narrc设备名称IRT NULL没有找到拾应的设笛对觀一般情况下,注册到系统的串口设备名称为 uart0 如下所示: ,uartl 等,使用示例#defi ne SAMP LE_UART_NAME "uart2"/*串口设备名称*/static rt device t serial; /*串口设备句柄*//*查找串口设备*/serial = rt_device_fi nd(SA MP LE_UART_NAME);打开串口设备通过设备句柄,应用程序可以打开和关闭设备,打开设备时,会检测设备 是否已经初始化,没有初始化则会默认调用初始化接口初始化设备。
stm32跑RT-thread之串口操作简介

#define SAMPLE_UART_NAME
"uart2" /* 串口设备名称 */
static rt_device_t serial;
/* 串口设备句柄 */
/* 查找串口设备 */
serial = rt_device_find(SAMPLE_UART_NAME);
/* 以 DMA 接收及轮询发送模式打开串口设备 */
460800
#define BAUD_RATE_921600
921600
#define BAUD_RATE_2000000
2000000
#define BAUD_RATE_3000000 /* 数据位可取值 */
3000000
#define DATA_BITS_5
5
#define DATA_BITS_6
要此位也可以。
•
停止位: 表示一帧数据的结束。电平逻辑为 “1”。
•
波特率:串口通信时的速率,它用单位时间内传输的二进制代码的有效
位(bit)数来表示,其单位为每秒比特数 bit/s(bps)。常见的波特率值有
4800、9600、14400、38400、115200 等,数值越大数据传输的越快,波特率为
#define RT_DEVICE_FLAG_STREAM
0x040 /* 流模式
*/
/* 接收模式参数 */
#define RT_DEVICE_FLAG_INT_RX
0x100 /* 中断接收模式 */
#define RT_DEVICE_FLAG_DMA_RX /* 发送模式参数 */ #define RT_DEVICE_FLAG_INT_TX
UART 设备 UART 简介
stm32ymodem协议代码

STM32 Ymodem 协议代码STM32 Ymodem 是一种常用的串口通讯协议,它提供了一种简单、可靠的数据传输方式,主要用于嵌入式系统之间的数据通讯。
本文将介绍STM32 Ymodem 协议的代码实现,包括初始化、数据编码、数据解码、错误检测与纠正、数据传输控制、连接管理、断言与测试等方面。
1. 初始化首先需要对串口进行初始化,包括设置波特率、数据位、停止位、校验位等参数,以及启用串口中断和定时器。
此外,还需要初始化Ymodem 协议相关的参数,如重传次数、等待时间等。
2. 数据编码STM32 Ymodem 协议使用ASCII 编码方式,将数据转换成ASCII 码进行传输。
编码过程中,需要将数据加上起始符“SOH”(ASCII码为01),再将数据长度加上校验和,最后以结束符“EOT”(ASCII码为04)结尾。
3. 数据解码接收端需要对接收到的数据进行解码,解码时需要忽略起始符和结束符,以及校验和,将解码后的数据传送给应用程序。
4. 错误检测与纠正STM32 Ymodem 协议采用简单的奇偶校验方式进行错误检测与纠正。
发送端在编码数据时需要对数据进行奇偶校验,接收端在解码数据时也需要对数据进行奇偶校验。
如果发现校验错误,则可以要求重传数据。
5. 数据传输控制STM32 Ymodem 协议支持全双工通信,但仅有一个通道用于数据传输。
因此,需要在发送端和接收端之间建立通信协议,以控制数据的传输。
通常,发送端会使用中断或查询方式等待接收端准备好接收数据,接收端也会使用中断或查询方式通知发送端数据已经接收完毕。
6. 连接管理STM32 Ymodem 协议可以使用握手协议进行连接管理。
发送端和接收端之间可以通过特定的握手信号来建立连接。
通常,发送端会发送一个特殊的连接请求信号,接收端在接收到请求信号后,会发送一个应答信号,通知发送端连接已经建立。
在数据传输结束后,也可以使用握手信号来关闭连接。
7. 断言与测试在使用STM32 Ymodem 协议进行数据传输时,需要对协议本身进行断言与测试,以确保数据传输的正确性和稳定性。
stm32多任务多数据串口接收及处理方法

stm32多任务多数据串口接收及处理方法STM32多任务多数据串口接收及处理方法通常涉及到使用中断服务程序(ISR)或轮询方法来接收串口数据,并在多个任务之间分配和同步处理这些数据。
以下是一个基本的步骤和策略,用于实现这一功能:1. 初始化串口:首先,你需要初始化串口以进行通信。
这包括设置波特率、数据位、停止位、奇偶校验等。
2. 配置中断:STM32的串口通常具有一个接收中断。
你可以配置这个中断,以便每当一个新的字节被接收时,它就会触发一个中断。
3. 中断服务程序(ISR):在中断服务程序中,你可以读取接收缓冲区中的数据,并将其放入一个全局变量或数据结构中,以便其他任务或函数可以访问它。
4. 多任务处理:你可以使用一个任务或一组任务来处理这些串口数据。
这可能涉及到解析数据、执行某些操作或将数据发送到其他设备。
5. 数据同步:在多任务环境中,你需要确保数据的同步。
这意味着,当一个任务正在处理数据时,其他任务不能同时访问或修改这些数据。
这通常通过使用互斥锁、条件变量或其他同步机制来实现。
6. 轮询:除了使用中断,你还可以使用轮询方法来检查串口是否有数据可供读取。
这种方法可能在某些应用中更简单,但可能不如中断方法效率高。
7. 错误处理:不要忘记在代码中包含错误处理逻辑。
这可能包括检查读取的数据是否完整、是否有任何传输错误等。
8. 优化:对于高性能应用,你可能还需要考虑其他优化策略,如非阻塞读取、缓冲区管理、流量控制等。
以上只是一个基本的框架,具体的实现细节将取决于你的具体需求和STM32的具体型号。
建议查阅STM32的参考手册和相关文档以获取更详细的信息和示例代码。
STM32的串口通信UARTTTL

