空间知识记忆和提取的理论模型

合集下载

记忆术科学的记忆方法研究

记忆术科学的记忆方法研究

记忆术科学的记忆方法研究一、概述记忆,作为人类心智活动的重要组成部分,承载着我们对世界的认知与理解。

记忆的复杂性和易变性使得我们往往难以有效地掌握和利用它。

对记忆的科学研究,尤其是记忆术的研究,成为了认知科学领域的重要课题。

记忆术,即提高记忆效率和准确性的技巧和方法,历史悠久,源远流长。

从古希腊罗马时期的记忆宫殿,到中世纪的修辞学记忆法,再到现代的信息处理和认知心理学理论,记忆术的研究和实践不断发展,形成了丰富的知识体系。

本文旨在探讨科学的记忆方法研究,通过深入剖析记忆的本质和过程,结合现代认知科学的研究成果,介绍一系列实用的记忆术技巧和方法。

我们希望通过这些研究,帮助读者更好地理解记忆的工作原理,提高记忆效率,从而在学习、工作和生活中更好地应用记忆。

1. 记忆术的概念和历史背景记忆术,或称记忆技巧,是一种旨在提高记忆效率和能力的方法或技术。

其历史可追溯到古希腊和罗马时期,当时的学者和演说家们使用各种技巧来帮助他们记住长篇的诗歌、历史和法律文献。

随着时间的推移,记忆术得到了进一步的发展和完善,并在文艺复兴时期达到了高峰。

许多文艺复兴时期的巨人,如达芬奇和米开朗基罗,都精通记忆术,并将其应用于他们的艺术创作和科学研究中。

记忆术的核心概念是通过使用特定的方法和技巧来帮助个体更有效地存储、回忆和使用信息。

这些方法可能包括关联记忆法、位置记忆法、音乐记忆法、图像记忆法等。

每一种方法都有其独特的优点和适用场景,而选择合适的记忆方法则取决于个人的学习风格和记忆特点。

在现代社会,随着信息量的爆炸式增长,记忆术的重要性愈发凸显。

无论是学生、职场人士还是研究人员,都需要高效、准确的记忆方法来帮助他们应对日益复杂的学习和工作任务。

对记忆术的研究和应用不仅具有历史价值,更具有现实意义。

通过深入了解记忆术的概念和历史背景,我们可以更好地理解其原理和方法,进而将其应用于实际生活中,提高我们的记忆效率和能力。

2. 记忆术在现代社会的重要性在现代社会中,记忆术的重要性愈发凸显。

人类是如何学习的

人类是如何学习的

专家与新手在认知与学习上的差 异


Hale Waihona Puke 对专业知识记忆表征、思维加工和深度 解读能力的差异 4种知识记忆与表征模型: ⑴层次网络模型: ⑵激活—扩展模型: ⑶特征比较模型: ⑷集理论模型:
专家与新手在认知与学习上的差 异

迅速灵活地提取应用相关信息能力的差 异
由于专家是的知识库是条件化的,即是 一个产生式系统。
建构主义的学习观:



(7)学习需要花费一定的时间; (8)学习是一种意义获取。因此,学习必须围绕个体 将要从事的意义建构(Construst Meaning)开始。 (9)部分的理解有利于整体意义的理解。部分必须纳 入整体关系中理解,因此学习过程集中于原始概念而 非孤立的事实。 (10)学习的目的是建构个体自己的意义,而非重复 他人的意义获得“正确”答案。 总体来看,建构主义认为,学习是学习者在原有知识 经验基础上,在一定的社会文化环境中,主动对新信 息进行加工处理,建构知识的意义(或知识表征)的 过程。

感觉与记忆的重新解读----学习入 口处的重大发现

在信息时代,信息成几何级数增长,我 们如何有选择的加工处理信息?如何提 高我们的记忆力和学习能力?
认知科学的信息加工理论


认知科学的兴起 信息论、计算机科学、现代语言学、人 工智能等科学是20世纪60年代认知心理 学和认知科学的基础。 认知科学对人的信息加工的解释:
专家学习智慧的发现

