浙江省中考数学复习微专题三列方程(组)解应用题训练

合集下载

备战中考数学基础必练(浙教版)三元一次方程组及其解法(含解析)-最新学习文档

备战中考数学基础必练(浙教版)三元一次方程组及其解法(含解析)-最新学习文档

2019备战中考数学基础必练(浙教版)-三元一次方程组及其解法(含解析)一、单选题1.甲、乙、丙三人共解100道数学题,每人都只会做其中的60道题,且三人合在一起,这100道都能解答出来,将其中只有一人会做的题目叫做难题,三人都会做的题叫容易题,则难题比容易题多()A. 30道B. 25道C. 20道D. 15道2.若三元一次方程组的解使ax+2y+z=0,则a的值为()A. 1B. 0C. -2D. 43.在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A. 13B. 14C. 15D. 164.在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的()A. 倍B. 倍C. 2倍D. 3倍5.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A. 1.2元B. 1.05元C. 0.95元D. 0.9元6.若方程组的解和的值互为相反数,则的值等于()A. 0B. 1C. 2D. 37.某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加,检票速度一定,当开放一个大门时,需用半小时待检观众全部进入大厅,同时开放两个大门,只需十分钟,现在想提前开演,必须在5分钟内全部检完票,则音乐厅应同时开放的大门数是()A. 3个B. 4个C. 5个D. 6个8.由方程x+t=5,y﹣2t=4组成的方程组可得x,y的关系式是()A. x+y=9B. 2x+y=7C. 2x+y=14D. x+y=39.三元一次方程组的解为()A. B. C.D.二、填空题10.三元一次方程组的解是________.11.已知方程组的解满足方程x+2y=k ,则k=________.12.已知:a:b:c=3:5:7且2a+3b﹣c=28,那么3a﹣2b+c的值是________ .13.方程组解中的x与y的值相等,则k=________14.如果方程组的解与方程组的解相同,则a+b=________ .15.一个三位数,十位、百位上的数的和等于个位上的数,百位上的数的6倍等于个位、十位上的数的和,且个位、十位、百位上的数的和是14,则这个三位数是________.16.若,则x+y+z=________ .17.三元一次方程组的解是________18.已知3x+4y﹣5z=3,4x+5y﹣4z=5,则x+y+z的值为________.19.某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2千克A水果,4千克B水果;乙种搭配是:3千克A水果,8千克B水果,1千克C水果;丙种搭配是:2千克A水果,6千克B水果,1千克C水果;如果A水果每千克售价为2元,B水果每千克售价为1.2元,C水果每千克售价为10元,某天,商店采用三种组合搭配的方式进行销售后共得销售额441.2元,并且A水果销售额116元,那么C水果的销售额是________元.三、计算题20.21.四、解答题22.某体育彩票经销商计划从省体育彩票中心购进彩票20190张.已知体彩中心有A、B、C 三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.若经销商同时购进两种不同型号的彩票20190张,共用去45000元,请你设计出几种不同的进票方案供经销商选择,并说明理由.23.已知关于x,y的方程组的解x,y互为相反数,求a的值.五、综合题24.某工程由甲、乙两队合作需6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合作需10天完成,厂家需支付乙、丙两队共9500元;甲、丙两队合作5天完成全部工程的,此时厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要不超过15天完成全部工程,问由哪队单独完成此项工程花钱最少?请说明理由25.小明去超市买三种商品.其中丙商品单价最高.如果购买3件甲商品、2件乙商品和1件丙商品,那么需要付费20元,如果购买4件甲商品,3件乙商品和2件丙商品,那么需要付费32元.(1)如果购买三种商品各1件,那么需要付费多少元?(2)如果需要购买1件甲商品,3件乙商品和2件丙商品,那么小明至少需多少钱才能保证一定能全部买到?(结果精确到元)答案解析部分一、单选题1.【答案】C【考点】解三元一次方程组【解析】【解答】解:设只有1人解出的题目数量为x,有2人解出的题目数量为y,有3人解出的题目数量为z,那么3人共解出的题次为:x+2y+3z=60×3①,除掉重复的部分,3人共解出的题目为:x+y+z=100②,②×2﹣①得:x﹣z=20.故选C.【分析】设只有1人解出的题目数量为x,有2人解出的题目数量为y,有3人解出的题目数量为z,根据“每人都只会做其中的60道题,且三人合在一起,这100道都能解答出来”即可列出关于x、y、z的三元一次方程组,②×2﹣①即可得出结论.2.【答案】B【考点】解三元一次方程组【解析】【解答】解方程组,①+②+③得:x+y+z=1④,把①代入④得:z=﹣4,把②代入④得:y=2,把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0,解得:a=0.