10KV箱式变电站设计

合集下载

某10KV箱式变电站电气安装设计cad施工图

某10KV箱式变电站电气安装设计cad施工图
二 说明:1,基础方位由使用单位现场确定。2,图注比例 1:503,尺寸标注单位均为mm。4,墙体用MU7.5机制砖,M5水泥彻体。5,基础四周作600mm散水坡。6,接地网应箱体两端的接地座相连。电缆沟与箱体连接处应有防备小动物进入和防火措施。7,箱体就位时应座1:3水泥沙浆。8,其它未详处参相关基建标准的施工惯例。9,电缆沟的走向及位置由使用单位根据实际情况确定。图上电缆沟的位置为参考位置.10,箱体基础内加设排水通道及排水设施。专 业会 签 人日 期工程图 号核校计设期日阶段设计高密市菲达电器有限公司CAD施0135kV箱体基础结构图一施工说明备注施工说明说明01AABBCCDDEEFF66554433221125工程图 号核校计设期日阶段设计CAD制图批准施工第页共页11,基础地耐力15T/m。213局部详图结施02

10KV箱式变电站设计

10KV箱式变电站设计

10KV箱式变电站设计毕业设计(论文)中文题目:10KV箱式变电站设计学习中心(函授站): 哈尔滨铁路局函授站专业:电气工程及其自动化姓名:刘志伟学号:12617988指导教师:张岩北京交通大学远程与继续教育学院2021年6月毕业设计(论文)承诺书与版权使用授权书本人所呈交的毕业论文是本人在指导教师指导下独立研究、写作的成果。

除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京交通大学或其他教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

本毕业论文是本人在读期间所完成的学业的组成部分,同意学校将本论文的部分或全部内容编入有关书籍、数据库保存,并向有关学术部门和国家相关教育主管部门呈交复印件、电子文档,允许采用复制、印刷等方式将论文文本提供给读者查阅和借阅。

论文作者签名:______刘志伟___________ _____2014_年_1 月_3_日指导教师签名:__ _张岩______________ _2014_ 年 1 月3日毕业设计(论文)成绩评议毕业设计(论文)任务书本任务书下达给:12年春级电气工程及其自动化专业学生刘志伟设计(论文)题目:10KV箱式变电站设计一、毕业设计(论文)基本内容1、毕业设计的基本内容(1)课题研究的意义及目的,国内外研究的现状;(2)变电站一次系统设计;(3)变电站二次系统设计;(4)电源进线方案设计;(5)智能电显和操控系统设计;(6)配电变压器微机保护系统设计(速断、过流、温度保护设计)(7)主要电气设备选择;1、设计实现的主要功能实时显示变电站的运行参数(包括电压、电流、功率、频率、cosφ等参数),故障报警显示,实现手自动操作控制功能。

2、主要技术指标功率因数不低于0.95,可靠性和经济性满足变电站综合自动化要求。

二、基本要求1、熟悉题目要求,查阅相关科技文献2、方案设计(包括方案论证与确定、技术经济分析等内容)3、硬件和软件设计(其中还包括理论分析、微机保护装置、设备及元器件选择等)4、撰写设计说明书,绘制图纸5、指定内容的外文资料翻译三、重点研究的问题1、了解10kV箱式变电站的发展应用及箱式变电站的结构分类;主变压器的选择和继电保护的选择。

箱变的技术条件及典型设计

箱变的技术条件及典型设计

箱变的技术条件及典型设计目录1、10kV欧式箱变技术条件2、10kV美式箱变技术条件3、综合配电箱技术条件4、10kV环网柜技术条件5、10KV电缆分接箱技术条件6、10kV户内真空断路器技术条件7、真空负荷开关熔断器组合电器技术条件8、12kV户外永磁真空断路器技术条件9、12kV分支分界开关(看门狗)技术条件10kV欧式箱变技术条件一、概述公用终端配电箱变(欧式),户外布臵,高压侧采用负荷开关、熔丝保护,配臵全密封油式变压器(S11型),低压侧采用智能开关。

二、使用条件海拔高度不超过1000m;环境温度:最高气温40C,最低气温-50C,最高日平均气温不超过35C;日相对湿度平均值不超过95%,月相对湿度平均值不超过90%。