专家之所以为专家,最根本的原因在于 他在自己的专业领域里具有比别人更强 的信息加工能力和学习能力,而不在于 记忆能力的强弱。
专家学习智慧的发现

专家的知识结构与识别一记忆模式: 一位国际 象棋大师、一位A级棋手(优秀但非大师)和 一名新手,让他们同时观看一盘国际象棋中局 对弈的棋盘布局。5秒钟后,把棋盘盖上,要 求每位参加者在另一棋盘上复现棋子位置,大 师级棋手复位比A级棋子多,而A级棋手比新手 都,三者分别是 16、8和4。然而,产生这些 结果的条件是棋子的布局与有意义的国际象棋 比赛相符,当棋子布局随机打乱后,重复以上 操作,结果象棋大师、A级棋手和新手的复位 能力几乎相同。

baddeley 1992提出的工作记忆模型

baddeley 1992提出的工作记忆模型

baddeley 1992提出的工作记忆模型
巴德利(Baddeley)在1992年提出了工作记忆模型,该模型是一个对短期记忆的解释和理论模型。

该模型由三个主要组成部分组成:
1. 中央执行系统(Central Executive):中央执行系统是工作记忆的核心组成部分,负责协调和控制其他两个部分的工作。

它负责处理和管理信息的加工过程,决定将哪些信息存储在工作记忆中,以及在什么时间进行处理。

中央执行系统也可以进行注意力的控制和分配,帮助人们在多个任务之间切换和集中注意力。

2. 音频循环系统(Phonological Loop):音频循环系统负责处理和维持语言和语音信息。

它由两个子部分组成:音频短期存储(Phonological Store)负责暂时存储语音信息,例如听到的话语;语音复述(Articulatory Control Process)负责重复和保持语音信息在意识中的活动状态,以防止其被遗忘。

3. 视觉空间系统(Visuospatial Sketchpad):视觉空间系统负责处理和维持视觉和空间信息。

它帮助人们在脑海中形成和操作图像和空间信息,并在解决视觉或空间任务时提供辅助。

中央执行系统通过音频循环系统和视觉空间系统与外界交互,将外界的信息暂时存储在工作记忆中进行处理和操作。

该模型提供了对工作记忆的结构和功能的解释,并强调了不同类型信息的处理方式和特点。

短时记忆的提取方式

短时记忆的提取方式

短时记忆的提取方式短时记忆的提取指的是把短时记忆中的刺激信息回忆出来,或当该刺激再现时能够再认,你知道短时记忆提取的方式是什么吗?下面由店铺给你带来关于短时记忆的提取方式,希望对你有帮助!方式1.Sternberg的搜索模型Sternberg(1969)运用反应时法进行研究。

实验中向被试呈现在短时记忆容量以内的、不同长度的一系列刺激项目,称记忆集合(memory set),接着呈现一个检索项目,让被试报告这个检索项目是否包含在记忆集合中,以反应时作指标分析短时记忆提取的特点。

Sternberg提出同步平行扫描(parallel scanning)假说和系列扫描(serial scanning)假说。

如果平时扫描说成立,那么记忆集合的大小不会对检索时间产生什么影响;如果系列扫描说成立,则记忆集合越大,检索时间越长,即反应时是记忆集合大小的函数。

实验结果显示,反应时随识记项目的增加而增加,成一条直线,因此他认为短时记忆信息的提取是系列扫描。

接着需要讨论的问题是被试在进行系列扫描时,是从头到尾对记忆集中的全部项目都检查一遍即系列全扫描(exhaustive)?还是遇到检验项目就终止扫描即自我终止扫描(self-terminat-ing)?Sternberg的实验结果支持了系列全扫描方式,即被试在发现检验项目后仍然继续把剩余的项目和检验项目进行比较。

Sternberg解释是由于比较过程和决策过程是分不开的,比较过程进行得很快而决策过程费时长,为提高工作效率,与其比较一次作一次判断不如全部检查完毕作一次性判断更经济。