故选B.【分析】求出已知方程组的解得到x,y,z的值,代入方程计算即可求出a的值.3.【答案】C【考点】解三元一次方程组【解析】【解答】解:根据题意得,解方程组得,所以y=2x2﹣3x+1,当x=﹣2时,y=2×4﹣3×(﹣2)+1=15.故选C.【分析】根据题意得到三元一次方程组得,再解方程组得,则y=2x2﹣3x+1,然后把x=﹣2代入计算.4.【答案】B【考点】解三元一次方程组【解析】【解答】解:设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,由题意得,解得x=2z,y=z,故==.故选B.【分析】设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,先用含z的代数式表示x,y,即解关于x,y的方程组,再求即可.5.【答案】B【考点】解三元一次方程组【解析】解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).故选:B.【分析】设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,建立三元一次方程组,两个方程相减,即可求得x+y+z的值.6.【答案】C【考点】解三元一次方程组【解析】【解答】解:将代入方程组中得,解得.故C 符合题意.故答案为:C.【分析】由x 和y 的值互为相反数可得y=-x,把y=-x代入方程组得到关于x、k的方程组,解此方程组求出解.7.【答案】B【考点】解三元一次方程组【解析】【解答】解:设现在有观众a人,每分钟增加b人,一个大门每分钟检票c人,若要求5分钟内全部检完,则需要x个大门.根据题意,得,解,得.则有5cx≥a+5b,x≥3.5.故选B.【分析】设现在有观众a人,每分钟增加b人,一个大门每分钟检票c人,若要求5分钟内全部检完,则需要x个大门.根据开放一个大门时,需用半小时待检观众全部进入大厅,同时开放两个大门,只需十分钟,可以列两个方程,从中用a表示b、c,再进一步求解.8.【答案】C【考点】解三元一次方程组【解析】【解答】x+t=5①,y﹣2t﹦4②,①×2+②得,2x+y﹦14.故选C.【分析】想得到x,y之间的关系,需消去t.让第一个方程乘2后与第一个方程相加即可消去t.9.【答案】D【考点】解三元一次方程组【解析】【解答】解:,②×3+③得11x+10z=35④,①×5﹣④×2得﹣7x=﹣35,解得x=5,x=5代入①得,解得z=﹣2,x=5,z=﹣2代入②得,y=,方程组的解为.故选C.【分析】②×3+③得11x+10z=35④,①×5﹣④×2得﹣7x=﹣35,解得x=5,将x=5代入①求出z;x=5,z=﹣2代入②得到y.二、填空题10.【答案】【考点】解三元一次方程组【解析】【解答】解:方程组,由(1)+(3),得:4x+2z=10,(4)由(1)×3+(2),得:11x+2z=24,(5)由(5)﹣(4),解得:x=2.将其代入(5),解得:z=1,把x=2,z=1代入(1),解得:y=3.所以原方程组的解为:故答案是:【分析】可用减法化去y,达到消元的目的,然后解关于x、z的方程组.11.【答案】-3【考点】解三元一次方程组【解析】【解答】解方程组,得,代入方程x+2y=k ,得k=-3.故本题答案为:-3【分析】解出已知方程组中x ,y的值代入方程x+2y=k即可.12.【答案】12【考点】解三元一次方程组【解析】【解答】设a=3k,b=5k,c=7k,∵2a+3b﹣c=28,∴6k+15k﹣7k=28,∴k=2,∴a=6,b=10,c=14,把a、b、c的值代入3a﹣2b+c=3×6﹣2×10+14=18﹣20+14=12,故答案为:12.【分析】设a=3k,b=5k,c=7k,然后代入2a+3b﹣c=28求出k的值,从而得出a、b、c的值,然后再把它们的值代入3a﹣2b+c即可.13.【答案】11【考点】解三元一次方程组【解析】【解答】由题意可知:x=y,联立方程组可得:x=y=,(2k﹣1)×=3,解得:k=11.故答案为:11.【分析】先根据题意解出x和y的值,再将x和y的值代入第三个方程便可求得k的值.14.【答案】1【考点】解三元一次方程组【解析】【解答】解:依题意,知是方程组的解,①+②,得7a+7b=7,方程两边都除以7,得a+b=1.【分析】两个方程组的解相同,意思是这两个方程组中的x都等于4,y都等于3,即是方程组的解,根据方程组的解的定义,即可求出a+b的值.15.【答案】257【考点】解三元一次方程组【解析】【解答】设个位、十位、百位上的数字分别为x、y、z,根据题意可列方程组:解得所以这个两位数是257.故答案为:257.16.【答案】17【考点】解三元一次方程组【解析】【解答】解:(1)+(2)+(3)得:x+y﹣z+y+z﹣x+z+x﹣y=11+5+1即x+y+z=17,故答案为:17【分析】方程组中的三个方程相加,即可得出答案.17.【答案】【考点】解三元一次方程组【解析】【解答】解方程组:,②+③得:x+y=5 ④,①+④得:2x=6,即:x=3,将x=3代入①得:y=2,将y=2代入②得:z=1,则方程组的解为.故答案为:.【分析】方程组利用加减消元法求出解即可.18.【答案】2【考点】解三元一次方程组【解析】【解答】x+y+z=(4x+5y﹣4z)-(3x+4y﹣5z)=5-3=2,故答案为:2【分析】观察已知方程3x+4y﹣5z=3,4x+5y﹣4z=5,相同未知数系数的特点,将两方程相减,即可求出x+y+z的值。