户外风速不超过25m/S;地面倾斜度不大于30;阳光辐射不得超过1000W/m2;安装地点无爆炸危险、火灾、化学腐蚀及剧烈振动。

三、遵循的标准产品设计符合下列标准:GB/T 17467-1998 高/低压预装箱式变电站GB 4208-1993 外壳防护等级(IP代码)GB 1094.1-5-96 电力变压器GB/T 7328-1987 变压器和电抗器的声级测定GB 7251.1-1997 低压成套开关设备和控制设备GB 3804-90 3~63Kv交流高压负荷开关GB 16926-1997 交流高压负荷开关-熔断器组合电器GBl985~89 交流高压隔离开关和接地开关GB/T 11022-1999 高压开关设备和控制设备的共用技术要求GBl 1022—89 高压开关设备通用技术条件DL/T 537-2002 高/低压预装式变电站选用导则DL/T537—93 6、lOkV箱式变电站订货技术条件DL/T 539—1996 高压开关设备的共用订货技术条件DL/T 402—91 交流高压断路器订货技术条件DL/T 404—1997 户内交流高压开关订货技术条件DL/T 486—92 交流高压隔离开关订货技术条件四、技术参数4.1 箱变技术参数名称单位数据高压侧额定电压kV10低压侧额定电压kV0.4 额定频率Hz 50额定容量kVA630联接方式Yyn0噪音等级dB≤65壳体防护等级IP23D三室布置方式“目”字型外形尺寸mm 2800×2400×2500(长×宽×高)4.2 高压负荷开关+熔断器组合技术参数项目单位参数负荷开关负荷开关+熔断器组合额定电压kV 12额定频率Hz 50额定电流 A 630 125绝缘水平工频耐压(1min)相间及相对地kV42隔离断口间48 冲击耐压相间及相对地75隔离断口间85 主母线局部放电量PC ≤10额定短时耐受电流/持续时间主开关KA/s20/3 接地开关20/2峰值耐受和短路关合电流KA 50 125 额定闭环开断电流 A 630 额定有功负载开断电流 A 630额定电缆充电开断电流 A 10额定开断空载变压器容量KVA 1250 开断转移电流A ―――1700 预期短路开断电流KA ―――50 机械寿命次2000SF6气体额定充气压(20℃时表压)MPa 0.04 SF6最高气压(20℃时表压)MPa 0.045外形尺寸(宽×高×深)mm 由厂家定4.3 低压断路器技术参数主进开关框架断路器选用RMW1系列额定电压400V额定电流2000A额定运行短路开断电流65KA额定极限短路开断电流80KA额定短时耐受电流(1S)50KA机构电动操作选用智能型控制器,具备可调整长延时、短延时、瞬时过电流保护功能;具备可调整接地故障保护功能;带欠电压延时脱扣器。

