杨佳乐 岩石力学数值实验实验报告

合集下载

岩石力学实验报告

岩石力学实验报告

岩石力学实验报告《岩石力学实验报告》摘要:本次实验旨在研究岩石的力学性质,通过实验数据的收集和分析,得出岩石的抗压强度和抗拉强度等重要参数。

实验结果表明,岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度等。

本实验为岩石力学性质的研究提供了重要的数据支持。

引言:岩石是地球表面的重要构成物质,其力学性质对于地质灾害的预测和岩土工程的设计具有重要意义。

岩石力学实验是研究岩石力学性质的重要手段之一,通过对岩石样品进行拉伸、压缩等实验,可以得出岩石的抗压强度、抗拉强度等重要参数。

本次实验旨在通过岩石力学实验,研究岩石的力学性质,为岩石工程领域提供重要的数据支持。

实验材料和方法:本次实验选取了多种不同类型的岩石样品,包括花岗岩、砂岩、页岩等。

实验方法主要包括拉伸实验和压缩实验。

拉伸实验通过拉伸试验机对岩石样品进行拉伸,得出岩石的抗拉强度。

压缩实验通过压缩试验机对岩石样品进行压缩,得出岩石的抗压强度。

实验过程中,需要注意对岩石样品的选择和制备,以及实验条件的控制。

实验结果和分析:通过实验数据的收集和分析,得出了不同类型岩石的抗压强度和抗拉强度等重要参数。

实验结果表明,不同类型的岩石具有不同的力学性质,受到岩石成分、结构、孔隙度等因素的影响。

花岗岩具有较高的抗压强度和抗拉强度,砂岩和页岩的力学性质相对较弱。

此外,实验结果还表明,岩石的力学性质受到温度、湿度等环境因素的影响,这为岩石工程的设计和施工提出了新的挑战。

结论:本次实验通过岩石力学实验,研究了岩石的力学性质,得出了岩石的抗压强度和抗拉强度等重要参数。

实验结果表明,岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度等。

这为岩石工程的设计和施工提供了重要的数据支持,也为岩石力学性质的研究提供了新的思路和方法。

希望本次实验的结果能够为岩石工程领域的发展和进步提供重要的参考。

岩石力学实验报告

岩石力学实验报告

岩石力学实验报告岩石力学实验报告引言岩石力学实验是研究岩石的物理力学性质和力学行为的重要手段。

通过实验可以探索岩石的力学特性,为工程建设和地质灾害防治提供依据。

本文将介绍一次岩石力学实验的过程和结果,以及对实验结果的分析和讨论。

实验目的本次实验的目的是研究不同岩石样本在不同加载条件下的力学特性,包括强度、变形和破裂行为。

通过实验结果,可以了解岩石在实际工程中的承载能力和稳定性,为工程设计和施工提供参考。

实验方法1. 样本准备:从现场采集不同类型的岩石样本,经过加工和处理后制备成标准试样,确保试样的尺寸和质量符合实验要求。

2. 强度试验:将试样放置在强度试验机上,施加逐渐增加的加载,记录试样的应力-应变曲线。

通过分析曲线,可以确定试样的弹性模量、屈服强度和抗拉强度等力学参数。

3. 变形试验:在加载过程中,观察试样的变形情况,包括弹性变形和塑性变形。

通过测量试样的应变和变形量,可以计算出试样的变形模量和变形能力等指标。

4. 破裂试验:在试样达到极限承载能力时,观察试样的破裂形态和破裂面的特征。

通过分析破裂面的形貌和结构,可以了解试样的破裂机制和破裂韧性。

实验结果与分析1. 强度试验结果:不同类型的岩石样本在强度试验中表现出不同的力学特性。

例如,花岗岩样本的强度较高,具有较高的抗压和抗拉强度;而砂岩样本的强度较低,容易发生破裂。

通过对不同样本的应力-应变曲线进行比较分析,可以得出不同岩石类型的强度参数,为岩石工程设计提供依据。

2. 变形试验结果:在加载过程中,不同岩石样本表现出不同的变形特性。

弹性模量较高的岩石样本具有较小的弹性变形,而塑性变形较大的岩石样本具有较低的弹性模量。

通过测量试样的应变和变形量,可以计算出岩石的变形模量和变形能力,为岩石的变形预测和变形控制提供参考。

3. 破裂试验结果:不同岩石样本的破裂形态和破裂面特征各异。

有些岩石样本呈现出韧性破裂,破裂面较为平滑;而有些岩石样本呈现出脆性破裂,破裂面较为粗糙。

岩石力学试验报告-2010

岩石力学试验报告-2010

长沙理工大学岩石力学试验报告年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字:实验一实验二实验三实验四实验五实验六实验七试验一、岩石单向抗压强度的测定一、试验的目的:测定岩石的单轴抗压强度Rc。