浙江省各市中考数学分类解析 专题3 方程(组)和不等式(组)

浙江省各市中考数学分类解析 专题3 方程(组)和不等式(组)

专题3:方程(组)和不等式(组)一、选择题1.(2012浙江杭州3分)已知关于x,y的方程组x y=4ax y=3a-⎧⎨-⎩+3,其中﹣3≤a≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是【】A.①②B.②③C.②③④D.①③④【答案】C。

【考点】二元一次方程组的解,解一元一次不等式组。

【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断:解方程组x y=4ax y=3a-⎧⎨-⎩+3,得x=12ay=1a+⎧⎨-⎩。

∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4。

①x=5y=1⎧⎨-⎩不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,y=1﹣a≥1,已知0≤y≤4,故当x≤1时,1≤y≤4,结论正确。

,故选C。

2. (2012浙江丽水、金华3分)把分式方程21=x+4x转化为一元一次方程时,方程两边需同乘以【】A.x B.2x C.x+4 D.x(x+4)【答案】D。

【考点】解分式方程。

【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程。

故选D。

3. (2012浙江台州4分)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是【】A. B. C. D.【答案】A。

【考点】方程的应用(行程问题)。

【分析】方程的应用解题关键是找出等量关系,列出方程求解。

浙江省2021年中考数学真题分项汇编-专题03 实数计算及解方程(含答案解析)

浙江省2021年中考数学真题分项汇编-专题03  实数计算及解方程(含答案解析)

