液压课设 液压启闭机的液压系统设计

合集下载

简单的液压系统课程设计

简单的液压系统课程设计

简单的液压系统课程设计一、教学目标本节课的教学目标是让学生了解和掌握简单的液压系统的基本原理和组成,能够分析液压系统的工作过程和应用场景,提高学生的实践能力和创新意识。

具体来说,知识目标包括:1.掌握液压系统的定义、分类和基本原理。

2.了解液压系统的组成部分及其功能。

3.掌握液压系统的应用场景和优缺点。

技能目标包括:1.能够分析液压系统的工作过程。

2.能够运用液压系统的基本原理解决实际问题。

3.能够设计简单的液压系统。

情感态度价值观目标包括:1.培养学生对液压系统的兴趣和好奇心。

2.培养学生团队合作意识和实践能力。

3.培养学生的创新意识和解决实际问题的能力。

二、教学内容本节课的教学内容主要包括液压系统的定义、分类和基本原理,液压系统的组成部分及其功能,液压系统的应用场景和优缺点。

具体来说,教学大纲如下:1.液压系统的定义、分类和基本原理。

2.液压系统的组成部分及其功能。

3.液压系统的应用场景和优缺点。

教学内容将结合教材和实际案例进行讲解,通过图片、视频等多媒体资料丰富学生的学习体验。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法。

1.讲授法:通过讲解液压系统的定义、分类和基本原理,使学生掌握基础知识。

2.讨论法:分组讨论液压系统的组成部分及其功能,促进学生思考和交流。

3.案例分析法:分析实际案例,使学生了解液压系统的应用场景和优缺点。

4.实验法:安排液压系统实验,让学生动手操作,培养实践能力。

四、教学资源本节课的教学资源包括教材、参考书、多媒体资料和实验设备。

1.教材:液压系统基础知识及相关案例。

2.参考书:液压系统的设计、应用和维护等方面的书籍。

3.多媒体资料:液压系统的工作原理、应用场景的视频和图片等。

4.实验设备:液压系统实验装置,用于学生动手操作。

教学资源将结合教材和实际案例进行讲解,通过图片、视频等多媒体资料丰富学生的学习体验,同时提供实验设备供学生动手实践。

液压系统设计课设

液压系统设计课设

目录§1设计流程图 (2)§2设计依据 (2)§3工况分析 (3)§3.1外负载 (3)§3.2阻力负载 (3)§4初步确定油缸参数,绘制工况图 (6)§4.1初选油缸的工作压力 (6)§4.2计算油缸尺寸 (6)§4.3油缸各工况的压力、流量、功率的计算 (7)§5确定液压系统方案和拟订液压系统原理图 (10)§5.1确定油源及调速方式 (10)§5.2选择基本回路 (10)§6选择液压元气件 (13)§6.1液压泵的选择 (13)§6.2阀类原气件及辅助元气件的选择 (14)§7 验算液压系统性能 (17)一、设计流程图液压系统设计与整机设计是紧密联系的,设计步骤的一般流程下面将按照这一流程图来进行本次液压课程设计。

二、设计依据:设计一台专用铣床的液压系统,铣头驱动电机的功率N=7.5KW ,铣刀直径为D=100mm ,转速为n=300rpm ,若工作台重量400kg ,工件及夹具最大重量为150kg ,工作台总行程L=400mm ,工进为100mm ,快退,快进速度为5m/min ,工进速度为50~1000mm/min ,加速、减速时间t=0.05s ,工作台用平导轨,静摩擦系数fj=0.2,动摩擦系数fd=0.1。

明确液压系统的设计要求 执行元件运动与负载分析 确定执行元件主要参数 拟定液压系统原理图 选择液压元件 验标液压系统性能是否通过?绘制工作图,编制技术文件是否符合要求? 结 束液压 CAD否否 是是设计此专用铣床液压系统。

三、工况分析液压系统的工况分析是指对液压执行元件进行运动分析和负载分析,目的是查明每个执行元件在各自工作过程中的流量、压力、功率的变化规律,作为拟定液压系统方案,确定系统主要参数(压力和流量)的依据。