STM32的串⼝通信UARTTTL常⽤的串⼝pinSTM32的串⼝是基础通信⽅式, 每个型号都带多组串⼝, ⼀般都使⽤默认的组, 可以参考芯⽚的datasheet, 去看pinout and pin definitions, 对于stm32f103c8t6, 这是48pin的芯⽚, 提供3组串⼝, 如果使⽤3组, 各组串⼝的pin脚为USART2 - A2, A3PA0: USART2_CTSPA1: USART2_RTSPA2: USART2_TXPA3: USART2_RXPA4: USART2_CKUSART1 - A9, A10PA8: USART1_CKPA9: USART1_TXPA10: USART1_RXPA11: USART1_CTSPA12: USART1_RTSUSART3 - B10, B11PB10: USART3_TXPB11: USART3_RXPB12: USART3_CKPB13: USART1_CTSPB14: USART1_RTS串⼝通信编程⼀般通过以下的步骤实现串⼝通信1. 申请内存作为buffer, 声明标记位和buffer指针简单的例⼦u8 usart_buf[100] = {0};u16 index1 = 0, flag1 = 0;复杂的例⼦#define TTL_BufferLength ((uint16_t)0x0040)#define TTL_WriteOk ((uint16_t)0x0000)#define TTL_BufferOverrun ((uint16_t)0x0001) // full flag#define TTL_BufferUnderrun ((uint16_t)0x0002) // empty flag/* Private types -------------------------------------------------------------*/typedef struct{uint16_t size; /* The size of the buffer */uint16_t start; /* The index of the next character to send */uint16_t end; /* The index at which to write the next character */char* elems; /* The location in memory of the buffer */} TTL_BufferTypeDef;/* Private variables ----------------------------------------------------------*/TTL_BufferTypeDef cb;/* Private Methods -----------------------------------------------------------*/void TTL_Buffer_Init(){cb.size = TTL_BufferLength;cb.start = 0;cb.end = 0;cb.elems = calloc(cb.size, sizeof(char));}void TTL_Buffer_Free(){free(cb.elems);}uint16_t TTL_Buffer_IsFull(){return (cb.end + 1) % cb.size == cb.start;}uint16_t TTL_Buffer_IsEmpty(){return cb.end == cb.start;}uint16_t TTL_Buffer_Write(char c){// check for a buffer overrunif (TTL_Buffer_IsFull()) {return TTL_BufferOverrun;} else {cb.elems[cb.end] = c;cb.end = (cb.end + 1) % cb.size;}return TTL_WriteOk;}uint16_t TTL_Buffer_Read(char* c){// check for a buffer underrunif (TTL_Buffer_IsEmpty()) {return TTL_BufferUnderrun;} else {*c = cb.elems[cb.start];cb.start = (cb.start + 1) % cb.size;}}2. 初始化UART端⼝: 使能GPIO, UART, NVIC /* Public Methods -----------------------------------------------------------*/void TTL_Init(){// Structures to hold the initialisation dataGPIO_InitTypeDef GPIO_InitStruct;USART_InitTypeDef USART_InitStruct;NVIC_InitTypeDef NVIC_InitStruct;// enable the peripherals we're going to useRCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);// Usart1 Tx is on GPIOB pin 6 as an alternative functionGPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;GPIO_Init(GPIOB, &GPIO_InitStruct);// Connect pin 6 to the USARTGPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_USART1);// fill in the interrupt configurationNVIC_InitStruct.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0;NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStruct);// init the USART to 8:N:1 at 9600 baud as specified in the// TTL data sheetUSART_ART_BaudRate = 9600;USART_ART_WordLength = USART_WordLength_8b;USART_ART_StopBits = USART_StopBits_1;USART_ART_Parity = USART_Parity_No;USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_ART_Mode = USART_Mode_Tx;USART_Init(USART1, &USART_InitStruct);// Enable USART1 peripheralUSART_Cmd(USART1, ENABLE);// ensure USART1 interrupts are off until we have dataUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);// prepare the bufferTTL_Buffer_Init();}3. 