专题03实数计算及解方程一、方程1.(2021·浙江温州市)解方程()221x x -+=,以下去括号正确的是( )A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=【答案】D【分析】去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.【详解】解:()221x x -+= 42x x --=,故选:D .【点睛】此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;①括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号. 2.(2021·浙江丽水市)用配方法解方程2410x x ++=时,配方结果正确的是( )A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x += 【答案】D【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.【详解】解:2410x x ++=,241x x ∴+=-,24414x x ∴++=-+,2(2)3x ∴+=,故选:D .【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方.3.(2021·浙江台州市)关于x 的方程x 2-4x +m =0有两个不相等的实数根,则m 的取值范围是( )A .m >2B .m <2C .m >4D .m <4【答案】D【分析】 根据方程x 2-4x +m =0有两个不相等的实数根,可得()24410m ∆=--⨯⨯>,进而即可求解.【详解】解:①关于x 的方程x 2-4x +m =0有两个不相等的实数根,①()24410m ∆=--⨯⨯>,解得:m <4,故选D .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则判别式大于零,是解题的关键.4.(2021·浙江嘉兴市)已知二元一次方程314+=x y ,请写出该方程的一组整数解__________________.【答案】24x y =⎧⎨=⎩(答案不唯一) 【分析】根据题意确定出方程的整数解即可.【详解】解:方程314+=x y 的一组整数解为24x y =⎧⎨=⎩故答案为:24x y =⎧⎨=⎩(答案不唯一) 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2021·浙江金华市)已知2x y m =⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________. 【答案】2【分析】把解代入方程,得6+2m =10,转化为关于m 的一元一次方程,求解即可.【详解】①2x y m=⎧⎨=⎩是方程3210x y +=的一个解, ①6+2m =10,故答案为:2.【点睛】本题考查了二元一次方程的解,一元一次方程的解法,灵活运用方程的解的定义,转化为一元一次方程求解是解题的关键.6.(2021·浙江湖州市)解分式方程:2113x x -=+. 【答案】4x =【分析】先将分式方程化成整式方程,然后求解,最后检验即可.【详解】 解:2113x x -=+ 213x x -=+.4x =.经检验,4x =是原方程的解.【点睛】本题主要考查了分式方程的解法,将将分式方程化成整式方程是解题的关键,检验是解答本题的易错点. 7.(2021·浙江丽水市)解方程组:26x y x y =⎧⎨-=⎩. 【答案】12,6.x y =⎧⎨=⎩【分析】利用代入消元法解二元一次方程组即可.【详解】解:26x y x y =⎧⎨-=⎩①②, 把①代入①,得26y y -=,解得6y =.把6y =代入①,得12x =.①原方程组的解是126x y =⎧⎨=⎩.本题考查解二元一次方程组,熟练掌握二元一次方程组的解法是解答的关键.8.(2021·浙江省台州市)解方程组:241x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩. 【分析】观察方程组中同一未知数的系数特点:x 的系数存在倍数关系,而y 的系数互为相反数,因此将两方程相加,消去y 求出x ,再求出y 的值,可得到方程组的解.【详解】解:①+①得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为 12x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,解题关键在于利用加减消元法.二、实数计算9.(2021·01()|3|2cos 602--+︒. 【答案】2.【分析】由特殊的三角函数值得到1cos602︒=,由零指数幂公式算出01()=12,最后算出结果即可. 【详解】 解:原式13+13222=【点睛】本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.10.(2021·浙江台州市)计算:|-2|【答案】【分析】先算绝对值,化简二次根式,再算加减法,即可求解.解:原式=2+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.11.(2021·浙江金华市)计算:()202114sin 45+2-︒-. 【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.12.(2021·浙江温州市)计算:()0438⨯-+-. 【答案】-6;【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;【详解】解: ()0438⨯-+- 12831=-+-+6=-;【点睛】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.13.(2021·浙江绍兴市)计算:04sin60(2.【答案】1;【分析】根据特殊角的三角函数值、二次根式的化简、零指数幂进行计算即可;【详解】解:原式1=1=.【点睛】本题考查了解一元一次不等式和实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、零指数幂,熟练掌握运算法则是解题的关键.14.(2021·浙江嘉兴市)计算:12sin30-︒;【答案】【分析】先分别化简负整数指数幂,二次根式,特殊角三角函数,然后再计算;【详解】解:(1)12sin30-︒1122=+=【点睛】本题考查负整数指数幂,特殊角三角函数及异分母分式的加减法计算,掌握运算顺序和计算法则准确计算是解题关键.15.(2021·浙江丽水市)计算:0|2021|(3)-+-【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+-202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.。