Sternberg的研究方法、研究结果及其相应的解释都引起心理学研究者的极大兴趣,引起人们更广泛的研究。

方式2.直通模型直通模型认为,信息的提取不是通过比较或搜索,而是直接通往所要提取的项目短时记忆中的位置,进行直接提取(Wickelgren,1973;Eysen-ck,1977),按照该理论模型,短时记忆中的各个项目均有一定的熟悉值或痕迹强度,同时每个人有着自己的内部判断标准。

[工作记忆的理论模型]工作记忆理论模型

[工作记忆的理论模型]工作记忆理论模型

《[工作记忆的理论模型]工作记忆理论模型》摘要:rl xv) 、语音回路( lgl l) 和视空模板(Vl k) 三子系统构成,新模型(图3)增加了新子系统即情景缓冲区( br)并且加入了工作记忆与长记忆系,97年Bl和模拟短记忆障碍实验基础上提出了工作记忆三系统概念用"工作记忆"(rkg r)替代原"短记忆"(rr r )概念工作记忆( rkg r) 是指体执行认知任, 对信息暂储存与操作能力你知道工作记忆理论模型有哪些吗?下面由编给你带关工作记忆理论模型希望对你有助!理论模型、Bl三成分工作记忆模型Bl 和提出三成分模型由央执行系统( rl xv) 、语音回路( lgl l) 和视空模板(Vl k) 三子系统构成央执行系统相当系统核其功能主要包括对工作记忆各子系统功能协调、对编码和提取策略控制、操纵系统以及从长记忆提取信息语音回路责以声音基础信息储存与控制能通默重新激活消退着语音表征而且还可以将面语言换语音代码视空模板主要责储存和加工视觉空信息可能包含视觉和空两分系统三成分模型指导日常活动假想图该模型不但释了许多实验结似乎还能释我们日常生活现象因提出便备受推崇但是不可避免也存着以下些缺陷、各子系统与长记忆分离例子是随机单词记忆任被试只能即回忆出约5 单词但如根据散容进行记忆则能够回忆出6 左右单词很显然这多出这0 多项目()长记忆、央执行系统没有存贮能力有些脑损伤患者他们智力表现良而且央执行系统也能够正常地工作他们延回忆成绩却非常差而即回忆成绩却很三成分模型设定其子系统容量有限并且央执行系统没有存贮能力所以这不能很地释这种现象3、语音回路和视空模板两不子系统分离许多研究证明即使是简单言语单元也都是言语和视觉编码结合也就是说语音回路和视空模板并不是完全分离它们信息某种水平上存着相作用理论模型二、Bl四成分工作记忆模型了弥补以上这些缺陷000 年Bl 