负载分析(一)外负载Fw==4774.65N(二)阻力负载静摩擦力:Ffj=(G1+G2)·fj其中 Ffj—静摩擦力N G1、G2—工作台及工件的重量N fj—静摩擦系数由设计依据可得:Ffj=(G1+G2)·fj=(4500+1500)X0.2=1200N动摩擦力Ffd=(G1+G2)·fd其中 Ffd—动摩擦力N fd—动摩擦系数同理可得: Ffd=(G1+G2)·fd=(4500+1500)X0.1=600N (三)惯性负载机床工作部件的总质量m=(G1+G2)/g=6000/9.81=611.6kg 惯性力Fm=m ·a==1019.37N其中:a —执行元件加速度 m/s ² 0t u u a t-=ut —执行元件末速度 m/s ² u0—执行元件初速度m/s ² t —执行元件加速时间s因此,执行元件在各动作阶段中负载计算如下表所示: (查液压缸的机械效率为0.96,可计算液压缸各段负载,如下表)工况 油缸负载(N ) 液压缸负载(N ) 液压缸推力(N ) 启动 F=F fj 1200 1250 加速 F=F fd +F m 1619.37 1686.84 快进 F=F fd 600 625 工进 F=F fd + Fw 5374.65 5598.60 快退F=F fd600625按上表的数值绘制负载如图所示。

液压启闭机设计方案

液压启闭机设计方案

题目液压启闭机设计姓名余楠学号授课教师龚国芳魏建华专业机械电子专业(混合班)1.(1(2)本机操作闸门至上、下极限位置或设定的任一开度位置时,液压泵电动机应自动切断电源,特别是当闸门到达下极限位置时,应确保安全运行。

(3)闸门在全开或设定的任一局部开启位置时,启闭机的液压系统中的保压锁锭回路能可靠地将闸门固定在上极限或设定的位置处。

(4)闸门自全开位置或局部开启预置位置下滑150mm时,或双缸同步偏差超过20mm时,液压泵电动机自动投入运行,将闸门提升恢复原位。

若继续下滑至160mm,液压泵电动机尚未投入运行时,应自动接通另一组液压泵电动机,将闸门提升恢复原位;若继续下沉至200mm时,在集控室及现场均应有声光报警信号。

2.液压系统原理图该设计原理图由Eplan-fluent软件设计,如下图所示。

根据该图可以看出,本液压设计原理图可分为八部分,分别为,动力模块,总控模块,分流机构,阀门A启闭机构,阀门A锁紧机构,阀门B启闭机构,阀门B锁紧机构与极限位置保护机构。

3.设计功能说明首先对各模块依次说明,从左下角的动力模块开始,此模块包括主泵组,备用泵组,溢流阀,过滤器。

在正常运行时,主泵组的两个45KW电机运转,输出90KW功率,若压力表检测到系统失压,会通过电控模块开启备用泵组,并发出检修信号,提示检修主泵组。

动力模块提供的流量进入下面的总控模块,总控模块包括保护阀,总控制阀与节流分流机构。

保护阀供能在最后的极限位置保护机构部分会着重解释,总控阀实现油缸A、B的同步运行或异步运行。

总控模块后接分流机构,分流机构在此处着重说明,在初步设计时我查阅了相关的论文与设计,了解到了现今主流的同步回路主要有下面三种实现方法: 1、油路并联,且每路各接一个节流阀,实现各路流量一致。

2、利用伺服阀、传感器与电控系统,通过电控系统的控制算法实现精确分流。

3、使用分流集流阀,利用其机械结构按比例分流集流,实现同步。

对比上面三种方法,利用多节流阀的方法是最简单的方法,但是在实际应用中会遇到一定问题,多个节流阀之间往往很难保证一致性,故调试与安装较为复杂,且稳定性不高。

液压启闭机设计方案

液压启闭机设计方案

题目液压启闭机设计姓名余楠学号 10 授课教师龚国芳魏建华专业机械电子专业(混合班)1.设计题目及要求设计题目:1600KN液压启闭机主要技术参数:型式:活塞式双缸液压启闭机最大启门力:2×1600kN工作行程:最大行程:液压缸计算压力:≥15MPa且≤20MPa液压缸内径:Φ400mm(推荐值)活塞杆直径:Φ180mm(推荐值)启闭速度:≥min液压泵电动机组单机功率:≤45kW液压泵电动机组应不少于两套,互为备用。