10KV箱式变电站设计优化与性能评估

10KV箱式变电站设计优化与性能评估

10KV箱式变电站设计优化与性能评估箱式变电站是一种新型的变电设备,它具有结构紧凑、占地面积小、安装方便等特点。

它可以提供可靠的电网分布和保护功能,是城市建设和工业用电的重要设备。

本文将对10KV箱式变电站的设计进行优化,并对其性能进行评估。

首先,对于10KV箱式变电站的设计优化,我们可以从以下几个方面进行考虑。

首先是变电站的整体结构设计。

箱式变电站的设计应该具有良好的耐候性和耐腐蚀性,能够适应各种复杂的气候和环境条件。

此外,箱式变电站的外观设计也需要考虑美观性,以便与周围环境协调一致。

在这方面,我们可以采用先进的材料和工艺,确保变电站的结构牢固、可靠。

其次是变电设备的选择与配置。

箱式变电站中包含了各种设备,如变压器、电缆接头、断路器等。

针对不同的工程需求和环境条件,我们应选择适合的设备型号和配置方案,以提高变电站的工作效率和可靠性。

在选择设备时,可考虑设备的功率、负载容量、维护性等因素,并进行充分的技术和经济性评估。

第三是变电站的绝缘设计和绝缘材料的选择。

箱式变电站中的设备运行过程中,会产生高压电场和电磁辐射,因此对绝缘设计和绝缘材料的选择十分重要。

合理的绝缘设计可以减轻绝缘材料的负荷,提高绝缘材料的使用寿命和稳定性。

在这方面,可以考虑使用高质量的绝缘材料、设置合理的绝缘间隙和绝缘层厚度,以提高变电站的绝缘性能和安全性。

最后是箱式变电站的性能评估。

针对10KV箱式变电站的设计优化,我们需要对其性能进行评估,以确保其符合国家标准和工程要求。

性能评估可以涵盖以下几个方面:首先是变电站的电气性能评估。

电气性能评估主要包括功率因数、电压稳定性、传输效率等方面的评估。

通过对变电站的电气性能进行评估,可以了解其在实际运行中是否能够满足电力系统的需求,并进行必要的调整和优化。

其次是变电站的机械性能评估。

机械性能评估主要包括变电站的抗震性能、机械强度等方面的评估。

随着地震的频繁发生,对变电站的抗震性能要求越来越高。

10KV 箱式变电站技术标准

10KV 箱式变电站技术标准

10KV 箱式变电站技术标准无明火、易燃、易爆物品,无腐蚀性气体和粉尘,无强烈振动和冲击。

f.电力供应:交流10kV,频率50Hz。

g.地面承受能力:≥4kPa。

3.供货标准a.本产品按照国家标准、行业标准和技术条件要求设计、制造、检验、出厂。

b.本产品符合GB/T-1998《高压/低压预装式变电站》的要求。

c.本产品的技术参数符合GB/T6451-1995《三相油浸电力变压器技术参数和要求》、GB/T.1-2-1997《高压试验技术》、GB311.1-6-1997《电力变压器》、GB763-1990《交流高压电器在长期工作时的发热》、GB1984-89《交流高压断路器》、GB3804-90《3-63KV交流高压负荷开关》、GB3906-91《3-35KV交流金属封闭开关设备》、GB/T5582-93《高压电力设备外绝缘污秽等级》、GB311.2-2002《高压输变电设备的绝缘配合使用导则》等标准的要求。

d.本产品的外壳防护等级符合GB4208-93《外壳防护等级》(IP代码)和GB/T4942.2-1993《低压电器外壳防护等级》的要求。

e.本产品的声级符合GB7328-87《电力变压器和电抗器的声级测定》的要求。

f.本产品的电能表符合GB/T-2002《1和2级静止式交流有功电能表》的要求。

g.本产品的低压成套开关设备符合GB7251.1-2005《低压成套开关设备》的要求。

h.本产品的电气继电器符合GB/T-2002《电气继电器》的要求。

i.本产品的供货范围、技术参数及要求符合DL/T537-93《6-35KV箱式变电站订货技术条件》、GB/T.1-2002《低压开关设备和控制设备》等标准的要求。

4.质量保证a.本产品的质量保证期为一年。

b.本产品在正常使用条件下,如出现质量问题,制造商应在收到用户通知后,及时处理并承担相应的责任。

安装环境应干净,无爆炸、腐蚀性气体和粉尘,且无强烈震动冲击。

10kv变电所设计课程

10kv变电所设计课程

10kV变电所设计课程主要涉及以下内容:
1. 变电站基础设施的设计:包括变压器、开关柜、电容器组、低压配电柜等设备的布置和接线方式;继电保护、遥信、遥控系统等辅助设备的选型和布局;变电站的建筑设计、通风、排烟等设计。