对原模型进行了升级[]新模型(图3)增加了新子系统即情景缓冲区( br)并且加入了工作记忆与长记忆系情景缓冲区与语音回路、视空模板并列受央执行系统控制是容量有限存储区它是能用多种维代码储存信息系统语音回路、视空模板和长记忆提供了暂整合信息平台通央执行系统将不信息整合成完整连贯情景虽然不类型信息整合身由央执行系统完成但是情景缓冲区能保存其整合结并支持续整合操作新模型视空模板、情景缓冲器和语音回路这些部分表示流体智力系统;而视觉语义、长情景记忆和语言这些部分则表示晶体智力系统通新工作记忆模型我们可以看到不但流体系统可以影响晶体系统而且通学习程晶体系统也可以接地对流体系统产生影响这两者是相作用和影响根据心理学ll提出智力结构学说r般智力可以分成两种普通因素流体智力和晶体智力流体智力包含推理能力、记忆容量和信息加工速等知觉、认知能力和操作技能与遗传因素(天赋)关系较密切;晶体智力则包含了将己获得知识和技能应用到问题能力与词汇、数学技能及知识验关系密切受天环境(学习、训练、实践) 影响作用较因四成分工作记忆模型提出能更地释工作记忆和长记忆关系也给人们研究工作记忆能力和智力(流体智力和晶体智力) 关系提供了新启发其他理论模型除了Bl多成分模型学术界还流行着很多其他工作记忆理论模型理论模型三、嵌套加工模型嵌套加工模型是由l 988年他早期研究基础上提出其主要目是了结构对和工作记忆领域系列观察结进行释说明嵌套加工模型仅有储存结构这储存区就相当长记忆系统而且它还被假定对系列相关特征表征进行储存(或称特征整合)首先长储存区嵌套信息子集可以被放入突出临激活状态这种激活有限而且容易消失其次这被激活信息子集可被进步激活而进入焦这就使得这些信息更突出明显(也就是工作记忆)这焦容量(工作记忆容量)是有限次只能容纳少量信息虽然这模型与Bl模型有共处但它们还是有些质区别这些区别主要包括嵌套加工模型把工作记忆看作长记忆子系统而不是专门暂储存系统对不类型刺激(比如视觉、触觉和语言信息)短储存是共存储媒介(长记忆)进行而不是像多成分模型那样储存具体材子系统进行除了基言语复述外策略性加工也对重新激活已储存信息也起重要作用工作记忆信息保持既可通基言语复述获得也可通策略性(隐)加工已储存信息获得其他模型还有Lv等R模型、Brr 等认知交模型和g等控制模型等等这些模型从不角对工作记忆实质和结构进行了阐述概括起这些模型致可以分成两类类是欧洲传统模型其代表就是Bl 多成分模型强调把工作记忆分成多种具有独立附属系统突出通道特异性加工和储存另类是北美传统模型以程嵌套模型代表强调工作记忆整体性突出般性分配和激活重探讨工作记忆复杂认知任作用工作记忆定义作记忆是种对信息进行暂加工和贮存容量有限记忆系统许多复杂认知活动起重要作用97年Bl和模拟短记忆障碍实验基础上提出了工作记忆三系统概念用"工作记忆"(rkg r)替代原"短记忆"(rr r )概念工作记忆和短记忆有了不义和语境工作记忆(rkgr)工作记忆是种较短围记忆形式能够让脑组织处理多种想法工作记忆是从长记忆提取出存着分离记忆结构工作记忆依赖脑前额叶皮层神环路功能尤其是谷氨酸神元与多巴胺神元平衡。