操作要求:(1)液压系统应有双缸同步及单缸动作回路(安装工况),双缸同步偏差≤20mm。

(2)本机操作闸门至上、下极限位置或设定的任一开度位置时,液压泵电动机应自动切断电源,特别是当闸门到达下极限位置时,应确保安全运行。

(3)闸门在全开或设定的任一局部开启位置时,启闭机的液压系统中的保压锁锭回路能可靠地将闸门固定在上极限或设定的位置处。

(4)闸门自全开位置或局部开启预置位置下滑150mm时,或双缸同步偏差超过20mm时,液压泵电动机自动投入运行,将闸门提升恢复原位。

若继续下滑至160mm,液压泵电动机尚未投入运行时,应自动接通另一组液压泵电动机,将闸门提升恢复原位;若继续下沉至200mm时,在集控室及现场均应有声光报警信号。

2.液压系统原理图该设计原理图由Eplan-fluent软件设计,如下图所示。

根据该图可以看出,本液压设计原理图可分为八部分,分别为,动力模块,总控模块,分流机构,阀门A启闭机构,阀门A锁紧机构,阀门B启闭机构,阀门B锁紧机构与极限位置保护机构。

3.设计功能说明首先对各模块依次说明,从左下角的动力模块开始,此模块包括主泵组,备用泵组,溢流阀,过滤器。

在正常运行时,主泵组的两个45KW电机运转,输出90KW功率,若压力表检测到系统失压,会通过电控模块开启备用泵组,并发出检修信号,提示检修主泵组。

动力模块提供的流量进入下面的总控模块,总控模块包括保护阀,总控制阀与节流分流机构。

压装机液压系统课程设计

压装机液压系统课程设计

压装机液压系统课程设计一、课程目标知识目标:1. 学生能够理解压装机液压系统的基础理论知识,掌握液压系统的组成、工作原理及主要性能参数。

2. 学生能够了解液压油的选择、维护及液压元件的常见故障分析。

3. 学生掌握压装机液压系统设计的基本流程和步骤,具备分析简单液压系统设计问题的能力。

技能目标:1. 学生能够运用所学知识,进行压装机液压系统的初步设计和计算。

2. 学生能够熟练使用相关绘图软件,绘制液压系统原理图和装配图。

3. 学生具备一定的液压系统故障排除能力,能够解决实际操作中遇到的问题。

情感态度价值观目标:1. 学生通过学习,培养对液压技术的兴趣,提高工程意识和创新意识。

2. 学生在课程学习过程中,培养团队协作精神和沟通能力,增强解决问题的自信心。

3. 学生了解液压系统在工业生产中的重要性,认识到学习液压技术对个人和社会的意义。

课程性质:本课程为专业选修课,适用于具有一定机械基础和液压基础的学生。

学生特点:学生为高二年级机械制造与自动化专业学生,已学习相关机械基础课程,具有一定的识图能力和动手能力。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和工程应用能力。

通过课程学习,使学生能够独立完成压装机液压系统的设计和分析任务,为将来的职业发展打下坚实基础。

二、教学内容1. 液压系统基础知识- 液压系统的组成、工作原理及性能参数(对应教材第2章)- 液压油的选择、维护及液压元件功能(对应教材第3章)2. 液压系统设计方法与流程- 压装机液压系统设计要求及步骤(对应教材第5章)- 液压系统原理图、装配图的绘制方法(对应教材第6章)3. 液压系统元件选型与计算- 液压泵、液压马达、液压缸等元件的选型计算(对应教材第7章)- 液压阀的类型及选用方法(对应教材第8章)4. 液压系统故障分析及维护- 常见液压系统故障类型及原因(对应教材第9章)- 液压系统维护方法及故障排除(对应教材第10章)5. 实践教学环节- 压装机液压系统设计实例分析(结合教材实例)- 相关绘图软件操作培训(CAD软件应用)教学内容安排与进度:第1周:液压系统基础知识学习第2周:液压系统设计方法与流程学习第3周:液压系统元件选型与计算第4周:液压系统故障分析及维护第5-6周:实践教学环节,设计实例分析与绘图软件操作培训三、教学方法1. 讲授法:- 对于液压系统的基础理论知识、设计方法与流程等抽象、概念性较强的内容,采用讲授法进行教学,使学生系统地掌握液压系统相关知识点。

