高考近5全国卷一理科数学含(详细答案)
2022年高考真题全国乙卷(理科)数学【含答案及解析】

且
联立 可得
可求得此时 ,
将 ,代入整理得 ,
将 代入,得
显然成立,
综上,可得直线HN过定点
21.
(1)
的定义域为
当 时, ,所以切点为 ,所以切线斜率为2
所以曲线 在点 处的切线方程为
(2)
设
若 ,当 ,即
所以 在 上单调递增,
故 在 上没有零点,不合题意
若 ,当 ,则
所以 在 上单调递增所以 ,即
所以 在 上单调递增,
故 在 上没有零点,不合题意
若
(1)当 ,则 ,所以 在 上单调递增
所以存在 ,使得 ,即
当 单调递减
当 单调递增
所以
当
当
所以 在 上有唯一零点
又 没有零点,即 在 上有唯一零点
(2)当
设
所以 在 单调递增
所以存在 ,使得
当 单调递减
当 单调递增,
又
所以存在 ,使得 ,即
当 单调递增,当 单调递减
14.过四点 中的三点的一个圆的方程为____________.
15.记函数 的最小正周期为T,若 , 为 的零点,则 的最小值为____________.
16.己知 和 分别是函数 ( 且 )的极小值点和极大值点.若 ,则a的取值范围是____________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(2)
证明:因为 , , ,
所以 , , ,
所以 , ,
当且仅当 时取等号.
答案及解析
注意事项:
1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.
全国高考新课标1卷理科数学试题和答案

全国新课标1卷高考理科数学试题, 本试题适用于河南、河北、山西几个省份。
绝密★启封并使用完毕前普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页, 第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页, 第Ⅱ卷3至5页。
2. 答题前, 考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成, 答在本试题上无效。
4. 考试结束, 将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分, 共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的一项。
1、已知集合A={x |x 2-2x >0}, B={x |-5<x <5}, 则 ( B )A 、A ∩B=B 、A ∪B=RC 、B ⊆AD 、A ⊆B2、若复数z 满足 (3-4i)z =|4+3i |, 则z 的虚部为 ( D )A 、-4 (B )-45 (C )4 (D )45 3、为了解某地区的中小学生视力情况, 拟从该地区的中小学生中抽取部分学生进行调查, 事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异, 而男女生视力情况差异不大, 在下面的抽样方法中, 最合理的抽样方法是 ( C )A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样4、已知双曲线C:x2a2-y2b2=1(a >0, b >0)的离心率为52, 则C 的渐近线方程为 ( C ) A 、y =±14x (B )y =±13x (C )y =±12x (D )y =±x5、执行右面的程序框图, 如果输入的t ∈[-1, 3], 则输出的s 属于 ( A )A 、[-3,4]B 、[-5,2]C 、[-4,3]D 、[-2,5]6、如图, 有一个水平放置的透明无盖的正方体容器, 容器高8cm , 将一个球放在容器口,再向容器内注水, 当球面恰好接触水面时测得水深为6cm , 如果不计容器的厚度, 则球的体积为 ( A )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 37、设等差数列{a n }的前n 项和为S n , S m -1=-2, S m =0, S m +1=3, 则m = ( C )A 、3B 、4C 、5D 、68、某几何函数的三视图如图所示, 则该几何的体积为( A )A 、18+8πB 、8+8πC 、16+16πD 、8+16π 开始输入tt <1 s =3t s = 4t -t 2输出s结束 是 否9、设m 为正整数, (x +y )2m 展开式的二项式系数的最大值为a , (x +y )2m +1展开式的二项式系数的最大值为b , 若13a =7b , 则m = ( B )A 、5B 、6C 、7D 、810、已知椭圆x2a2+y2b2=1(a >b >0)的右焦点为F (1,0), 过点F 的直线交椭圆于A 、B 两点。
全国统一高考数学试卷理科参考答案与试题解析