认知过程中的信息处理模型

认知过程中的信息处理模型

认知过程中的信息处理模型信息处理模型是认知心理学中关于人类认知过程的理论框架,它描述了人们如何接收、存储、处理和应用信息。

在信息处理模型中,信息被认为是通过感知、记忆、思维和决策等过程进行处理。

本文将探讨认知过程中的信息处理模型,并分析其在日常生活中的应用。

信息处理模型主要包括五个阶段:感知、编码、存储、检索和应用。

首先是感知阶段,它是指我们通过感觉器官接收外界的刺激,如视觉、听觉、触觉等。

在这个阶段,人们会感知到大量的信息,然后选择对其进行关注和处理。

接下来是编码阶段,它指的是将感知到的信息转化为可处理的内部表示形式。

这个阶段主要依赖于人们的注意力和意识,我们会将感知到的信息加工和筛选,并按照一定的规则和结构进行组织和编码。

编码可以是语言、图像、符号等形式,能更好地帮助我们理解和记忆信息。

存储阶段是指将编码后的信息在记忆系统中储存和保留。

人类的记忆系统分为工作记忆和长期记忆两部分。

工作记忆是我们在短时间内存储和处理信息的能力,它有限的容量决定了我们能同时处理的信息数量。

长期记忆则是我们永久性地存储和保留信息的能力,其中包括了语义记忆和情景记忆等。

检索阶段是指我们从记忆系统中获取和提取之前存储的信息。

我们通常会根据需要和目标主动地在记忆中进行搜索和回忆。

检索可能受到编码和存储方式的影响,有时候会遇到记忆的遗忘和遗失现象。

不过,适当的提示和联想可以帮助我们更好地进行信息的检索。

最后是应用阶段,也就是将获取的信息运用到实际生活中。

这个阶段主要涉及到我们对信息的理解和运用能力。

通过思考、问题解决和决策等过程,我们将信息与已有的知识和经验进行整合和应用,从而达到解决问题、实现目标的目的。

信息处理模型在日常生活中有着广泛的应用。

例如,在学习中,我们通过感知和编码来接受和理解教材中的知识;通过存储和检索来记忆和提取学习内容。

在工作中,我们需要处理大量的信息,将其编码并存储在记忆中,以便日后使用。

在决策过程中,我们会根据之前获取的信息进行评估和权衡,最终做出选择。

认知心理学中的信息加工模型

认知心理学中的信息加工模型

认知心理学中的信息加工模型在认知心理学中,信息加工模型是一种描述人类如何处理和加工信息的重要理论框架。

该模型通过分析和解释人类认知过程中的各个环节,以及信息如何在注意、记忆和思维等认知活动中加工和传递,帮助我们更好地理解人类大脑的工作原理。

1. 感知阶段在信息加工模型中,感知阶段是信息加工的起始点。

当外界刺激通过我们的感觉器官进入大脑后,我们首先进行感知的过程。

在感知阶段,我们会通过感觉器官对外界刺激进行感知、筛选和加工,以提取出对我们来说重要的信息。

感知阶段在认知过程中起到了基础性的作用,它为后续的认知活动提供了必要的输入。

2. 注意与选择性注意在感知阶段之后,注意力的作用变得尤为重要。

注意力决定了我们对信息的选择性加工和处理。

由于我们所接收到的信息量远远超过我们能够处理的能力,我们需要利用注意力的机制来选择我们关注的对象或信息。

通过选择性注意,我们能够把大量的信息中选出对我们来说最重要、最相关的部分进行深入加工。

3. 短期记忆与工作记忆短期记忆(STM)和工作记忆(WM)是信息加工模型中的另外两个重要概念。

短期记忆是指大脑短暂保存并加工信息的能力,它的容量相对较小,维持时间也较短。

而工作记忆则是更广义上的记忆系统,它不仅包括了短期记忆的功能,还包括了对信息的操作、加工、存储和检索等复杂的过程。

工作记忆在认知过程中扮演着临时存储和处理信息的角色,它的能力与个体的认知能力密切相关。

4. 长期记忆长期记忆(LTM)是指记忆系统中持久存储的信息。

在认知过程中,经过重复和加工,在我们的长期记忆中形成了新的知识和经验。

长期记忆的容量较大,保持时间较久,它对于我们的学习、记忆、思维等认知活动起着重要的支持作用。

长期记忆可以进一步分为显性记忆和隐性记忆,显性记忆指的是我们有意识、故意回忆和使用的记忆,而隐性记忆则是我们无意识和下意识中通过学习和经验习得的记忆。

5. 信息加工的过程在信息加工模型中,信息加工的过程包括了感知、注意、记忆、思维等多个环节。

认知心理学

认知心理学

第一章绪论1. 狭义的认知心理学主要是指以信息加工理论观点为核心的心理学,又被称为信息加工心理学。

它是认知心理学中居主导地位的范式和理论取向。

2. 在这个意义上,认知心理学是以个体的心理结构和心理过程为研究对象,探讨人类认知的信息加工过程,在把人看作信息加工系统时,揭示人类认知过程中信息加工的内部心理机制,即信息的获得、存储、加工、提取和运用,其研究范围按照人的认知过程包括知觉、注意、表象、记忆、思维、言语、推理、问题解决等心理过程。