2. 变电站电气系统的设计:包括负荷计算、导线截面和长度的选取、电缆敷设和接头设计、母线系统的设计、地网设计、电源系统的设计等。

3. 变电站安全环保的设计:包括防雷接地、防雷装置、防火和防爆措施、防盗和防破坏措施、噪声和辐射控制、油污处理等设计。

4. 变电站自动化系统的设计:包括变电站监控与控制、SCADA系统设计,智能化终端单元及其通信采集系统的设计,以及自动化控制系统的硬件和软件设计等。

5. 变电站工程项目管理:包括变电站建设项目中的进度管理、成本管理、质量管理、安全管理等,以及项目竣工验收的相关规范和标准。

在课程学习过程中,可以通过设计类似的实际案例来提高学生的设计能力。

同时,还可以进行现场参观、调研、模拟等实践操作,加深对
变电站设计原理和技术要求的理解。

希望以上内容能够帮助你更好地了解10kV变电所设计课程的相关知识。

10KV箱式变电站的设计优化与节能研究

10KV箱式变电站的设计优化与节能研究

10KV箱式变电站的设计优化与节能研究箱式变电站作为电力系统中重要的电源变换和配电设备,在电力供应和电能分配中发挥着关键的作用。

为了实现电力系统的高效运行和节能减排的目标,对10KV箱式变电站的设计进行优化和研究是必要的。

一、设计优化方面1. 结构设计优化在箱式变电站的结构设计中,应注重提高结构的强度和稳定性,同时降低重量和材料消耗。

采用先进的材料和结构设计方法,可以有效提高箱式变电站的抗震能力和耐用性,减少工程的维护成本。

2. 空间布局优化在箱式变电站的空间布局中,应根据设备和设施的功能和相互关系,合理规划各个部分的位置和连接方式,以减少能源传输过程中的能量损失和干扰。

优化布局可以提高电能的转换效率和传输质量,提高箱式变电站的工作效率和可靠性。

3. 散热设计优化箱式变电站在运行过程中会产生大量热量,因此要注重散热设计的优化。

通过合理的散热设计和选用高效的散热设备,可以有效降低设备的温度和损耗,提高箱式变电站的热效率和整体能源利用效率。

二、节能研究方面1. 能源管理系统在箱式变电站的建设和运行过程中,应建立和完善能源管理系统。

通过对电能使用情况的监测和数据分析,可以有效识别和预测能源使用的高峰和低谷,以优化能源供应计划,减少能源浪费和成本。

2. 高效节能设备在箱式变电站的选型和购置过程中,应优先选择高效的节能设备和器材。

例如,采用节能变压器、节能开关设备和高效散热设备等,可以有效降低能源损耗和功率损失,提高箱式变电站的能源利用效率。

3. 能效审计与优化定期进行箱式变电站的能效审计,对设备和设施的能源消耗进行评估和分析,找出能源消耗的瓶颈和问题,并提出相应的优化措施。

通过能效审计与优化,可以不断改进箱式变电站的能源利用效率,实现节能减排的目标。

综上所述,10KV箱式变电站的设计优化与节能研究是实现电力系统高效运行和节能减排的关键环节。

通过结构设计优化、空间布局优化和散热设计优化,可以提高箱式变电站的抗震能力、工作效率和能源利用效率。

10kV箱式电站通用设计(配电工程 箱变)

10kV箱式电站通用设计(配电工程 箱变)

第三篇10kV室内配电站通用设计第1章10kV箱式电站通用设计总体说明1.1技术原则概述1.1.1设计对象10kV箱式电站典型设计的对象为重庆市电力公司系统内,布置在户外的10kV箱式电站。

10kV箱式电站指由10kV开关设备、电力变压器、低压开关设备、电能计量设备、无功补偿设备、辅助设备和联结件等元件组成的成套配电设备,这些元件在工厂内被预先组装在一个或几个箱壳内,用来从10kV系统向0.4kV系统输送电能。

1.1.2运行管理模式10kV箱式电站典型设计按无人值班设计。

1.1.3设计范围10kV箱式电站典型设计的设计范围是10kV箱式电站以内的电气及土建部分,与之有关的防火、通风、防洪、防潮、防尘、防毒、防小动物和降噪等措施。

本次设计不涉及继电保护专业、系统通信专业、系统远动专业的具体内容,在实际工程中,需要根据配电站系统情况具体设计。

本设计只预留配网自动化设备安装位置,选择可实现电动操作的电气设备,配置基本的信息取样设备和接口。

配网自动化远景实施方案,应结合箱式变电站的电气二次、远动、调度等专业,根据区域规划和技术政策综合确定。

1.1.4设计深度10kV箱式电站设计的设计深度是施工图深度。

1.1.5假定条件海拔高度:≤1000m;环境温度:-30~+40℃;最高月平均温度:35℃;日照强度(风速30m/s):0.1W/cm2;覆冰厚度:10mm抗震设防烈度:按7度设计,地震加速度为0.1g,地震特征周期为0.35s污秽等级:III级地基承载力:fk=150kPa,无地下水影响;洪涝水位:站址标高高于50年一遇的洪水水位和历史最高内涝水位,不考虑防洪措施腐蚀:地基土及地下水对钢材、混凝土无腐蚀作用;设计土壤电阻率:不大于100Ω。