瓦托水电站弧形闸门液压启闭机液压系统的设计

瓦托水电站弧形闸门液压启闭机液压系统的设计

机电信息工程瓦托水电站弧形闸门液压启闭机液压系统的设计容军蔡鹏陈亮张丹郑志国王熙(中船重工中南装备有限责任公司,湖北宜昌443000)摘要:瓦托水电站是一座以发电为主、兼顾旅游等综合利用的水电枢纽工程,表孔弧形工作闸门由2X800kN双缸悬挂式液压启闭机动水操作,该液压启闭液压系统采用计算机监控系统,瓦托水电站金属结构由施工导流、泄洪、引水发电3部分金属结构设备组成。

关键词:液压启闭机;技术参数;设计特点工程孔设2形工作闸门,每扇闸门由1台QHLY-2X800kN液压启闭机操作,启机通轴与闸门吊耳相连。

机可实现现地控制并预留远控接口,启闭机为双吊点,即一孔表孔弧形工作门由一套双缸启闭机油缸同步操作,采用“一机一泵”方式驱动和控制。

在纽工程中,表孔弧形工作门一般是由一套双缸启闭机油缸控制,对液压机结构组成及,最后分析液压机设计及动作说明。

1液压启闭机设备结构组成及布置形工作共安装2套液压机,操作启闭2扇弧形工作闸门。

每扇弧门由1套2X800kN液压启闭机启闭,2支油缸分别悬挂在左右闸墩侧墙上的悬臂餃支座上。

油缸的前端与的下 梁上吊连。

每套机设一泵和一现地控制统。

液压机泵站和控制在闸墩上泵房内。

主要技术参数序号名称参数备注1启闭机型式两端較支双吊点后拉斜吊式液压启闭机2额定启门力2X800kN3额定闭门力闸门自重4工作行程7.0m5最大行程7.2m6启门/闭门速度0.5〜06m/min7活塞杆直径*200mm 陶瓷活塞杆8油缸内径*320mm9有杆腔/无杆腔计算压力16.3/1.0MPa 10电动机额定功率〜37kW 1.1液压控制系统设计液压系统设计主要依据《NB/T35020-2013水电水利工程液压启闭机设计规范》。

液压泵站的组成部分如下:油泵电机组、油箱(不锈钢12C18N19)、温度控制器、液位控制器、空气滤清器(具有除水干燥功能'器))等。

1.2油泵电机组每套压泵2套泵机,一用一,油泵与设有避震接头连接。

怎么设计一个液压系统,液压系统设计思路!

怎么设计一个液压系统,液压系统设计思路!

怎么设计一个液压系统,液压系统设计思路!液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。

着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

1.1设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

1)确定液压执行元件的形式;2)进行工况分析,确定系统的主要参数;3)制定基本方案,拟定液压系统原理图4)选择液压元件5)液压系统的性能验算6)绘制工作图,编制技术文件1.2明确设计要求液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

1)确定液压执行元件的形式;2)进行工况分析,确定系统的主要参数;3)制定基本方案,拟定液压系统原理图4)选择液压元件5)液压系统的性能验算6)绘制工作图,编制技术文件7)对防尘、防爆、防寒、噪声、安全可靠性的要求8)对效率、成本等方面的要求1.3制定基本方案1.制定调速方案液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。

对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。

对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。

相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。

节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。

此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。

其优点是没有溢流损失和节流损失,效率较高。

液压启闭机设计方法

液压启闭机设计方法

精心整理题目液压启闭机设计姓名余楠学号授课教师龚国芳魏建华专业机械电子专业(混合班)1.操作要求(1)液压系统应有双缸同步及单缸动作回路(安装工况),双缸同步偏差≤20mm。

