(课件4)11.4一元一次不等式
合集下载
一元一次不等式组(共59张)PPT课件

(3x+4)-4(x-1)<3, (3x+4)-4(x-1)≥1.
解这个不等式组,得 5<x≤7. 因为 x 为整数,所以 x=6,7. 当 x=6 时,3x+4=22; 当 x=7 时,3x+4=25.
答:小朋友为6名时,有玩具22件;小朋友为7名时,有 玩具25件.
考点聚焦
包考探究
包考集训
第四单元┃ 一元一次不等式(组)
含有相同未知数的若干个一元一次不等式所 组成的不等式组叫做一元一次不等式组
解不等式组一般先分别求出不等式组中各个 不等式的解集并表示在数轴上,再求出它们 的公共部分就得到不等式组的解集
考点聚焦
包考探究
包考集训
第四单元┃ 一元一次不等式(组)
6x+15>2(4x+3), 例 3 解不等式组:2x3-1≥12x-23. [解析] 分别求出每个不等式的解集,再求它们的公共解集.
包考集训
第四单元┃ 一元一次不等式(组)
二、填空题
14.[2013·钦州] 不等式组xx-+2 41≤>21,的解集是_3_<__x_≤__5_. 15.若关于 x 的不等式 3m-2x<5 的解集是 x>2,则 m 的值为
____3____.
16.[2013·包头] 不等式13(x-m)>3-m 的解集为 x>1,则 m 的值为___4_____.
不等式两边乘(或除以)同一个正数,不等号的方 向___不__变___
不等式两边乘(或除以)同一个负数,不等号的方 向___改__变_____
第四单元┃ 一元一次不等式(组)
类型一 不等式的变形
例 1 已知 a,b,c 均为实数,若 a>b,c≠0,下列结论不一定
正确的是( D )
解这个不等式组,得 5<x≤7. 因为 x 为整数,所以 x=6,7. 当 x=6 时,3x+4=22; 当 x=7 时,3x+4=25.
答:小朋友为6名时,有玩具22件;小朋友为7名时,有 玩具25件.
考点聚焦
包考探究
包考集训
第四单元┃ 一元一次不等式(组)
含有相同未知数的若干个一元一次不等式所 组成的不等式组叫做一元一次不等式组
解不等式组一般先分别求出不等式组中各个 不等式的解集并表示在数轴上,再求出它们 的公共部分就得到不等式组的解集
考点聚焦
包考探究
包考集训
第四单元┃ 一元一次不等式(组)
6x+15>2(4x+3), 例 3 解不等式组:2x3-1≥12x-23. [解析] 分别求出每个不等式的解集,再求它们的公共解集.
包考集训
第四单元┃ 一元一次不等式(组)
二、填空题
14.[2013·钦州] 不等式组xx-+2 41≤>21,的解集是_3_<__x_≤__5_. 15.若关于 x 的不等式 3m-2x<5 的解集是 x>2,则 m 的值为
____3____.
16.[2013·包头] 不等式13(x-m)>3-m 的解集为 x>1,则 m 的值为___4_____.
不等式两边乘(或除以)同一个正数,不等号的方 向___不__变___
不等式两边乘(或除以)同一个负数,不等号的方 向___改__变_____
第四单元┃ 一元一次不等式(组)
类型一 不等式的变形
例 1 已知 a,b,c 均为实数,若 a>b,c≠0,下列结论不一定
正确的是( D )
人教版七年级数学下册《一元一次不等式》PPT优质教学课件

(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
一元一次不等式组ppt课件

多个。
观察与思考 下列各式中,哪些是一元一次不等式组?
2x 2 x 1,
2x 2 3x 8,
(1) x 2 3.
(2)
x2
5
7
x
1.
(4)
5x 8 3, 9 2 y.
8x 3 x, (5) 3 2.
3x 2 5,
(3)
1 x
7
3.
x 1 3, (6) 8 x 4,
30x 1200 ①
30x 1500 ②
x = 8, 这个方程组的解是 y =4.
(二元一次方程组的解是两个方程的公共解。)
分析
探究二——同桌讨论,探索一元一次不等式组的解集
① ②
0
10
20
30
40
50
0
10
20
30
40
50
探究二——一元一次不等式组的解集
① ②
0
10
20
30
40
50
0
10
20
每个不等式必须为 一元一次不等式
3x 2 5,
(3)
1 x
7
3.
未知数次数不为 一次,是分式。
x 1 3, (6) 8 x 4,
7 2x 1.