浙江省中考数学《第9讲:方程(组)的应用》总复习讲解

浙江省中考数学《第9讲:方程(组)的应用》总复习讲解

第9讲方程(组)的应用考试内容考试要求一元一次方程的应用应用一元一次方程的关键就是找等量关系,其实质是将同一个量或等量两种方式表达出来.c二元一次方程组的应用通过分析题意抽象出数学问题,找到两个等量关系是用二元一次方程组解决问题的关键,要注意培养自己的阅读能力和处理信息的能力.一元二次方程的应用正确列出一元二次方程的前提是准确理解题意、找出等量关系,进而达到求解的目的.在此过程中往往要借助于图示法、列表法等手段帮助我们分析数量关系,并能根据具体问题的实际意义检验结果是否合理.分式方程的应用由实际问题抽象出分式方程,要正确理解题意,找出题目中的等量关系,再列出方程,求出解后,还需检验.考试内容考试要求基本思想建模思想,根据实际问题,找出数量及数量关系,建立方程组的模型,求解后要根据问题的实际意义检验结果的合理性.c基本方法1.列方程(组)解应用题的关键是把已知量和未知量联系起来,找出题目中的等量关系,一般来说,有几个未知量就要列出几个方程,所列方程必须注意:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.2.求出未知数的解后,要进行两次检验:(1)检验是否为方程的解;(2)检验是否符合客观事实.3.分析问题中的等量关系的方法一般有:图示法,列表法.1.(·杭州)某景点的参观人数逐年增加,据统计,为10.8万人次,为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.82.(·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费运途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、运途费三部分组成,其中里程费按行车的实际里程计费;时长费按行车的实际时间计算,运途费的收取方式为:行车7公里以内(含7公里)不收运途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟【问题】小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.(1)按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?(2)通过(1)解答,请你谈谈方程应用性问题,应注意哪些方面?解题的一般步骤怎样?【归纳】通过开放式问题,归纳、疏理应用题的分析方法,读懂题目的意思,根据题目给出的条件,找出数量、数量关系求解;解应用题的一般步骤.类型一一元一次方程的应用例1(1)七年级(2)班有46人报名参加文学社或书画社.已知参加文学社的人数比参加书画社的人数多10人,两社都参加的有20人,则参加书画社的有________人.(2)有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是________小时.(3)一件商品成本为x元,商店按成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则成本价x=________元.(4)自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水________吨.【解后感悟】(1)此题关键是设参加书画社的有x人,再用x表示出参加文学社的人数;(2)根据两支蜡烛的可燃烧时间结合同时点燃相同时间后粗蜡烛长度是细蜡烛长度的两倍列出关于x的一元一次方程是解题的关键;(3)对于一元一次方程的应用,找准等量关系,列出关于x的一元一次方程是解题的关键;(4)本题的关键是设出用水量,以水费作为等量关系列方程求解.1.(1)(·聊城)在如图的6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30A.27 B.51 C.69 D.72(2)(·丽水模拟)诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:____________________.(3)如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗0.8厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成1.75米长的链条,则需要____________________个铁环.类型二二元一次方程组的应用例2(1)若买3支圆珠笔、1本日记本共需10元;买1支圆珠笔、3本日记本共需18元,则日记本的单价比圆珠笔的单价多________元.(2)如图,将图1的正方形剪掉一个小正方形,再沿虚线剪开,拼成如图2的长方形.已知长方形的宽为6,长为12,则图1正方形的边长为________.(3)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是________cm.【解后感悟】找出题目蕴含的数量关系与不等关系是解决问题的关键.设元方法有两种:(1)直接设元法.在全面透彻的理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,这种设未知数的方法叫做直接设元法.(2)间接设元法:如果对某些题目直接设元不易求解,便可将并不是直接要求的某个量设为未知数,从而使问题变得容易解答,我们称这种设未知数的方法为间接设元法.2.(1)(·安徽模拟)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为____________________元.(2)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组是____________________.(3)为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如图表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意可列方程组____________________.用电时间段收费标准峰电08:00~22:00 0.56元/千瓦时谷电22:00~08:00 0.28元/千瓦时类型三一元二次方程的应用例3(1)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.(2)某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低________元.(3)美化环境,改善居住环境已成为城乡建设的一项重要内容,某区计划用两年时间使全区绿化面积增加21%,则这两年全区绿化面积的年平均增长率应是________.【解后感悟】解题关键是要读懂题目的意思,根据题目给出的条件,找到关键描述语,找到等量关系,准确地列出一元二次方程.判断所求的解是否符合题意,舍去不合题意的解.3.