全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,110每小题4分,1115每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6B.﹣3C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan ()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan ()=0求得函数的图象的中心,排除C,D;再根据函数y=tan ()的最小正周期为2π,排除B.解答:解:令tan ()=0,解得x=kπ+,可知函数y=tan ()与x 轴的一个交点不是,排除C,D∵y=tan ()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin ()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin ()+cos2x=cos2x ﹣sin2x+cos2x=(+1)cos2x ﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2B.0C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时ymin=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f (b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设cn=an+bn,Sn为数列{cn}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.分析:先根据等比数列的通项公式分别求出an和bn,再根据等比数列的求和公式,分别求得Sn和Sn﹣1的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y(元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.25.(12分)(•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P(a,b),圆P截X轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,P到x轴,y轴的距离,不能正确利用基本不等式.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学【含答案】

A.24B.264.已知e()e1xaxxf x=-是偶函数,则A.2-B.1-5.设O为平面坐标系的坐标原点,在区域为A,则直线OA的倾斜角不大于π4(1)证明://EF平面ADO;(2)证明:平面ADO⊥平面BEF(3)求二面角D AO C--的正弦值20.已知椭圆2222:1( Cbxaa y+=(1)求C的方程;6.D【分析】根据题意分别求出其周期,【详解】因为()sin()f x x ωϕ=+在区间30ABO = ∠,3,232OC AB BC ===显然,,CE DE E CE DE ⋂=因此平面CDE ⊥平面ABC 直线CD ⊂平面CDE ,则直线从而DCE ∠为直线CD 与平面由余弦定理得:当点,A D 位于直线PO 同侧时,设则:PA PD ⋅ =||||cos PA PD α⎛⋅ ⎝12cos cos 4παα⎛⎫=⨯- ⎪⎝⎭22⎛15.2-【分析】根据等比数列公式对24536a a a a a =化简得得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则245a a a 则24a q =,即321a q q =,则11a q =,因为910a a=2于是1//,,/2DE AB DE AB OF=平行四边形,//,EF DO EF DO=,又EF⊄所以//EF平面ADO.(2)法一:由(1)可知//EF(3)法一:过点O 作//OH BF 交由AO BF ⊥,得HO AO ⊥,且FH 又由(2)知,OD AO ⊥,则DOH ∠因为,D E 分别为,PB PA 的中点,因此即有11,33DG AD GE BE ==,又FH法二:平面ADO 的法向量为n平面ACO 的法向量为(30,0,1n = 所以131313cos ,1n n n n n n ⋅==+⋅因为[]13,0,πn n ∈ ,所以sin n【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.(1)()ln 2ln 2x y +-(2)存在11,22a b ==-满足题意,理由见解析1⎛⎫-;23.(1)[2,2](2)8.【分析】(1)分段去绝对值符号求解不等式作答(2)作出不等式组表示的平面区域,再求出面积作答3⎧由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -所以ABC 的面积1|2ABC S =。
2021年全国统一高考数学试卷(理科)答案及解析

m AM
2 x y 0 .令 x 2
2 ,的 m (
2,1, 2) .设平面 PMB 的一个法向量为
n (x, y, z) ,
则
n
CB
2x 0
.令 y 1, 的 n (0,1,1) .所 以
n PB 2x y z 0
cosm, n
m n
3
3 14 ,所以二面角 A PMN B 的正弦值为
A. f ( x 1) 1
B. f ( x 1) 1
C. f ( x 1) 1
D. f ( x 1) 1
答案:
B
解析:
f (x) 1 x 1 2 , f (x) 向右平移一个单位,向上平移一个单位得到 g(x) 2 为奇
1 x
1 x
x
函数.
5.在正方体 ABCD A1B1C1D1 中, P 为 B1D1的中点,则直线 PB 与 AD1 所成的角为
()
A. 60 种
B.120 种
C. 240 种
D. 480 种
答案:
C
解析:
所求分配方案数为 C52 A44 240 .