不等式的个数可以
是两个或多个
探究二——一元一次不等式组的解集
思考一 如何解此不等式组呢?
x + y = 12 ,① 方程组
2 x + y = 20. ②
• 写出不等式组的解集
跟我学一学
例: 解下列不等式组:
2x 3 x 11 ①
⑵
2
x 3
5
1
2
x
②
2. 解下列不等式组:
观察与思考 下列各式中,哪些是一元一次不等式组?
2x 2 x 1,
2x 2 3x 8,
(1) x 2 3.
(2)
x2
5
7
x
1.
(4)
5x 8 3, 9 2 y.
8x 3 x, (5) 3 2.
3x 2 5,
(3)
1 x
7
3.
x 1 3, (6) 8 x 4,
30x 1200 ①
30x 1500 ②
x = 8, 这个方程组的解是 y =4.
(二元一次方程组的解是两个方程的公共解。)
分析
探究二——同桌讨论,探索一元一次不等式组的解集
① ②
0
10
20
30
40
50
0
10
20
30
40
50
探究二——一元一次不等式组的解集
① ②
0
10
20
30
40
50
0
10
20
每个不等式必须为 一元一次不等式
3x 2 5,
(3)
1 x
7
3.
未知数次数不为 一次,是分式。
x 1 3, (6) 8 x 4,
7 2x 1.
不等式的个数可以
是两个或多个
探究二——一元一次不等式组的解集
思考一 如何解此不等式组呢?
x + y = 12 ,① 方程组
2 x + y = 20. ②
• 写出不等式组的解集
跟我学一学
例: 解下列不等式组:
2x 3 x 11 ①
⑵
2
x 3
5
1
2
x
②
2. 解下列不等式组:
一元一次不等式(公开课优秀课件)

图像法解一元一次不等式需要注意函数图像的走向和性质,以及临界点与不等式解 集的关系。
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
一元一次不等式课件(共21张PPT)

随堂演练
基础巩固
1. 若代数式 2x 3 的值是非负数,则x的
7
取值范围是( B )
3
A.x≥ 2
C.x>
3 2
B.x≥ 3
2
D.x> 3
2
2.如图所示,图中阴影部分表示x的取值范 围,则下列表示中正确的是( B )
A.-3>x>2 C.-3≤x≤2
B.-3<x≤2 D.-3<x<2
3.当x或y满足什么条件时,下列关系成立?
系数化为1得:x≥8.
08
(2) 2 x ≥ 2x 1
2
3
解:去分母得:3(2+x)≥2(2x-1);
去括号得:6+3x≥4x-2; 移项得:3x-4x ≥ -2-6; 合并同类项得:-x ≥ -8;
将解集用数轴表 示,则如下图:
系数化为1得:x≤8.
0
8
小 结 解一元一次不等式的一般步骤
01
(3)未知数的次数都是1.
含有一个未知数,未知数次数是1的 不等式,叫做一元一次不等式.
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3; (2) 2 x ≥ 2x 1
2
3
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3;
解:去括号得:2+2x<3; 将解集用数轴表
移项得:2x<3-2;
03
05
通过解这两个不等式,
去 分 母
你02能归纳出移解一元0一4 次 不等式的一项般步骤吗?
系数 化为
去
合并
1
括
同类
号
项
练 习 1.解下列不等式和方程(不等式
的解集要在数轴上表示出来)
《一元一次不等式》PPT优秀课件

2.为响应市政府“创建国家森林城市”的号召,某小区计划购进 A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元. (1)若购进A,B两种树苗刚好用去1 220元,问购进A,B两种树苗 各多少棵? (2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种 费用最省的方案,并求出该方案所需费用.
5.【例2】为了更好治理洋澜湖水质,保护环境,市治污公司决 定购买10台污水处理设备,现有A,B两种型号的设备,其中每 台的价格、月处理污水量如下表:
A型
B型
价格(万元/台)
a
b
处理污水量(吨/月) 240
200
经调查,购买1台A型设备比购买1台B型设备多2万元,购买2台 A型设备比购买3台B型设备少6万元. (1)求a,b的值; (2)经预算,市治污公司购买污水处理设备的资金不超过105万 元,你认为该公司有哪几种购买方案?
精典范例
3.【例1】(人教7下P125、北师8下P63改编)甲、乙两商场以 同样价格出售同样的商品,并且又各自推出不同的优惠方案: 在甲商场累计购物超过100元后,超出100元的部分按90%收费; 在乙商场累计购物超过50元后,超出50元的部分按95%收费. 顾客到哪家商场购物花费少?