(1)(·宁海模拟)某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有____________________家商家参加了交易会.(2)平行四边形ABCD的边长如图所示,四边形ABCD的周长为____________________.(3)(·杭州模拟)两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第2年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x,则可列方程____________________.类型四分式方程的应用例4(1)(·慈溪模拟)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作________件.(2)(·瑞安模拟)在“校园文化”建设中,某校用8000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿色植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为________元.(3)(·宁波模拟)某感冒药用来计算儿童服药量y的公式为y=axx+12,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是________.【解后感悟】正确理解题意,找到合适的等量关系是解决问题的关键,如(1)的等量关系是原来用的时间-现在用的时间=10;(3)的等量关系抓住题目中的关键语句“儿童服药量占成人服药量的一半时”.注意分式方程要检验.4.(1)(·淄博)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是____________________.(2)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为____________________.(3)(·绍兴模拟)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,求小刚每消耗1千卡能量需要行走____________________步.【实际应用题】(·衢州)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求第一产业生产总值;(精确到1亿元)(2)比的国民生产总值增加了百分之几?(精确到1%)(3)若要使的国民生产总值达到1573亿元,求至我市国民生产总值的年平均增长率.(精确到1%)【方法与对策】试题通过统计图给出信息数据,构建方程模型:一元二次方程的应用中增长率的问题.该题型是中考命题趋势.【寻找等量关系欠仔细】要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A .12x(x +1)=28 B .12x(x -1)=28 C .x(x +1)=28 D .x(x -1)=28参考答案第9讲 方程(组)的应用【考题体验】 1.C 2.D 【知识引擎】【解析】(1)设购买了x 件这种服装,根据题意小丽一次性购买多于10件,∴[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =30时,80-2(30-10)=40(元)<50不合题意舍去;答:她购买了20件这种服装; (2)解题关键是要读懂题目的意思,根据题目给出的条件,找出数量、数量关系求解;解应用题的一般步骤:①审题:读题,明确哪些是已知量,哪些是未知量,以及它们之间的关系;②设元:就是设未知数,根据题意,选择适当的未知量,并用字母表示出来,设元又分直接设元和间接设元;③列方程(组):根据题目中给出的等量关系,列出符合题意的方程(组);④解方程(组):求出所列方程(组)的解;⑤检验:检验未知数的值是否符合题意;⑥写出答案.【例题精析】例1 (1)设参加书画社的有x 人,得(46+20-x)-x =10,得x =28;(2)设停电时间为x 小时,得1-x6=2⎝⎛⎭⎫1-x 4,得x =3;(3)(1+40%)×0.8x =1232,得x =1100;(4)设王老师家3月份用水x 吨,得10×0.8+1.5(x -10)=1.0x ,得x =14. 例2 (1)设圆珠笔的单价为x 元/支,日记本的单价为y 元/本,得⎩⎪⎨⎪⎧3x +y =10,x +3y =18,得⎩⎪⎨⎪⎧x =1.5,y =5.5,∴y -x =5.5-1.5=4.故答案为:4.(2)设图1正方形的边长为x ,剪掉的小正方形的边长为y ,得⎩⎪⎨⎪⎧x -y =6,x +y =12,得⎩⎪⎨⎪⎧x =9,y =3,所以图1正方形的边长为9.故答案为:9.(3)设塑料凳凳面的厚度为x cm ,腿高h cm ,得⎩⎪⎨⎪⎧3x +h =29,5x +h =35,得⎩⎪⎨⎪⎧x =3,h =20,则10张塑料凳整齐地叠放在一起时的高度是20+3×10=50cm . 例3 (1)设人行通道的宽度为x 米,将两块矩形绿地合在一起长为(30-3x)m ,宽为(24-2x)m ,得(30-3x)·(24-2x)=480,得x 1=2,x 2=20(舍去),故答案为2; (2)设应将每千克小型西瓜的售价降低x 元.得[(3-2)-x]⎝⎛⎭⎫200+40x0.1-24=200,得x 1=0.2,x 2=0.3.故答案为0.3或0.2. (3)设这两年全区绿化面积的年平均增长率为x ,得1×(1+x)2=1+21%,得x 1=0.1,x 2=-2.1(不符合题意舍去).故答案为10%. 例4 (1)设原来每天制作x 件,得480x -480(1+50%)x =10,得x =16,经检验x =16是原方程的解,故答案为16; (2)设第一批绿植的价格是每盆x 元,则第二批绿植的价格是每盆(x -10)元,得8000x =7500x -10,得x =160.经检验,x =160是所列方程的解.则x -10=160-10=150(元).故答案为150; (3)当儿童服药量占成人服药量的一半时,即a 2=axx +12,得x =12,检验得:当x =12时,x +12≠0,∴x =12是原方程的根,故答案是12岁.【变式拓展】1.(1)D (2)3盏灯 (3)51 2. (1)440 (2)⎩⎪⎨⎪⎧x +2y =75x =3y(3)⎩⎪⎨⎪⎧x +y =950.56x +0.28y =43.43.(1)9 (2)42 (3)5000(1-x)(1-2x)=24004.(1)60x +8=45x(2)6 (3)30 【热点题型】【分析与解】(1)1300×7.1%≈92(亿元).答:第一产业生产总值大约是92亿元; (2)(1300-1204)÷1204×100%=96÷1204×100%≈8%.答:比的国民生产总值大约增加了8%; (3)设至我市国民生产总值的年平均增长率为x ,依题意得1300(1+x)2=1573,∴1+x =±1.1,∴x =0.1或x =-2.1(不符合题意,故舍去).答:至我市国民生产总值的年平均增长率约为10%.【错误警示】 B .。