7.把函数 y f ( x) 图像上所有点的横坐标缩短到原来的 1 倍,纵坐标不变,再把所得曲 2
线向右平移 个单位长度,得到函数 y sin( x ) 的图像,则 f ( x) ( )
y2 b2
1(a
b
0) 的上顶点,若 C
上的任意一点
P 都满足,
PB 2b ,则 C 的离心率的取值范围是( )
2 A.[ ,1)
2
B.[ 1 ,1) 2
Байду номын сангаас
C. (0, 2 ] 2
全国1卷高考数学理科真题及答案

全国1卷高考数学理科真题及答案全国1卷2022高考数学理科真题及答案数学答题思想方法一:高中数学答题方法分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4) 有分有合,先分后合,是分类整合思想的本质属性(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性二:高中数学答题方法化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化三:高中数学答题方法特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向数学答题技巧掌握答题规律有些考生书写没条理,卷面涂改太多,阅卷老师甚至找不到答案在哪里,这样就很容易被错判。
有些考生在没有把握的情况下,就把已作答的内容划掉,其实还有得分点,这是很可惜的。
有些考生解答题不写出关键步骤,或分类讨论最后不总结,虽然答案对了,但没踩到得分点,仍会被扣分。
有时前面的结论对后面的解法有提示或暗示作用,考生要抓住这样的机会。
在解答题中,后一题有时要用到前一题的结论,这时考生即使前一题不会做,也可以把它作已知,先做后一题。
遇到困难的问题,一个聪明做法是将它们分解为一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
特别是那些解题层次明显的题目,每进行一步都可能得分,这叫大题拿小分。
高考近5年全国卷一理科数学含(详细答案).pdf

绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0B .C .D .2.已知集合,则( ) A .B .C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:此卷只装订不密封姓名 准考证号 考场号 座位号则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
2020年(理科数学)(新课标Ⅰ)试卷真题+参考答案+详细解析

2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)若1z i =+,则2|2|(z z -= ) A .0B .1C .2D .22.(5分)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}A B x x =-,则(a = )A .4-B .2-C .2D .43.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 51-B 51-C 51+D 51+4.(5分)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则(p = ) A .2B .3C .6D .95.(5分)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C)︒的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(1,i i x y i =,2,⋯,20)得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+B .2y a bx =+C .x y a be =+D .y a blnx =+6.(5分)函数43()2f x x x =-的图象在点(1,(1))f 处的切线方程为( ) A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.(5分)设函数()cos()6f x x πω=+在[,]ππ-的图象大致如图,则()f x 的最小正周期为( )A .109πB .76π C .43π D .32π 8.(5分)25()()y x x y x++的展开式中33x y 的系数为( )A .5B .10C .15D .209.(5分)已知(0,)απ∈,且3cos28cos 5αα-=,则sin (α= ) A 5B .23 C .13D 5 10.(5分)已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC ∆的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.(5分)已知22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作M 的切线PA ,PB ,切点为A ,B ,当||||PM AB 最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.(5分)若242log 42log a b a b +=+,则( ) A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0 B . C . D . 2.已知集合,则( ) A . B . C . D . 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 此卷只装订不密封 姓名 准考证号 考场号 座位号则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
)(一)必考题:共60分。