解:①当累计购物不超过50元时,在甲、乙两商场购物都不享 受优惠,且两商场以同样价格出售同样的商品,因此到两商场 购物花费一样. ②当累计购物超过50元而不超过100元时,享受乙商场的购物 优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少.
解:(1)根据甲、乙两个厂家推出各自销售的优惠方案: 甲厂家所需金额为3×800+80(x-9)=1 680+80x; 乙厂家所需金额为(3×800+80x)×0.8=1 920+64x. (2)由题意,得1 680+80x>1 920+64x,解得x>15. 答:购买的椅子至少16张时,到乙厂家购买更划算.
七下数学课件: 解一元一次不等式(课件)
即-x>-10,
再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;
利用不等式的性质解不等式
根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
5)-
x<-2
6)3x+5<0
5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,
1
得- 5x×(-5)> -2×(-5),即x>10;
>
性质三:不等式的两边乘(或除)同一个负数,不等号方向发生改变。
表示为:如果a>b,c<0,那么ac<bc (或
<
)
)
学习目标
学习目标
1、掌握不等式的性质。
2、运用不等式性质解不等式。
3、用数轴表示不等式的解集。
重点
用数轴表示不等式的解集。
难点
运用不等式的性质解不等式。
练一练
设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.
【详解】
解:解不等式3x−a≤0,得x≤3,
∵不等式的正整数解是1,2,3,
∴3≤3<4,
解得9≤a<12.
故答案为:9≤a<12.
解一元一次不等式
不等式(x-m)/3>3-m的解集为x>1,则m的值为___.
【解析】
去分母得,x﹣m>3(3﹣m),
去括号得,x﹣m>9﹣3m,
移项,合并同类项得,x>9﹣2m.
∵此不等式的解集为x>1,
∴9﹣2m=1,解得m=4.
课后回顾
课后回顾
再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;
利用不等式的性质解不等式
根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
5)-
x<-2
6)3x+5<0
5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,
1
得- 5x×(-5)> -2×(-5),即x>10;
>
性质三:不等式的两边乘(或除)同一个负数,不等号方向发生改变。
表示为:如果a>b,c<0,那么ac<bc (或
<
)
)
学习目标
学习目标
1、掌握不等式的性质。
2、运用不等式性质解不等式。
3、用数轴表示不等式的解集。
重点
用数轴表示不等式的解集。
难点
运用不等式的性质解不等式。
练一练
设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.
【详解】
解:解不等式3x−a≤0,得x≤3,
∵不等式的正整数解是1,2,3,
∴3≤3<4,
解得9≤a<12.
故答案为:9≤a<12.
解一元一次不等式
不等式(x-m)/3>3-m的解集为x>1,则m的值为___.
【解析】
去分母得,x﹣m>3(3﹣m),
去括号得,x﹣m>9﹣3m,
移项,合并同类项得,x>9﹣2m.
∵此不等式的解集为x>1,
∴9﹣2m=1,解得m=4.
课后回顾
课后回顾
一元一次不等式及其解法ppt课件
讲教授学新目课
标
一元一次不等式定义:
含有一个未知数,未知数的次数是1,左右两边
的式子是整式的不等式叫做一元一次不等式.
判别条件: (1)不等号两边都是整式; (2)只含一个未知数; (3)未知数的次数是1; (4)未知数系数不为0.
完整版ppt课件
6
例教题学讲目解
标
A
解析:(1)中未知数的最高次数是2,×;
8
1.不等式的解集(x>a,x<a,x≥a,x≤a)有何特点?
①左未右常
②未系为1
2.上节课怎样得到不等式的解集(x>a,x<a,x≥a,x≤a) ?
不等式的三条性质
3.不等式2x-3≥4x-5用不等式的性质要两次运 算才能得到2x-4x ≥3-5,这一结果与上学期解 一元一次方程什么变形产生的结果一样?
A. x≤4
B. x≥4
C. x≤-1
D. x≥-1
5.不等式3x+2<2x+3的解集在数轴上表示的是( D )
完整版ppt课件
19
巩教固学提目升
标
A
B
完整版ppt课件
20
课堂小结
一元一次不等式
1.定义:含有一个未知数,未知数的次数都是1的不等式.
2.解一元一次不等式的一般步骤: (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)未知数的系数化为1.
完整版ppt课件
12
小结
解一元一次不等式的一般步骤和根据如下:
步骤
根据
1 去分母
不等式的基本性质 3
2 去括号
单项式乘以多项式法则
3 移项
不等式的基本性质 3
4
人教版七年级数学下册 《一元一次不等式》PPT教育课件
(3)
x
1 7
2x 5 3
;
4
x
6
1
2x 4
5
1.