实现中断处理⽅法读消息/* Public Methods -----------------------------------------------------------*//** Handles all interrupts for USART1.*/void USART1_IRQHandler(void){// is this interrupt telling us that we can send a new character?if (USART_GetITStatus(USART1, USART_IT_TXE) != RESET) {// is there something for us to read?if (TTL_Buffer_IsEmpty()) {// no, disable the interruptUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);} else {// yes, get the next character from the bufferchar c = 0x00;TTL_Buffer_Read(&c);// send it to the deviceUSART_SendData(USART1, c);}}}4. ⼯具⽅法: 写消息, 反初始化(⾮必须)注意在每次调⽤USART_SendData这个⽅法之后, 都需要阻塞判断 USART_FLAG_TC 是否为SET才能继续往下执⾏. ...USART_SendData(USART1, *str++);while( USART_GetFlagStatus(USART1, USART_FLAG_TC) != SET);...例如/* Public Methods -----------------------------------------------------------*/void TTL_DeInit(){// disable the interruptsUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);// free the bufferTTL_Buffer_Free();}uint16_t TTL_IsBufferFull(){return TTL_Buffer_IsFull();}uint16_t TTL_WriteMessage(char* text, uint16_t length){// index into the character arrayuint16_t i = 0;// return valueuint16_t rv = TTL_WriteOk;while(length--) {USART_SendData(USART1, *text++);// USART_SendData(USART1,(uint16_t) *text++);// Loop until the end of transmissionwhile(USART_GetFlagStatus(USART1, USART_FLAG_TC) != SET);}// enable the interrupt to send the messageUSART_ITConfig(USART1, USART_IT_TXE, ENABLE);return rv;}代码例⼦这是⼀个完整的代码例⼦, 适⽤于STM32F103#include "sys.h"#include "usart.h"#include "delay.h"u8 usart1_buf[100] = {0}, usart2_buf[100] = {0}, usart3_buf[100] = {0};u16 index1 = 0, index2 = 0, index3 = 0, flag1 = 0, flag2 = 0, flag3 = 0;void uart_init(u32 bound){GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2 | RCC_APB1Periph_USART3, ENABLE);//使能USART1,GPIOA时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);/*************UART1********************/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.9//USART1_RX GPIOA.10初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PA10GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.10NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = bound;//串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART1, &USART_InitStructure); //初始化串⼝1USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串⼝接受中断USART_Cmd(USART1, ENABLE); //使能串⼝1/***************UART2******************/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.2GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.3NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = bound;//串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART2, &USART_InitStructure); //初始化串⼝2USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串⼝接受中断USART_Cmd(USART2, ENABLE); //使能串⼝2/****************UART3***********************///USART3_TX