1.2技术条件1.2.1分类原则10kV箱式电站按照结构形式分为组合变电站(简称美式箱变)和预装式变电站(简称欧式变电站)两类。

美式箱变按照油箱结构一般可分为共箱式和分箱式两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10KV箱式变电站设计
随着人们生活质量在不断提高,对于用电的需求在不断加大,为适应当前城网改造的需要,结合设计与生产施工经验,本文提出一系列10kV箱式变电站设计应该注意的几个方面,从结构、基础、内部设计等诸多方面分别进行分析。

标签:10KV;箱变;设计
引言
随着市场经济的发展,国家在城乡电网建设和改造中,要求高压直接进人负荷中心,形成高压受电一变压器降压一低压配电的供电格局,所以供配电要向节地、节电、紧凑型、小型化、低损耗、低噪音、安全、无污染、无人值守的方向发展。

箱式变电站亦称组合式变电站,简称箱变是一种能深人负荷中心作为受电和配电的新型成套设备,是由高压开关设备、变压器、低压开关设备和功率补偿装置等组成在一个或几个箱体内构成紧凑型的变配电成套装置,在城乡电网中得到广泛应用。

1、10kV箱式变电站的基本结构
1)基本结构10kV箱式变电站通常分为高压部分、低压部分与变压器,分布方式一般选择品字型分布或目字型分布。

2)设计要求在对10kV箱式变电站进行设计时,除了参考标准的电力工程设计规范以外,还需要注意变电站承载上限、接地网络的设置、变电站设备的安全防护措施、变电站防水措施、检修孔设置、电源线路的铺设等。

2、10KV箱式变电站设计浅议
2.1 10KV高压室
1)进线和计量室设备的进口刀闸电压10KV,容量在400KV A及以下的变压器可选用额定电流为200A的刀闸;容量在500~630KV A及以上至2000KV A的变压器,可选用额定电流为400A的进线刀闸。

进线电源的避雷器和带电显示装置均可安装在刀闸和计量设备之前的同电位位置上。

2)计量设备电压互感器电压10/0.1KV,标准等级为0.2;电流互感器电压10KV变比为变压器额定电流的85%~95%的电流且选较靠近的标准变比,标准等级为0.2S。

CT和PT以及二次线部分,必须装在计量室内,由供电部门掌握钥匙,室内设备排列按电源前、负荷后的顺序,CT在前,PT在后。

3)受总室①高压开关选VS1型,安装一般为固定式;②保护与测量使用CT采用两相式,准确等级为0.5级,保护10P级,变比按变压器额定电流选择或稍高些。

③保护方式一般采用反时限继电保护两相式,交流故障电流可以用来做操作电源。

此外,考虑到安装上的方便,受总室还要考虑开关与出线联结的反排位置,故其宽度应在350mm~400mm。

4)高压出线室①高压只有单独一路变压器时,可由高压受总室直接进入变压器,容量小于
630KV A时可使用负荷开关。

②若高压有多路分支,则必须设定相应的受总开关和继电保护。

各分支路应考虑采用负荷开关,带电显示和变压器保护的避雷器与地刀设在开关下侧的等电位点上。

5)变压器室高压部分从进线到变压器高压套管的高压母线,过去一般分两段,开关之前采用铜排,开关之后采用10KV绝缘铜线或10KV绝缘铝绞线;随着现代对电力系统日益规范的要求下,这段高压母线已经逐步被铜排或高载流量的优质电缆所替代。

在这里,为了电力系统的安全和稳定,母线绝缘支撑点距离最好应不大于1米,母线进入变压器室至变压器套管间应考虑绝缘支撑点,低压母线进入低压计量室或受总室前,应考虑绝缘支撑点。