17.(12分)在平面四边形中,,,,.⑴求;⑵若,求.18.(12分)如图,四边形为正方形,,分别为,的中点,以为折痕把折起,使点到达点的位置,且.⑴证明:平面平面;⑵求与平面所成角的正弦值.19.(12分)设椭圆的右焦点为,过的直线与交于,两点,点的坐标为.⑴当与轴垂直时,求直线的方程;⑵设为坐标原点,证明:.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.⑴记20件产品中恰有2件不合格品的概率为,求的最大值点;⑵现对一箱产品检验了20件,结果恰有2件不合格品,以⑴中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(12分)已知函数.⑴讨论的单调性;⑵若存在两个极值点,,证明:.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.⑴求的直角坐标方程;⑵若与有且仅有三个公共点,求的方程.23.[选修4—5:不等式选讲](10分)已知.⑴当时,求不等式的解集;⑵若时不等式成立,求的取值范围.2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理数答案一、选择题1.答案:C解答:,∴,∴选C. 2.答案:B解答:或,则.3.答案:A解答:假设建设前收入为,则建设后收入为,所以种植收入在新农村建设前为%,新农村建设后为;其他收入在新农村建设前为,新农村建设后为,养殖收入在新农村建设前为,新农村建设后为 故不正确的是A.4.答案:B解答:,∴.5.答案: D121i z i i i-=+=+1z ={|2A x x =>1}x <-{|12}R C A x x =-≤≤a 2a 60a 37%2a ⋅4%a ⋅5%2a ⋅30%a ⋅30%2a ⋅11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-51424(3)10a a d =+=+⨯-=-∵为奇函数,∴,即,∴,∴,∴切线方程为:,∴选D. 6.答案: A 解答:.7.答案: B 解答:三视图还原几何体为一圆柱,如图,将侧面展开,最短路径为连线的距离,所以,所以选B. 8.答案: D 解答:由题意知直线的方程为,设,与抛物线方程联立有,可得或,∴,∴.9.答案: C()f x ()()f x f x -=-1a =3()f x x x =+'(0)1f =y x =11131()22244EB AB AE AB AD AB AB AC AB AC =-=-=-⋅+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,MN MN ==MN 2(2)3y x =+1122(,),(,)M x y N x y 22(2)34y x y x⎧=+⎪⎨⎪=⎩1112x y =⎧⎨=⎩2244x y =⎧⎨=⎩(0,2),(3,4)FM FN ==u u u u r u u u r 03248FM FN ⋅=⨯+⨯=u u u u r u u u r∵存在个零点,即与有两个交点,的图象如下:要使得与有两个交点,则有即,∴选C. 10.答案: A 解答:取,则,∴区域Ⅰ的面积为,区域Ⅲ的面积为,区域Ⅱ的面积为,故.11.答案: B 解答:渐近线方程为:,即,∵为直角三角形,假设()()g x f x x a =++2()y f x =y x a =--)(xf y x a =--)(x f 1a -≤1a ≥-2AB AC ==BC =112222S =⨯⨯=231222S ππ=⋅-=-22312S S π=⋅-=12p p =2203x y -=3y x =±OMN ∆,如图,∴,直线方程为.联立∴,即,∴,故选B.12.答案: A 解答:由于截面与每条棱所成的角都相等,所以平面中存在平面与平面平行(如图),而在与平面平行的所有平面中,面积最大的为由各棱的中点构成的截面,而平面的面积. 2ONM π∠=NM k =MN 2)y x =-32)y x y x ⎧=-⎪⎨⎪=-⎩3(,)22N -ON =3MON π∠=3MN =α11AB D 11AB D EFGHMN EFGHMN 162S ==二、填空题 13.答案:解答:画出可行域如图所示,可知目标函数过点时取得最大值,.14.答案:解答:依题意,作差得,所以为公比为的等比数列,又6(2,0)max 32206z =⨯+⨯=63-1121,21,n n n n S a S a ++=+⎧⎨=+⎩12n n a a +={}n a 2因为,所以,所以,所以. 15.答案:解答:恰有位女生,有种;恰有位女生,有种,∴不同的选法共有种.16.答案:解答:∵,∴最小正周期为,∴,令,即,∴或. ∴当,为函数的极小值点,即或, 当∴,, ∴最小值为三、解答题11121a S a ==+11a =-12n n a -=-661(12)6312S -⋅-==--161122412C C =221244C C =12416+=()2sin sin 2f x x x =+()f x 2T π=2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-'()0f x =22cos cos 10x x +-=1cos 2x =cos 1x =-1cos 2=3x π=53x π=cos 1,x =-x π=5()3f π=()3f π=(0)(2)0f f π==()0f π=()f x17. 答案: (1);(2)5. 解答:(1)在中,由正弦定理得:,∴, ∵,∴. (2),∴,∴,∴,∴.∴.18.5ABD ∆52sin 45sin ADB =∠o sin 5ADB ∠=90ADB ∠<o cos ADB ∠==2ADB BDC π∠+∠=cos cos()sin 2BDC ADB ADB π∠=-∠=∠cos cos()sin 2BDC ADB ADB π∠=-∠=∠222cos 2DC BD BC BDC BD DC+-∠=⋅⋅25=5BC =答案: (1)略;(2). 