3.两种加工方式:串行加工和并行加工4.认知心理学的实质就在于它主张研究认知活动本身的结构和过程,并且把这些心理过程看作信息加工系统。

5.1967年,美国心理学家Neisser出版了《认知心理学》,标志着认知心理学的确立。

6. 减法反应时实验起初是用来确定某个心理过程所需的时间,但是反过来看,也可以从两种反应时的差数来判定某个心理过程的存在。

认知心理学正是这样来应用减法反应时实验的。

减法反应时实验的逻辑是安排两种反应时作业,其中一个作业包含另一个作业所没有的一个因素,而在其他方面均相同,从这两个作业的反应时之差来判定与之相应的加工阶段。

这种实验在原则上有一定的合理性,在实践上是可行的。

认知心理学也正是应用减法反应时实验提供的数据来推论其背后的信息加工过程的。

但是,减法反应时实验也有其弱点:使用这种方法要求实验者对实验任务引起的刺激与反应之间的一系列心理过程有精确的认识,并且要求两个相减的任务中共有的心理过程要严格匹配,这一般是很难的。

这些弱点大大限制了减法法的广泛使用。

7. 加法反应时实验认为,完成一个作业所需要的时间是一系列信息加工阶段分别需要的时间的总和,如果发现可以影响完成作业所需的时间的一些因素,那么单独地或成对地应用这些因素进行实验,就可以观察到完成作业的时间变化。

使用加法反应时实验可以证实信息加工过程是否包含一个假定的环节。

加法反应时实验的逻辑:如果两个因素的效应是相互制约的,即一个因素的效应可以改变另一个因素的效应,那么这两个因素只作用于同一个信息加工阶段;如果两个因素的效应分别是独立的,即可以相加,那么这两个因素各自作用于某一特定的加工阶段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

心理科学进展 2004,12(3):330~339Advances in Psychological Science空间知识记忆和提取的理论模型*周荣刚张侃(中国科学院心理研究所,北京 100101)摘要对物理空间知识记忆和提取规律的探讨一直是空间认知领域研究中的一个重点和热点。

对其进行深入研究,不仅有助于了解人类的空间行为,而且为相关的诸如界面设计、虚拟环境等空间认知应用领域(研究)提供支持。

该文从空间记忆的内在参照系理论、坐标系统模型、空间情境模型和位置记忆的空间类属模型4个方面对当前有关物理环境中空间知识记忆和提取的理论或模型进行了回顾并作了初步评价。

关键词空间知识记忆,内在参照系理论,坐标系统模型,空间情境模型,空间类属模型。

分类号 B842.21 引言有关空间认知 (Spatial Cognition)的研究是一个古老而又崭新的课题。

就本源的意义来讲,人类的一切活动都发生在而且只能发生在时间和空间之中。

其中空间更是具有及时性和现实性,人类在了解自己以及人和环境关系的过程中必然对空间关系产生极大的兴趣。

对人类如何获取物理环境中的空间知识以及如何使用所获得的空间信息完成相应的任务(如方位判断、导航策略和参照物等)的研究有助于人们深入了解自身关于空间知识形成的过程,这为旨在提高相应空间判断任务绩效的界面设计[1](包括地图、座舱仪表、空间定位系统和电子导航帮助等)和虚拟环境[1~4](包括完全沉浸虚拟环境、桌面虚拟环境和internet)中的信息呈现以及特殊状态(如失重和聋哑人[5])下的空间知识获取等领域的研究奠定了基础。

但是与其他领域的知觉和认知研究相比,一个良好的空间认知模式初出端倪的时间并不是很长,这反映了空间能力本质的模糊性,即便是“空间(spatial)”这一个词语也具有很大的不确定性,物理环境中空间知识记忆方面的研究也是如此。

本文仅根据当前有关空间知识记忆方面的研究报告,对研究者所构建的空间知识记忆和提取的理论或模型进行了回顾和简单评价。

2 理论模型2.1 空间记忆的内在参照系(intrinsic reference system)理论[6~9]根据McNamara等人的理论:人们是以空间参照系来建构环境的空间结构,进而形成对收稿日期:2003-10-25* 国家自然科学基金(30270465)、教育部“十五”规划课题(FBB011067)、中国科学院院长基金(JHJ02013)资助项目。