2.2低压部分的设计
1)低压计量室的设计将低压套管的母线引入低压计量室,在计量室内以电度表的电压为参考安装CT设备,保证电度表的正常运行。

2)低压出线的设计①低压出线的测量通常使用三相电流测量方法或者单相电流测量法。

②低压出线室的宽度一般为1m左右,每个出线室可以安装最多两台大容量设备或者三台小容量设备。

出线室的深度通常都是0.6m,如果开关电流较大,超过了3200A,那么出线室的深度可适当加深,大约为0.8-1.0m。

出线室正面内侧为母线室,外侧为仪表室。

③无功补偿设计箱式变电站的无功补偿通常是按照变压器最大容量的30%进行补偿。

由于电容器是按三相电流模式制作的,所以每个电容器的容量应小于变压器最大容量的十分之一。

无功补偿控制方式通常使用手动/自动控制方式。

2.3变压器室
1)变压器选择箱变内的变压器一般选用配电变压器。

配电变压器的长期工作负载率不宜大于85%;设置在民用建筑中的变压器,应选用干式或非可燃液体绝缘变压器;预装式变电站变压器,单台容量不宜大于800kV A;箱变内尽量选用D,yn11接线组别的三相配电变压器。

油浸式变压器有硅钢片叠铁芯:S11-M、S13-M,有硅钢片卷铁芯:S11-R、S13-R,有非晶合金:SH15-M。

800kV A及以上油浸变压器都装设气体继电器,它可以反映油箱内的一切故障,包括:油箱内三相短路、绕组匝间短路、绕组与铁心或与外壳短路、铁心故障、油面下降或漏油等。

干式变压器有硅钢片环氧树脂浇注:SCB10、SCB11、SCB13,有非晶合金环氧树脂浇注:SCBH15。

选择变压器时,除满足国家标准和规范要求,还应综合考虑节能和价格因素,达到最佳经济效果。

2)变压器接线方式选择配电变压器的连接组别主要有两种D,yn11、Y,yn0。

常用的是D,yn11,它不仅有很好的防雷效果,还有效解决了中性点漂移问题,最主要的是能抑制3次谐波。

谐波对电网以及配电设备有很大的破坏性,其中3次谐波特别明显、突出,它会对电子、通讯一类的弱电元器件以及弱电线路形成干扰,也会降低配电变压器的工作效率,降低变压器和配电设备的使用寿命,甚至降低供电系统的运行效率和质量。

因原边绕组为“D”形连接,励磁电流中的3次谐波分量,可在原边绕组三相线圈中产生环流。

每一相绕组中的励磁电流相互叠加后,呈现尖顶波形,铁芯中的磁通因铁芯饱和呈现正弦波形,感应相电势在原边、副边绕组中保持正弦波形,3次谐波分量被大量消除,有效抑制了3次谐波。

D,yn11接线方式在抑制谐波
方面比Y,yn0接线具有很大优势。

4、箱式变电站的应用前景
目前许多用户及供电部门对箱式变电站表示了极大的兴趣,特别是农网改造工程、城市低变落地启动后,箱式变电站的科研开发、制造技术及规模等都进人了高速发展,被广泛应用于城区、农村一中小型变配电站、厂矿及流动作业用变电站的建设与改造,它替代了原有的土建配电房,配电站,成为新型的成套变配电装置。

在市区,箱式变电站可装在人行道旁、绿化区、道路交叉口、生活小区、生产厂地、高层建筑等人群密集地,因其易于深人负荷中心,减少供电半径,提高末端电压质量,特别适用于电网改造,被誉为“世纪变电站建设的目标模式”。

结语
箱变高压侧设备采用负荷开关+熔断器组合,能够满足大多数用户使用要求,箱变实现配网自动化、智能化是今后的发展方向。

箱变内宜选用Dyn11连接方式的变压器。

箱变低压侧设备宜选用改进型GGD开关柜。

设计箱变时,特别要注意用户负荷有无谐波,正确计算修正补偿容量。

正常情况下,箱变不宜超宽,超高。

参考文献
[1]胡贤德,吴环红,张弘,周浩,戈镇全,孙可,张全明,潘弘,方淦林,封东良.10kV配电变压器和箱式变电站升压改造至20kV电压等级的研究[J].电力自动化设备,2012,32(12):118-126.
[2]王燦,罗隆福,陈跃辉,周冠东,李晓芳.一种具有滤波功能的磁集成式10kV箱式变电站[J].电工技术学报,2016,31(10):222-230.
[3]戴和毅,唐云峰,张枞生.箱式变电站10kV侧多功能防窃电控制器的设计[J].华东电力,2011,39(8):1281-1284.
[4]鞠佳.中压配电网设计相关问题的讨论工程师与制造商伙伴们的观点[J].电气应用,2011,30(9):18-21.。

相关文档
最新文档