(2)本机操作闸门至上、下极限位置或设定的任一开度位置时,液压泵电动机应自动切断电源,特别是当闸门到达下极限位置时,应确保安全运行。

(3)闸门在全开或设定的任一局部开启位置时,启闭机的液压系统中的保压锁锭回路能可靠地将闸门固定在上极限或设定的位置处。

(4)闸门自全开位置或局部开启预置位置下滑150mm时,或双缸同步偏差超过20mm时,液压泵电动机自动投入运行,将闸门提升恢复原位。

若继续下滑至160mm,液压泵电动机尚未投入运行时,应自动接通另一组液压泵电动机,将闸门提升恢复原位;若继续下沉至200mm时,在集控室及现场均应有声光报警信号。

2.液压系统原理图该设计原理图由Eplan-fluent软件设计,如下图所示。

根据该图可以看出,本液压设计原理图可分为八部分,分别为,动力模块,总控模块,分流机构,阀门A启闭机构,阀门A锁紧机构,阀门B启闭机构,阀门B锁紧机构与极限位置保护机构。

3.设计功能说明首先对各模块依次说明,从左下角的动力模块开始,此模块包括主泵组,备用泵组,溢流阀,过滤器。

在正常运行时,主泵组的两个45KW电机运转,输出90KW功率,若压力表检测到系统失压,会通过电控模块开启备用泵组,并发出检修信号,提示检修主泵组。

动力模块提供的流量进入下面的总控模块,总控模块包括保护阀,总控制阀与节流分流机构。

保护阀供能在最后的极限位置保护机构部分会着重解释,总控阀实现油缸A、B的同步运行或异步运行。

总控模块后接分流机构,分流机构在此处着重说明,在初步设计时我查阅了相关的论文与设计,了解到了现今主流的同步回路主要有下面三种实现方法: 1、油路并联,且每路各接一个节流阀,实现各路流量一致。

2、利用伺服阀、传感器与电控系统,通过电控系统的控制算法实现精确分流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《液压与气压传动》课程设计学号姓名年级专业指导教师:钱雪松内容:设计计算说明书1份20 页液压系统原理图1张2011-2012学年第二学期《液压与气压传动》课程设计任务书5授课班号138101/2 年级专业2009机自指导教师钱雪松学号姓名课程设计题目5设计一台液压启闭机液压系统,其主要技术要求如下:启闭力50T,行程8000mm,往返速度4000~10000mm/min,加减速时间为1秒,双缸,用同步回路,垂直液压缸。

1.课程设计的目的和要求通过设计液压传动系统,使学生获得独立设计能力,分析思考能力,全面了解液压系统的组成原理。

明确系统设计要求;分析工况确定主要参数;拟订液压系统草图;选择液压元件;验算系统性能。

2.课程设计内容和教师参数(各人所取参数应有不同)其主要技术要求如下:启闭力50T,行程8000mm,往返速度4000~10000mm/min,加减速时间为1秒,双缸,用同步回路,垂直液压缸。

4. 设计参考资料(包括课程设计指导书、设计手册、应用软件等)●章宏甲《液压传动》机械工业出版社 2006.1●章宏甲《液压与气压传动》机械工业出版社 2005.4●黎启柏《液压元件手册》冶金工业出版社 2002.8●榆次液压有限公司《榆次液压产品》 2002.3课程设计任务明确系统设计要求;分析工况确定主要参数;拟订液压系统草图;选择液压元件;验算系统性能。

5.1设计说明书(或报告)分析工况确定主要参数;拟订液压系统草图;选择液压元件;验算系统性能。

5.2技术附件(图纸、源程序、测量记录、硬件制作)5.3图样、字数要求系统图一张(3号图),设计说明书一份(2000~3000字)。

6. 工作进度计划3.设计方式手工4.设计地点、指导答疑时间待定9.备注目录1 液压系统的设计步骤与要求 (1)1.1 液压系统的设计步骤 (1)1.2 液压系统的设计要求 (2)2 液压系统的分析 (3)2.1 液压系统主要参数的确定 (3)2.2负载分析和负载图、速度图的绘制 (4)2.3液压系统图的拟定…………………………………………6.3 油缸内径及活塞杆直径的确定 (8)3.1 油压的确定 (8)3.2 确定油缸内径D 活塞杆直径d (8)4 液压元件的选择 (10)4.1 液压泵和电机的选择 (10)4.2 油箱容积和尺寸的确定 (11)4.3 液压系统所用油液的选用 (12)4.4 油管管径的确定 (13)4.5阀类元件及辅助元件的选择 (15)5 液压系统性能的验算 (16)5.1 验算系统压力损失 (16)5.2 油液温升验算 (18)1 液压系统的设计步骤与要求液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。