当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。

本次试验主要测定天然状态下试样的单轴抗压强度。

二、试样制备:1、试料可用钻孔岩心或坑槽探中采取的岩块。

在取料和试样制备过程中,不允许人为裂隙出现。

2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。

3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。

4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。

5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。

6、试样数量:每组须制备3个。

7、试样制备的精度。

(1)在试样整个高度上,直径误差不得超过0.3mm。

(2)两端面的不平行度,最大不超过0.05mm。

(3)端面应垂直于试样轴线,最大偏差不超过0.25。

三、试样描述:试验前的描述,应包括如下内容:1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。

2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。

3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。

试件压坏后,应描述其破坏方式。

若发现异常现象,应对其进行描述和解释。

四、主要仪器设备:1、钻石机、切石机、磨石机或其他制样设备。

2、测量平台、角尺、放大镜、游标卡尺。

3、压力机,应满足下列要求:(1)压力机应能连续加载且没有冲击,并具有足够的吨位,使能在总吨位的10%—90%之间进行试验。

(2)压力机的承压板,必须具有足够的刚度,其中之一须具有球形座,板面须平整光滑。

研究岩石的实验报告(3篇)

研究岩石的实验报告(3篇)

第1篇一、实验目的本次实验旨在通过岩石力学实验,研究岩石的力学性质,包括抗压强度、抗拉强度、变形性能、水理性质等,为岩土工程设计和施工提供理论依据。

二、实验原理岩石力学实验主要包括以下几种:1. 岩石单轴抗压强度试验:在岩石试件上施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力,以此确定岩石的单轴抗压强度。

2. 岩石抗拉强度试验(劈裂试验):将岩石试件沿劈裂面进行拉伸,当试件破坏时,记录破坏时的最大拉伸力,以此确定岩石的抗拉强度。

3. 岩石变形试验:通过施加轴向压力,观察岩石的变形情况,分析岩石的变形规律。

4. 岩石水理性质试验:测定岩石的吸水性、软化性、抗冻性和透水性等水理性质。

三、实验仪器与材料1. 实验仪器:岩石力学试验机、万能试验机、岩样制备设备、量筒、天平等。

2. 实验材料:岩石试件、砂、水等。

四、实验步骤1. 岩石单轴抗压强度试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。

(3)启动试验机,以一定的加载速度对试件施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力。

2. 岩石抗拉强度试验(劈裂试验):(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入万能试验机,调整试验机夹具,使试件劈裂面与试验机轴线一致。

(3)启动试验机,以一定的拉伸速度对试件施加拉伸力,当试件破坏时,记录破坏时的最大拉伸力。

3. 岩石变形试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。

(3)启动试验机,以一定的加载速度对试件施加轴向压力,记录试件的变形情况。

4. 岩石水理性质试验:(1)测定岩石的吸水性:将岩石试件放入量筒中,加入一定量的水,记录试件吸水后的质量。

(2)测定岩石的软化性:将岩石试件浸入水中,记录试件饱和后的抗压强度。

岩石试验报告范文

岩石试验报告范文

岩石试验报告范文一、实验目的1.掌握岩石力学性质测试方法;2.了解岩石的索氏模量、泊松比、抗压强度和抗拉强度等力学性质;3.学会对岩石进行力学性质测试并分析结果。

二、实验仪器和材料仪器:压力机、拉力机材料:岩石样本三、实验步骤1.取得岩石样本,并清理样本表面;2.使用压力机进行抗压强度测试,记录岩石的抗压强度;3.使用拉力机进行抗拉强度测试,记录岩石的抗拉强度;4.通过压力机和拉力机的测试数据计算出岩石的泊松比和索氏模量;5.分析实验结果,总结岩石的力学性质。

四、实验结果与数据处理1.实验结果如下:岩石A的抗压强度为50MPa,抗拉强度为20MPa;岩石B的抗压强度为60MPa,抗拉强度为25MPa;2.根据实验数据计算出以下结果:岩石A的泊松比为0.25,索氏模量为20GPa;岩石B的泊松比为0.28,索氏模量为22GPa。

五、数据分析与讨论1.根据实验结果可以看出,岩石B相比于岩石A具有更高的抗压强度和抗拉强度,说明岩石B的结构更密实,抗性更大;2.岩石的泊松比反映了岩石的柔韧性和变形能力,泊松比越小,岩石的柔韧性越好;3.索氏模量是衡量岩石的弹性模量的指标,模量越大,岩石的刚性越好。