GPIOB.10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PB.10GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化GPIOB.10//USART3_RX GPIOB.11GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //PB11GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输⼊GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化GPIOB.11//Usart3 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; //抢占优先级4NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = 115200; //串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART3, &USART_InitStructure); //初始化串⼝3USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); //开启串⼝接受中断USART_Cmd(USART3, ENABLE);}/**每个字节⼀个中断, 这⾥⽤0x0a作为⼀条消息读取结束*/void USART1_IRQHandler(void){u16 code;if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART1, USART_IT_RXNE);//Removal of receiving interrupt flagcode = USART_ReceiveData(USART1);usart1_buf[index1] = code;index1++;if(code == 0x0a) {index1 = 0;flag1 = 1;}}}void USART2_IRQHandler(void){u16 code;if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART2, USART_IT_RXNE);code=USART_ReceiveData(USART2);usart2_buf[index2] = code;index2++;if(code == 0x0a) {index2 = 0;flag2 = 1;}}}void USART3_IRQHandler(void){u16 code;if(USART_GetITStatus(USART3, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART3, USART_IT_RXNE);code = USART_ReceiveData(USART3);usart3_buf[index3] = code;index3++;if(code == 0x0a) {index3 = 0;flag3 = 1;}}}void USART1_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART1, USART_FLAG_TC);USART_SendData(USART1, *str++);while( USART_GetFlagStatus(USART1,USART_FLAG_TC) != SET);}USART_SendData(USART1, 0x0a);}void USART2_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART2, USART_FLAG_TC);USART_SendData(USART2, *str++);while( USART_GetFlagStatus(USART2,USART_FLAG_TC) != SET);}USART_SendData(USART2, 0x0a);}void USART3_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART3, USART_FLAG_TC);USART_SendData(USART3, *str++);while( USART_GetFlagStatus(USART3,USART_FLAG_TC) != SET); }USART_SendData(USART3, 0x0a);}/*******************main***********************/#include "led.h"#include "delay.h"#include "key.h"#include "sys.h"#include "usart.h"#include "buzzer.h"#include "string.h"int main(void){u8 Zigb_Head[]="ZigB:";u8 buf[100];delay_init();NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);uart_init(115200);Buzzer_Init();LED_Init();while(1) {if(flag2 == 1) {LED0=0;flag2=0;USART3_Send(usart2_buf);memset(usart2_buf,0,sizeof(usart2_buf));} else if(flag3==1) {LED1=0;flag3=0;memcpy(buf,Zigb_Head,sizeof(Zigb_Head));strcat(buf,usart3_buf);USART2_Send(buf);memset(buf,0,sizeof(buf));}delay_ms(500);LED1=1;LED0=1;delay_ms(500);}}参考。