着手设计时,必须从实际出发,有机地结合各式各种传动形式,充分发挥液压传动的优点,力求设计出结构简单工作可靠,成本低、效率高、操作简单、维修方便的液压传动系统。

本次设计主要是启闭机液压系统的设计。

综合考虑弧形工作闸门液压启闭机油缸务必垂直布置,两端铰链连接,并且在油缸的上端吊头与埋件轴以及下端吊头与闸门吊耳连接处内装自润滑球面滑动轴承,满足使油缸自由摆动,并可以消除启闭机或闸门由于安装等误差造成的对油缸的不利影响。

油缸与管路之间采用硬管连接。

1.1 液压系统的设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行:(1)进行工况分析,确定系统的主要参数;(2)制定基本方案,拟定液压系统原理图;(3)选择液压元件;(4)确定液压执行元件的形式;(5)液压系统的性能验算。

1.2 液压系统的设计要求设计要求是进行每项工程设计的依据。

在制定基本方案并进行进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。

(1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等;(2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;(3)液压驱动机构的运动形式,运动速度;(4)各动作机构的载荷大小及其性质;(5)对调速范围、运动平稳性、转换精度等性能方面的要求;(6)自动化程度、操作控制方式的要求;(7)对防尘、防爆、防寒、噪声、安全可靠性的要求;(8)对效率、成本等方面的要求。

本液压系统的设计、制造,主要用于控制弧形闸门启闭机油缸开启和关闭的液压系统。

本系统具有结构紧凑、布局美观、性能可靠、能耗低的优点,其油缸工况符合用户提供的原理要求。

本套液压系统配有压力控制器(XML)、电接点温度计(WSSX)、液位控制器(YKJD24),可对系统压力、油液温度及液位高度实现自动控制。

在闸门启闭过程中,闸门开度及行程实行全程控制,通过电器、液压动作进行同步控制,实现自动调整同步。

2 液压系统的分析2.1 液压系统主要参数的确定通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。

液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。

压力决定于外载荷。

流量取决于执行元件的运动速度和结构尺寸。

主要技术参数序号名称参数备注1 最大启门力2×252.5KN2 最大闭门力2X252.5KN3 工作行程8000mm4 油缸内径200mm5 活塞杆直径160mm7 有杆腔计算压力20Mpa8 闸门关闭时间80s9 闸门开启时间80s10 系统压力等级25MPa2.2负载分析和负载图、速度图的绘制 2.2.1负载分析工作负载液压启闭机在启动或者关闭闸门时的工作载荷主要为克服闸门的自重。

本设计的设计启闭力为50T,故单根液压缸的工作载荷为25T.即, F t =250000N 惯性荷载31 20.1m501025001v N N t ∆==⨯⨯=∆mF 阻力负载此系统的液压缸在竖直方向上工作,摩擦阻力很小,故不予以考虑。

由以上得出此液压系统液压缸在个工作阶段的负载如下表:2.2.2负载图和速度图的绘制由系统参数知,行程8000mm,往返速度6000mm/min,启闭加减速时间为1秒。

故可知加减速时间为1秒,匀速运行时间为78秒,加减速行程为0.1米,匀速行程为7.8米。

负载图和速度图如下:2.3液压系统图的拟定2.3.1液压回路的选择由于液压缸在启动和制动闸门时要避免过大的冲击力,所以液压缸的速度是变化的,因此要选用调速回路来确保液压缸的启闭速度在合理的范围内。