解答:(1)分别为的中点,则,∴, 又,,∴平面,平面,∴平面平面. (2),,∴,又,,∴平面,∴, 设,则,,∴过作交于点, 由平面平面, ∴平面,连结,则即为直线与平面所成的角, 由,∴, 而,∴, ∴与平面所成角的正弦值. 4,E F ,AD BC //EF AB EF BF ⊥PFBF ⊥EF PF F ⋂=BF ⊥PEF BE ⊂ABFD PEF ⊥ABFD PFBF ⊥//BF ED PF ED ⊥PF PD ⊥ED DP D ⋂=PF ⊥PED PF PE ⊥4AB =4EF =2PF =PE =P PH EF ⊥EF H PEF ⊥ABFD PH ⊥ABFD DH PDH ∠DP ABFD PE PF EF PH ⋅=⋅PH ==4PD =sin 4PH PDH PD ∠==DP ABFD 4答案: (1);(2)略. 解答:(1)如图所示,将代入椭圆方程得,得,∴,∴,∴直线的方程为:.(2)证明:当斜率不存在时,由(1)可知,结论成立;当斜率存在时,设其方程为,,联立椭圆方程有即,∴,,,∴,∴. 20. 答案:(2)2y x =±-1x =2112y +=2y =±(1,2A±AM k =AM 2)y x =-l l (1)y k x =-1122(,),(,)A x y B x y 22(1),12y k x x y =-⎧⎪⎨+=⎪⎩2222(21)4220k x k x k +-+-=2122421k x x k +=+21222221k x x k -=+1212121212[(23()4]22(2)(2)AM BMy y k x x x x k k x x x x -+++=+=----2222124412(4)21210(2)(2)k k k k k x x --+++==--AM BM k k =-OMA OMB ∠=∠解答:(1)由题可知().∴∴当时,,即在上递增;当时,,即在上递减. ∴在点处取得最大值,即.(2)(i )设余下产品中不合格品数量为,则,由题可知,∴. ∴(元).(ii )由(i )可知一箱产品若全部检验只需花费元,若余下的不检验则要元,所以应该对余下的产品作检验. 21. 答案:(1)见解析;(2)见解析. 解答:(1)①∵,∴,∴当时,,,∴此时在上为单调递增.②∵,即或,此时方程两根为221820()(1)f p C p p =-01p <<2182172172020()[2(1)18(1)(1)]2(1)(110)f p C p p p p C p p p =-+-⨯-=--1(0,)10p ∈()0f p '>()f p 1(0,)101(,1)10p ∈()0f p '<()f p 1(,1)10()f p 110p =0110p =Y 4025X Y =+1(180,)10Y B :11801810EY np ==⨯=(4025)4025402518490EX E Y EY =+=+=+⨯=4004901()ln f x x a x x =-+221'()x ax f x x-+=-22a -≤≤0∆≤'()0f x ≤()f x (0,)+∞0∆>2a <-2a >210x ax -+=,当时,此时两根均为负,∴在上单调递减.当时,,此时在上单调递减,在上单调递增,在上单调递减.∴综上可得,时,在上单调递减;时,在,上单调递减,在上单调递增.(2)由(1)可得,两根得,,令,∴,.∴,要证成立,即要证成立,∴,即要证() 令,可得在上为增函数,∴,∴成立,即成立.22.12x x ==2a <-'()f x (0,)+∞2a >0∆>()fx ()fx (22a a -()fx (,)2a ++∞2a ≤()f x (0,)+∞2a >()fx (0,2a -()2a ++∞()fx (22a a -210x ax -+=12,x x 2a >1212,1x x a x x +=⋅=120x x <<121x x =1211221211()()ln (ln )f x f x x a x x a x x x -=-+--+21122()(ln ln )x x a x x =-+-12121212()()ln ln 2f x f x x x a x x x x --=-+⋅--1212()()2f x f x a x x -<--1212ln ln 1x x x x -<-1122212ln 0(1)xx x x x x x -+<>-2221212ln 0x x x x x --+∴<-22212ln 0x x x --+>21x >1()2ln (1)g x x x x x=--+>()g x (1,)+∞()(1)0g x g >=1212ln ln 1x x x x -<-1212()()2f x f x a x x -<--答案:(1);(2) 解答:(1)由可得:,化为.(2)与有且仅有三个公共点,说明直线与圆相切,圆圆心为,半径为,则,解得,故的方程为. 23.答案:(1); (2). 解答:(1)当时,, ∴的解集为.(2)当时,,当时,不成立. 当时,,∴,不符合题意. 当时,,成立.22(1)4x y ++=423y x =-+22cos 30ρρθ+-=22230x y x ++-=22(1)4x y ++=1C 2C 2(0)y kx k =+<2C 2C (1,0)-22=43k =-1C 423y x =-+1{|}2x x >(0,2]1a =21()|1||1|21121x f x x x xx x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩()1f x >1{|}2x x >0a =()|1|1f x x =+-(0,1)x ∈()f x x >0a <(0,1)x ∈()1(1)(1)f x x ax a x x =+--=+<01a <≤(0,1)x ∈()1(1)(1)f x x ax a x x =+--=+>当时,,∴,即.综上所述,的取值范围为.2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。