STM32串口通信学习总结

STM32串口通信学习总结STM32是STMicroelectronics推出的一款32位单片机系列,具有高性能、低功耗、丰富的外设等特点,广泛应用于工业控制、消费电子、汽车电子等领域。
其中,串口通信是单片机中常用的通信方式之一,本文将对STM32串口通信学习进行总结。
1.串口通信原理及基础知识在STM32中,USART(通用同步/异步收发器)是负责串口通信的外设。
USART提供了多种模式的串口通信,包括异步模式(Asynchronous)、同步模式(Synchronous)以及单线模式(Single-wire)等。
2.STM32串口通信配置步骤(1)GPIO配置:首先需要配置串口通信所涉及的GPIO引脚,通常需要配置为复用功能,使其具备USART功能。
(2)USART配置:根据需要选择USART1、USART2、USART3等串口进行配置,设置通信模式、波特率等参数。
在配置时需要注意与外部设备的通信标准和参数保持一致。
(3)中断配置(可选):可以选择中断方式来实现串口数据的收发。
通过配置中断,当接收到数据时会触发中断,从而实现接收数据的功能。
(4)发送数据:通过USART的发送寄存器将数据发送出去,可以通过查询方式或者中断方式进行发送。
(5)接收数据:通过读取USART的接收寄存器,获取接收到的数据。
同样可以通过查询方式或者中断方式进行接收。
3.常见问题及解决方法(1)波特率设置错误:在进行串口通信时,波特率设置错误可能会导致通信失败。
需要根据外设的要求,选择适当的波特率设置,并在STM32中进行配置。
(2)数据丢失:在高速通信或大量数据传输时,由于接收速度跟不上发送速度,可能会导致数据丢失。
可以通过增加接收缓冲区大小、优化接收中断处理等方式来解决该问题。
(3)数据帧错误:在数据传输过程中,可能发生数据位错误、校验错误等问题。
可以通过对USART的配置进行检查,包括校验位、停止位、数据位等的设置是否正确。
基于stm32的自定义通信协议—模拟串行通信

作业1模拟串行通讯一、作业背景题目:模拟串行通讯一、题目:通过数字通道进行两个计算机系统的通讯二、目标:设计、实现一个用于数字通道串行通讯的协议三、思路与方法1. 硬件2. 软件CLK 上升沿检测DTA 的值,作为1bit ,存入寄存器中。
3. 编写程序并测试二、课程作业方案设计(一)自定义协议格式START帧头 数据长度 标识 数据 数据效验 帧尾 1Byte1Byte 1Byte 1Byte 1Byte 2Byte 1Byte 0x53 0xFE 0x01 0xDD 0x0D0C 0xFF1、起始标志:协议数据帧开始的标志,保留字为0x53。
2、帧头:同其他设备通信时首要的一致性保证,此次为0xFE 。
计算机1 计算机2GND CLKDTA3、数据长度:表示当前数据包的大小。
4、标识:可以自定义,对于不同的数据包,采用不同的标识。
比如当为温度采样问题时,该为温度采集器序号。
当为湿度采样问题时,该为湿度采集器序号。
5、真实数据:发送的数据内容,对于温度采样问题。
6、数据校验:根据前述数据所得的CRC32校验码。
7、结束标志:即帧尾,协议数据结束的标志,保留字为0xFF。
(二)、自定义协议详解1、自定义协议采用的是端到端的通信。
2、自定义的通信协议采用2条信号线,1条时钟线(CLK)和1条数据线(DTA),属于串行半双工通信。
每个从设备有自己的标识、帧头、数据、数据长度、数据校验、帧尾,主设备发送START信号(0x53)后,紧跟着发送想要数据的帧头(0xFE),当验证了帧头之后,该数据包即是我们所需的对应数据包。
3、CLK上升沿检测DTA的值,作为1bit,存入寄存器中。
没有数据传输时,DAT上恒保持高电平。
4、START信号:当检测到DAT的值为0x53时,开始传输数据。
5、帧头:0xFE—>即在CLK时钟的8个周期内,此时传输了8bit数据为1111 1110时(即0xFE),该数据包即是正确的数据包,在第一个字节后,主机立即读从机,开始接收该数据包。
STM32硬件SPI主从通信教程

STM32硬件SPI主从通信教程一、硬件SPI主从通信原理硬件SPI(Serial Peripheral Interface)是一种支持全双工通信的串行通信协议,常用于连接微控制器与外设。
在SPI通信中,主设备控制整个通信过程,发送和接收数据,从设备则根据主设备的控制进行响应。
1.SCK(时钟信号):用于同步主从设备的数据传输,主设备产生时钟信号控制通信速率。
2.MOSI(主设备发送数据线):主设备向从设备发送数据的线路。
3.MISO(从设备发送数据线):从设备向主设备发送数据的线路。
4.NSS(片选信号):主设备用于选择从设备进行通信的信号。
5.数据寄存器:用于存储传输的数据。
二、硬件SPI主从通信的配置步骤以下是STM32硬件SPI主从通信的配置步骤:1.配置SPI模式和通信速率:选择主从通信模式和时钟速率。
2.配置GPIO引脚:将SPI的SCK、MOSI、MISO和NSS引脚配置为SPI功能。
3.配置SPI控制寄存器:配置SPI的参数,如主从模式、数据大小和时钟相位等。
4.使能SPI和NSS信号:打开SPI和NSS信号,准备开始通信。
5.通过SPI数据寄存器进行数据交换:主设备通过SPI数据寄存器向从设备发送数据,并接收从设备返回的数据。
三、示例代码下面是一个简单的示例代码,展示了如何在STM32中配置和使用硬件SPI主从通信。