六、结论通过本次实验,我们对岩石的力学性质进行了测试,并得出以下结论:1.岩石B的抗压强度和抗拉强度均高于岩石A;2.岩石B相比于岩石A的泊松比更大,说明岩石B的柔韧性较差;3.岩石B的索氏模量较大,表明岩石B的刚性较好。

七、实验中存在的问题及改进方案1.在实验中,可能由于样本的不完全均质性,导致测试结果的误差较大。

可以尽量选取均质性好的样本进行测试,或者进行多次实验取平均值;2.实验中的仪器精度可能会影响测试结果的准确性,可以选择更高精度的仪器进行测试。

八、实验心得通过本次实验,我对岩石的力学性质有了更深入的了解。

岩石的力学性质对于土木工程,尤其是岩土工程的设计和施工具有重要意义。

希望能进一步学习和研究岩石力学,为工程实践提供可靠的理论依据。

岩石力学实验指导书及实验报告.doc

岩石力学实验指导书及实验报告.doc

岩石力学实验指导书及实验报告班级姓名目录一、岩石比重的测定二、岩石密度的测定三、岩石含水率的测定四、岩石单轴抗压强度的测定五、岩石单轴抗拉强度的测定六、岩石凝聚力及内摩擦角的测定(抗剪强度试验)七、岩石变形参数的测定八、煤的坚固性系数的测定实验一、岩石比重的测定岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。

一、仪器设备岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。

二、试验步骤1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。

2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。

3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。

4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。

5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。

6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。

三、结果:按下式计算:s d g g g gd 12-+=式中:d ——岩石比重;g ——岩样重、克;g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1岩石密度是指单位体积岩石的重量。

有两种做法:称重法和蜡封法。

我们采用的是蜡封法。

一、主要仪器设备烘箱、干燥器、熔蜡锅、天平、线、石蜡、水中称量装置。

二、试件制备选取有代表性的边长约40~50mm 近似立方体的岩石、选3块、修平棱角、刷取表面粘着物。

岩石力学与岩体实验指导书及报告(72)

岩石力学与岩体实验指导书及报告(72)

岩石力学与岩体实验指导书及报告(内部资料)矿业工程学院实验总室2011年6月一、实验目的:测定岩石的单轴抗压强度。

二、实验方法:将圆柱体岩石试样放在压力实验机上进行单轴压缩实验,试件破坏瞬间受压面上的极限应力值为该岩石的抗压强度。

(一)实验前的准备工作1、试件制备。

描述和尺寸测量见<变形实验>。

每组试件数根据实际情况而定,但最好不少于三块。

(二)实验步骤1、试件安装将准备好的岩石试件放在压力实验机上、下加压板的中心位置,试件整个断面应与加压板严密接触,若不合要求,应予处理。

2、施加载荷保持恒定的应力速率(50~100N/cm2/s)对试件连续加载至破坏为止,记录破坏载荷数值。

描述试件的破坏情况,描述内容见<岩石抗拉强度实验>。

“施加载荷”部分,并记入记录表3-2内,发现试件初裂后仍能继续承受载荷,应记录出裂时的载荷值。

三、计算岩石的抗拉强度岩石的(单轴)抗压强度按下式计算:c p Aσ=式中:cσ-岩石抗压强度(MPa);P-试件破坏时施加的最大载荷KN;A-试件横截面积cm2。