活动3:比较解一元次不等式与解一元一次方程的异同
第九页,共十九页。
当堂检测
完成课堂反馈(三十二)
要求:先独立思考,再小组自查纠错、讨论疑点
第十页,共十九页。
课堂小结 1.你学到了哪些知识?
2.你掌握了哪些解题方法? 3.本节课渗透了哪些数学思想方法?
课堂练习
1、仿照练习 2、强化练习
第十页。
课堂小结 请同学们归纳总结本节课学习了什么内容,需要注意什么地方?
第十六页,共十九页。
课后练习
(必做题)
第十七页,共十九页。
课后练习
(选做题)
第十八页,共十九页。
人教版数学七年级下册
谢谢观看
第十九页,共十九页。
小组合作
第六页,共十九页。
难度升级1 解下列不等式,并在数轴上表示解集。
2(1 x) 3
第七页,共十九页。
小组合作
难度升级2
解下列不等式,并在数轴上表示解集。
2
2
x
2x 1 3
第八页,共十九页。
小组合作
【变式练】
解下列不等式,并在数轴上表示解集
(1) 5x 15 4x 1;
(2) 2(x 5) 3(x 5) ;
人教版七年级数学下册 《一元一次不等式》PPT教育课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
人教版数学七年级下册
第九章 不等式与不等式组
9.2 一元一次不等式
第一页,共十九页。
复习回顾
观察下面的方程,这是什么方程?
一元一次不等式解一元一次不等式ppt课件
时,一定要改变不等号的方向。即形如ax>b(或ax<b),当a<0
时,x< b (或x> b )
2024/7/5
a
a
13
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2.4一元一次不等式
解:3-x < 2x+6 -x-2x<6-3 →移项(不等式基本性质1) -3x<3 →合并同类项
解方程的移项 变形对于解不 等式同样适用
2024/7/5
x>-1 →未知数系数化为1(不等式基本性质3)
根据不等式
-3 -2 -1 0 1 2 3 4 5 6
基本性质
11
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2.4一元一次不等式
二、探究新知
2.解一元一次不等式 类比一元一次方程的解法,解一元一次不等式 (2)解一元一次不等式与解一元一次方程有哪些相同和不同的地 方?为什么?
2024/7/5
12
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2024/7/5
-2 -1 0 1 2 3 4 5 6
15
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2.4一元一次不等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用一元一次不等式解实际问题步骤:
实际问题 结合实际 确定答案 设未知数 解不等式
找出不等关系
列不等式
巩固练习:
我班几个同学合影留念,每人交0.70元。已 知一张彩色底片0.68元,扩印一张相片0.50元, 每人分一张,在将收来的钱尽量用掉的前提下, 这张相片上的同学最少有几人? 解:设这张相片上的同学有x人,根据题意,得 0.70x≥0.68+0.50x 解得 x≥3.4 ∵X为正整数, ∴X=4 答:这张相片上的同学最少有4人。
解:设小玲答对的题数是x,则答错的题数 是9-x,根据题意,得 10x-5(9-x) ≥60
解这个不等式,得 答:她至少答对7道题 x≥7
小玲有3种答题可 能分别是7题或8题 或 9题
提问:小玲有几种答题可能?
问题2.
小பைடு நூலகம்准备用30元买钢笔和笔记本,已知一支钢笔 4.5元,一本笔记本3元,如果她钢笔和笔记本共买 了8件,每一种至少买一件,则她有多少种购买方案? 解:设他可以买x支钢笔,则笔记本为(8-x)个, 由题意,得 4.5x+3(8-x)≤30 解得 x≤4 ∵X为正整数, ∴X=4或3或2或1 答:小兰有4种购买方案, ①4支钢笔和4本笔记本, ② 3支钢笔和5本笔记,③ 2支钢笔和6本笔记, ④ 1支钢笔和7本笔记.
应用一元一次方程解实际问题步骤: 实际问题 设未知数 找相等关系 解方程 列出方程
检验解的合理性
应用一元一次不等式解实际问题步骤:
实际问题
结合实际 确定答案
设未知数
解不等式
找出不等关系
列不等式
问题1:
在一次知识竞赛中,有10道抢答题,答对一题 得10分,答错一题扣5分,不答得0分,小玲一道题 没有答,成绩仍然不低于60分,她至少答对几道 题? 分析: 答对题得的分数-答错题扣的分数≥60分