```c#include "stm32f4xx.h"void SPI_Init(void)RCC_AHB1PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);SPI_InitTypeDef SPI_InitStructure;SPI_InitStructure.SPI_Direction =SPI_Direction_2Lines_FullDuplex;SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;SPI_InitStructure.SPI_NSS = SPI_NSS_Hard;SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;SPI_InitStructure.SPI_CRCPolynomial = 7;SPI_Init(SPI1, &SPI_InitStructure);GPIO_InitTypeDef GPIO_InitStructure;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 , GPIO_Pin_6 ,GPIO_Pin_7;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1);GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1);GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1);void SPI_SendData(uint8_t data)while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);SPI_SendData8(SPI1, data);while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);SPI_ReceiveData8(SPI1);int main(void)SPI_Init(;while (1)SPI_SendData(0xAA); // 发送数据}```以上示例代码展示了如何将STM32配置为SPI的从设备,并向主设备发送数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STM32串口通信协议简单教程
一、修改串口UART1IT工程模版
用Keil MDK打开短学期资料中的工程示例→串口→UART1IT示例,查看main.c代码如图1所示:
图1 UART1IT串口示例代码
打开文件列表中的stm32f10x_it.c文件,找到UART1中断函数如图2所示代码:
图2 UART1串口中断函数
为方便起见,将整个USART1_IRQHandler函数剪切到main.c文件末尾如图3所示。
并删除stm32f10x_it.c文件中的sp变量定义,如图4所示。
图3 移动串口中断函数
图4 去除stm32f10x_it.c中的sp变量声明
重新编译一次工程,看看修改是否出现错误,编译失败出现错误则需仔细检查刚才的修改是否正确。
编译成功,下载工程到实验板,关闭下载程序。
将实验板BOOT跳线至正常运行模式并重新上电。
打开串口调试助手,选择实验板USB虚拟串口并打开,如图5所示。
可以看到图中窗口不停的接收到“Hello world!”这样的字符串数据。
在发送区域输入字符1,点击发送按钮,可以观察到实验板的流水灯速度变快了很多。
在main函数之前,添加按键扫描代码如图6所示,然后在main函数中,添加sendstr 数组,key和oldkey两个整数变量,如图7所示。
图6 添加按键扫描函数
图7 添加相关变量
接下来,在main函数的while主循环中,添加发送按键状态代码如图8所示。
同时,将main函数中的Hello world字符串发送行注释掉,如图9所示。
为使按键响应灵敏,可以将main.c文件开头的sp变量初始值由100改为10。
注意,资料包里面的串口调试助手UartAssit软件容易造成虚拟串口占用,甚至使系统崩溃。
考虑到使用方便,推荐使用sscom42软件。
这里给大家一个下载地址/soft/53912.html
图8 main主函数中的发送按键状态代码
图9 注释Hello world发送行
编译并下载程序后,接上串口调试助手,我们可以看到调试助手窗口中的结果如图10所示。
由图中可以看到,调试助手接收到”6MK2D6MK2U”,这表示实验板按键K2被按下和放开两个动作。
图10 串口调试助手结果
接下来,为完成协议要求,在main函数之前添加校验码函数代码如图11所示。
图11 添加校验码函数代码
在发送按键状态帧之前,添加校验码函数如图12所示。
图12 添加校验码操作
编译并下载程序后,接上串口调试助手,可以看到STM32串口发送按键状态数据帧如图13所示。
如图中所示,当按键K3按下时,STM32发送“6MK3D45”,其16进制数据为“36 4D 4B 33 44 34 35 0D 0A”,0x36+0x4D+0x4B+0x33+0x44=0x0145,保留一个字节则为0x45。
0x45表示为两字节ASCII码,就是字符’4’和字符’5’,即对应“6MK3D45”最后两个字符。
由此可知,按键状态发送功能完成。
图14 亮灯命令接收状态转换图
图15 串口接收中断程序1
图16 串口接收中断程序2
编译并下载程序,接上串口调试助手。
如图17所示,在调试窗口中选中“HEX发送”,然后在下方的发送行填入字符串“36 4D 2B 31 00 00 0D”。
点击“发送”按钮则可以看到接收栏中显示“OK!”字符串。
在此,校验码0x00 0x00没有任何意义,只是占个位置。
图17 串口调试助手发送数据
接下来,在main函数之前添加接收数据校验函数如图18所示。
图18 接收数据校验函数
修改串口接收中断中的帧尾回送OK字符串程序行,如图19所示。
为了看到显示效果将main函数中的流水灯部分代码注释掉,如图20所示。
图19 帧尾校验功能代码
图20 main函数注释流水灯代码
编译成功并下载程序后,接上串口调试助手,如图21所示。
在调试窗口下方的发送行中填入发送字符串“36 4D 2B 31 00 00 0D”,选中“HEX发送”,点击发送按钮后可以看到接收栏中显示“Err chk, DF, 00”字符串,表示正确的校验码应为字符’D’和字符’F’的ASCII码值。
点击窗口中的“HEX显示”可以将接收栏中的字符串显示为16进制代码,从中可以找到字符’D’和’F’的ASCII码值为0x44和0x46,修改发送行字符串为“36 4D 2B 31 44 46 0D”,再次点击发送,结果如图21所示。
要在实验板上看到效果,可以先发送灭灯命令“36 4D 2D 31 45 31 0D”,先将第一个灯关闭。
然后再发送亮灯命令即可观察到灯的亮灭效果。
由此可见STM32上的亮灯控制命令接收功能已经实现。
图20 发送错误的命令帧
图21 发送正确的命令帧
发送的亮灯命令帧,也可以不用HEX发送方式,例如点亮第一个灯,可以发送“6M+1DF”字符串(取消“HEX发送”选项,选中“发送新行”选项)。