通讯作者:张侃, E-mail: zhangk@; 电话:(010)64837096第12卷第3期 空间知识记忆和提取的理论模型 -331- 物理空间进行表征的认知空间结构,获知环境中物体的空间信息,而参照系统固有于物体布局本身,即环境的空间结构主要是以其自身特性(如房间中桌椅排成的行和列)被加以表征的,这种参照系统即为内在参照系统(intrinsic reference system )。

内在参照系的方向或轴的选择是基于线索的,如学习空间结构时的视角、经验(如指导语)、物体特性(如物体间的类似程度)和环境结构(如房间墙壁的突显),其中起支配作用的是自我经验方面的线索。

从另外一个角度来说,内在参照系的选择或其方向的确定不是静态的,随着其中某些线索(如视角)的变化而改变:当观察者以第一个视角对空间布局学习时,他们以与该视角平行(匹配)的内在参照系统对空间布局进行表征,通常情况下基于第一视角所选择的内在参照系不会随着观察者的移动和视角的改变而进行更新,当观察者处于后继视角时就如同从新的方向观察一熟悉物体。

但是如果第一视角与环境中某一突出轴不匹配而后继视角与之匹配,新的内在参照系(方向)就会取代原有的内在参照系(方向),相应的就以后继内在参照系(方向)对环境布局进行表征。

可以通过具体实例或实验对空间记忆的内在参照系理论进行进一步的了解。

根据实验结果McNamara (2003)认为:如果要求被试从两个观察点对某一场景进行学习,如被试先从0度对图1所示场景进行学习,此时所依据的内在参照系统与视角、物体所在的垫子以及房间的墙壁都是平行的,当位移到135度时其视角与环境线索(物体所在的垫子与房间的墙壁)不再平行,因而基于0度视角的内在参照系不会被破坏、被试会继续以0度位置时的内在参照系统对该空间布局进行表征。

所以当想象空间中的朝向与匹配视角(0度)平行时被试相对方位判断(如“想象你站在book 上,面对wood ,请指出shoe 的方位”)的成绩最好,而想象空间中朝向与非匹配视角(135度)平行时相对方位判断(如“想象你站在clock 上,面对shoe ,请指出wood 的方位”)的成绩并不比和非匹配视角不平行的朝向时相对方位判断(如“想象你站在skillet 上,面对shoe ,请指出book 的方位”)成绩好。

相反如果第一次以135度视角对该场景进行观察而位移到0度视角时,内在参照系统就会发生变化。

Mou 和McNamara (2002)的研究中进一步明确提出了空间记忆的内在参照系统理论,在其一系列实验中被试被要求对如图2的场景进行学习:物体放在与密闭房间墙壁平行的一正方形垫子或圆柱型空间中的一块空地上。

在实验(Exp2)中,被试从315度学习该场景,要求一组被试以自我轴315度[如clock (站的物体)-jar (面对的物体)、scissors-shoe 和wood -book]、另一组被试以非我自我轴(如scissors -clock 、wood -shoe 、shoe -jar 和banana -book )0度学习该布局,结果(见图3)主要发现:在判断成绩和判断时间没有明显代偿的情况下,被要求以自我轴315度识记该场景的被试在从315度想象该空间布局(如“想象你站在图1 McNamara 等人研究中所采用的场景布局之一(被试所识记的是真实物体;McNamara, 2003)-332- 心理科学进展 2004年scissors上,面对shoe,请指出clock的位置”)时的成绩要好于从0度想象该空间(如“想象你站在scissors上,面对clock,请指出shoe的位置”)时的成绩,反之亦然,以非自我轴识记该布局的被试在从0度想象该布局时的成绩要好于从315度(也即真实观察点)想象该布局时的成绩。

这一研究有力地说明了主体的经验(如指导语)会影响主体进行空间布局识记时内在参照系的选择。

McNamara等人把主体以空间参照系来学习空间布局的过程与主体确定某物体或图形上方进行类比,结合一系列实验逐步构建了空间记忆的参照系统理论。

与McNamara等人早期的理论框架相比,内在参照系理论抛弃了空间记忆是基于自我参照和环境参照两个系统的看法,而是认为主体是以物体布局自身结构作为空间记忆的参照系统,这一系统不是固定的,其最终的确立或更新受主体经验、物体的空间或非空间特性和环境因素的影响,其中主体经验是主导因素。