在提升和闭合的过程中,最重要的是要保持两个液压缸的同步,使闸门在工作时能始终保持合理的姿态。

因此系统必须采用同步回路来确保两只液压缸的同步运行。

当闸门在提升到最高位置时,要保证闸门不突然掉下来,下降时要慢慢降下来,因此系统必须保持一定的压力,故要选用保压回路来保证系统在一定的压力下运行。

2.3.2系统图的绘制启闭机的液压系统图由拟定好的控制回路及液压源组合而成。

各回路相互组合时要力求系统结构简单。

注意各元件间的联锁关系,避免误动作发生。

尽量减少能量损失环节。

提高系统工作效率。

为便于液压系统的维护和监测,在系统中的主要路段要装设必要的检测元件,关键部位要附设备用件,以便意外事件发生时能迅速更换,保证主要部件连续工作。

各液压元件尽量采用国产标准件,在图中要按国家标准规定的液压元件职能符号的常态位置绘制。

系统图中应注明各液压执行元件的名称和动作,注明各液压元件的序号以及各电磁铁的代号,并附有电磁铁、行程阀及其他控制元件的动作表。

液压系统原理图见附录。

3 油缸内径及活塞杆直径的确定3.1 油压的确定根据本设计的使用场合和工况,系统油压按31.5MPa 控制,油缸工作油压按20MPa 控制。

3.2 确定油缸内径D 活塞杆直径d由于本系统油缸是单侧进出油,有杆端是工作高压腔,初步考虑油缸截面积和活塞杆截面积的差△A 即可,故只需选取油缸内径或者活塞杆直径。

由 P= F △A△A =()4π*-22D d即 20X106 = 250000△A得 △A=0.0125m 2选取活塞杆直径 d=160mm则 12500=()1604π*-22D得D=203mm故选取D=200mm3.2.1 强度要求要是油缸能够安全的工作,则必须保证油缸个部件的强度在安全的范围之内。

由σmax=FA min≤[σ]设活塞杆最小截面积处直径为d0 处直,则有:σmax=Fπd02/4≤[σ]故 d 0 ≥活塞杆的材料为40Cr,热处理方法为调质,查的其需用应力为785MPa。

带入上式,得:D0故,d0 ≥100.7 mm ,初选直径符合要求。

3.2.2 长细比要求根据水利水电工程启闭机设计规范H.6.4.1 B >0.4 则, L 0=μL 1μl 1=644πdI 2=64*-44πD d ()得 μ=0.55L 1 为活塞杆展开全长L 1 、L 2 分别为活塞杆和油缸缸体断面的惯性矩m m 4。

λ=4 L d≤250 故, d ≥04 L 250D ≥.250⨯⨯416000055=140mm选取的直径符合长细比要求。

4 液压元件的选择4.1 液压泵和电机的选择 4.1.1液压泵的选用设计要求活塞杆的推进速度为V=6m/min ,则单缸每分钟流量为Q=V*A s *t得Q=2Q 0=2×6m/min ×4(0.22-0.162)=135.6L/min油缸工作压力为20MPa , 故选用额定工作压力为31.5 MPa 、最高工作压力为40MPa 的柱塞泵,其型号为1 6 0 *CY14-1B ,公称排量164.7mL/r,额定转速为1000r/min 。

4.1.2电机的确定由公式:P=3p×10N N P Q ψη ;式中: P N 为液压泵的额定压力(Pa ); Q N 为液压泵的额定流量(m 3/s ); ηp 为液压泵的总效率,从规格中查取; ψ为转换系数,ψ==m axNP P ,P m a x 为液压泵的最大工作压力。

得:P=122KW因为泵的额定转速为1000r/min,故选用315L2型三相异步电机,其额定功率为132KW,同步转速为1000r/min。

4.2 油箱容积和尺寸的确定油箱容量的确定,要考虑工作循环中的油液温升、运行中的液位变动、调试与维护管路及执行元件灌油、循环油量、液压油液寿命等因素。

按照经验法则,固定设备用油箱的容量应是系统液压泵3~5min的输油量,行走设备为0.5~1.5min的输油量。

在初步设计油箱时,其有效容量可按下述经验公式确定即:V=mQ p式中:m ——系数,m 值的选取;低压系统为m = 2 ~4 ,中压系统为m =5 ~7 ,中高压系统或高压大功率系统为m =6 ~1 2 ;Q p——液压泵的流量。

相关文档
最新文档