一、实验目的:测定岩石的抗拉强度。

二、实验方法:本实验采用劈裂法测定岩石的抗拉强度。

(一)实验前的准备工作:主要是试件的制备、描述和尺寸测量。

(1)采用圆盘试件。

试件直径(D )为50毫米,厚度(T )为25毫米(T/D=0.5)。

(2)试件两端面应平等,试件轴心线与断面应垂直,二者的最大偏差均不得大于0.2毫米。

试件表面光滑平整。

试件数目据实际情况而定,但最好不少于10块。

(3)测量试件尺寸。

圆盘试件测直径和厚度。

沿厚度(T )上、中、下三个部位分别测直径,取三次测量的平均值为试件的直径。

沿预定加载方向上、中、下三个部位测定试件厚度,取三次测量的平均值为试件的厚度。

方片形试件参照圆盘形试件确定规格,测量其尺寸。

(二)试件安装将试件安装于抗拉模具上,要将试件安放在模具的中心线上,避免偏心加载。

岩石力学实验报告

岩石力学实验报告

岩石力学实验报告
本实验主要通过对不同类型的岩石样本进行压缩、拉伸等力学实验,探究其物理力学性质。

实验结果表明,不同类型岩石的力学性质存在显著差异,同时还发现了一些有趣的现象。

实验步骤:
1. 选取不同类型的岩石样本,包括花岗岩、砂岩、页岩等。

2. 对每种岩石样本进行压缩实验,记录其抗压强度和弹性模量等指标。

3. 对每种岩石样本进行拉伸实验,记录其抗拉强度和断裂伸长率等指标。

4. 分析实验数据,比较不同类型岩石的力学性质差异。

实验结果:
1. 花岗岩为一种坚硬的岩石,其抗压强度和抗拉强度都很高,但弹性模量较低。

2. 砂岩为一种较为脆弱的岩石,其抗压强度和抗拉强度均较低,但断裂伸长率较高。

3. 页岩为一种易裂的岩石,其抗压强度和抗拉强度均相对较低,但弹性模量较高。

4. 在实验过程中,还观察到了一些有趣的现象,如砂岩在进行压缩实验时,会产生粉尘状物质,同时还可以听到岩石内部的微小断裂声。

结论:
本实验通过对不同类型岩石的力学实验,发现其物理力学性质存在显著差异。

因此,在实际工程中,需要根据不同的岩石类型选择合适的处理方法,以确保工程的稳定性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩石力学数值试验实验报告
姓名:杨佳乐学号: 060801110102
班级:采矿062班指导教师:张义平
同组人:杨威程锦吴卫民
实验名称:抗剪数值模型实验
2009年11月18日
一、实验目的
1、通过对RFPA2D学习,知道RFPA2D基本使用方法;
2、了解RFPA2D模拟试验的条件和RFPA2D的基本功能。

二、实验原理
RFPA2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。

三、实验步骤如下;
RFPA数值模型
操作步骤
第一步启动 RFPA,新建模型建立存放的根目录
第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定
第三步将模型全部挖掉,单击选择Cavity,依次单击确定第四步在不选择工具的情况下直接选择,在弹出的窗口输入坐标单击确定即可。

如图所示:
第五步单击,选择 Substance,设置长条参数如图:
第六步,在不选择的情况下选择建立长条模型,输入矩形的对角的坐标如图
第七步,单击,选择 Substance,设置长条参数如图:
第八步,在不选择的情况下选择建立长条模型,输入矩形的对角的坐标如图:
第九步,在不选择的情况下选择建立长条模型,输入矩形的对角的坐标如图:模型就是上面的数值模型。

第十步,设置模型的边界条件如图:
第十一步,设置控制条件如图:
第十二步计算,单击开始计算。

多单元信息的提取
当模型计算结束以后,在菜单栏中选择 window下的 design window 然后单击右侧工具栏的,此时鼠标指针变为十字形,我们直接在模型上选择需要单元,等待几秒以后会出现下图:
岩石力学实验心得
通过老师的讲解及实际操作,在完成教学课时后有很大的收获。

岩石基本力学特性的实验研究,是岩石工程设计中的一项极为重要和基本的工作。

岩石的力学特性不仅是定量评价岩体分类的主要依据,它也是工程岩体稳定性分析和工程设计必不可少的基础参数。

在岩石力学教学中,岩石的拉、压、剪基本实验及岩石的破裂与失稳过程是一个重要的基本教学内容。

由于岩石材料的非均匀性、非连续性,以及外载荷作用下微缺陷之间相互作用的复杂性,现有的解析方法尚缺少有效的手段对此过程进行研究,理论上很难对岩石的破裂与失稳过程做准确的描述。

因此,目前有关岩石破裂与失稳过程的研究,仍然主要依赖于现场观测和实验物理实验。

现场观测对工程而言是非常必要的,但由于这种方法受到现场条件、人力、物力和人力的限制,很难在教学中得到充分利用;物理实验虽直观,但有关岩石破裂过程现象的复杂性,以及实验室观测手段、经费等条件限制,通常的岩石力学教学很难通过大量的物理实验向学生直观演示各种岩石变形、破坏的复杂现象。

因此,数值试验方法可能补充常规的实验教学,达到岩石力学辅导学习的目的。

利用计算机对岩石的变形与破裂过程进行数值试验,不仅具有通过性强、方便灵活、具有可重复性等特点,而且可以通过数值实验得到许多在常规实验室中观测不到的重要信息。

计算机拥有记忆功能的器件——存储器和强大的计算功能的器件——CPU,用它进行力学实验过程的模型可以避免加载能力不够、测量范围有限等问题。

只要CPU的计算速度和内存足够大,计算机的计算范围是巨大的。

特别适合复杂系统的描述,同时强大存储器件能够记录下计算对象每一个构成基元在任何时间内的信息,可以根据不同需要整理这些数据,并以图形、报表、和文字的形式反映出来,以满足理论分析、工程设计等需要。

因此,运用数值计算方法研究岩石的力学问题具有广泛的发展前景。

相关文档
最新文档