2.2 空间知识获取的坐标系统模型(coordinate-system model of retrieval)[10~13]Sholl等人通过一系列研究提出了空间知识获取的坐标系统模型,该模型假设人是以两个子系统,即自我参照系统(Self-reference system)和物体内在系统/认知矢量空间(Object- to-object system/Cognitive vector space),对可行走环境内空间知识(navigating an environment on foot)进行表征和提取。

人们必须借助于参照系才能对空间位置和方向进行说明,研究表明人们对周围空间知识的组织是以身体为中心的即自我参照系统。

坐标模型的中心假设是以身体解剖轴(anatomical axes,如上-下轴、前-后轴和左右轴)组成坐标表征系统,而坐标系统对数量的物体空间关系进行调整。

坐标系统如图4B:由前-后轴和左-右轴组成,图为矢量空间和坐标系统的组合,为空间距离和方向的计算提供了一些列基本矢量。

矢量空间中自我参照系统的原点与主体在物理空间中的真实或想象位置一致,其方向与主体的朝向一致(前-后轴的前点)。

第12卷第3期空间知识记忆和提取的理论模型 -333-而且从计算角度而言,负责编码物体——物体空间关系的矢量可以从参照轴中加以推测,至于矢量角如何编码物体间的相对方向该模型没有说明。

在这个模型中,物体—物体的空间关系存储于环境中心表征中,即朝向自由矢量空间(orientation-free vector space)。

朝向自由表征即在该表征系统中任何朝向的可利用性都是等同的,跟主体的朝向没有关系,其构成基础是若干朝向特定表征(orientation specific representations):功能上源于若干朝向特定表征的聚集性活动(collective activity)或结构上作为建构于若干低层级朝向特定表征(multiple lower-level orientation-specific representations)之上的单一高层级朝向自由表征(single higher-level orientation-free representations)。

坐标系统模型所假设的是物体—物体空间关系的单一高层级朝向自由表征,其作用形式类似于一认知矢量空间,如图4A所示:圆圈节点表示的是表征于数量网络中的物体、连接节点的矢量编码的是物体间的距离和角度。

矢量空间不包括整体参照系,因而不足以说明矢量角,因为至少需要3个物体才能创造一个空间角度。

在认知矢量空间中,矢量强度(随物体如路标被使用频次的变化而变化,使用频次高也即强矢量比使用频次低也即弱矢量更容易被激活)、物体间的距离(长距离矢量被激活所用的时间比短距离矢量被激活所用的时间要短)和物体间矢量的直接程度(图4A中节点4和节点5的连接是通过3建立起来的,因此矢量4-5可利用性程度要比矢量3-4程度低)都会影响主体对物体间相对关系的判断。

A B C图4 坐标系统模型图注:A表示的认知矢量空间,B表示的是自我参照系统,C表示的是认知矢量空间和自我参照系的结合(译自Sholl, 2000)目标矢量一旦被激活,主体便以欧式坐标(Euclidean coordinate)在自我参照系中对物体加以表征。

图4C说明了当主体想象身处节点3的位置时自我参照系统和认知矢量空间(物体内在参照系统)的结合。

如果与该模型预测的一样——认知矢量系统和自我参照系统在功能上是分离的,那么这两个系统中空间关系的易达性应是相互独立的。

比如影响自我参照系中某物体相对方向易达性的因素对认知矢量空间该方向的获取没有影响,反之亦然。

众多研究表明基于真实环境和想象环境的想象空间物体定位任务中存在方位效应,最为突出的是前-后效应,即主体定位前方物体的时间比定位后方物体的时间短,且在物体—物体的空间关系(object-to-object spatial relations)的情境下,这种效应依然存在,所以其表征或提取是在自我参照系中完成的。

相关文档
最新文档