浙江省中考数学复习微专题三列方程(组)解应用题训练43

浙江省中考数学复习微专题三列方程(组)解应用题训练43

微专题三 列方程(组)解应用题姓名:________ 班级:________ 用时:______分钟1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( )A .100元B .90元C .810元D .819元2.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .54.夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A.⎩⎪⎨⎪⎧x +y =5 300200x +150y =30B.⎩⎪⎨⎪⎧x +y =5 300150x +200y =30 C.⎩⎪⎨⎪⎧x +y =30200x +150y =5 300 D.⎩⎪⎨⎪⎧x +y =30150x +200y =5 300 5.滴滴快车是一种便捷的出行工具,计价规则如表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A.10分钟B.13分钟C.15分钟D.19分钟6.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为__________________________.7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为________尺,竿子长为________尺.8.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.9.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.10.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.参考答案1.A 2.C 3.D 4.C 5.D6.2x+56=589-x 7.20 158.解:设城中有x 户人家.依题意得x +x 3=100, 解得x =75.答:城中有75户人家.9.解:设订购了A 型粽子x 千克,B 型粽子y 千克,根据题意得⎩⎪⎨⎪⎧y =2x -20,28x +24y =2 560, 解得⎩⎪⎨⎪⎧x =40,y =60. 答:订购了A 型粽子40千克,B 型粽子60千克.10.解:(1)设道路硬化的里程数是x 千米,则道路拓宽的里程数是(50-x)千米.根据题意得x≥4(50-x),解得x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米,x 千米, 2x +x =45,x =15,2x =30,设每千米的道路硬化和道路拓宽的经费分别为y 万元,2y 万元,30y +15×2y=780,y =13,2y =26,由题意得13(1+a%)·40(1+5a%)+26(1+5a%)·10(1+8a%)=780(1+10a%),设a%=m ,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m 2-m =0,m 1=0.1,m 2=0(舍去),∴a=10.拜占庭帝国和《查士丁尼法典》学习目标1.知道拜占庭帝国的版图、发展和灭亡的基本史实;2.理解并掌握《罗马民法大全》的组成部分以及对后世的影响。

浙江省2017年中考数学真题分类解析汇编专题3:方程(组)

浙江省2017年中考数学真题分类解析汇编专题3:方程(组)

浙江省2021年中考数学真题分类汇编:方程(组)(解析版)一、单选题(共7题;共14分)1、(2021·衢州)二元一次方程组的解是()A、B、C、D、2、(2021·嘉兴)用配方法解方程时,配方结果正确的是()A、B、C、D、3、(2021·嘉兴)若二元一次方程组的解为则()A、B、C、D、4、(2021•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A、x1=1,x2=3B、x1=1,x2=﹣3C、x1=﹣1,x2=3D、x1=﹣1,x2=﹣35、(2021•杭州)设x,y,c是实数,()A、若x=y,则x+c=y﹣cB、若x=y,则xc=ycC、若x=y,则D、若,则2x=3y6、(2021•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A、10.8(1+x)=16.8B、16.8(1﹣x)=10.8C、10.8(1+x)2=16.8D、10.8[(1+x)+(1+x)2]=16.87、(2021·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费运途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、运途费三部分,其中里程费按行车的实际里程计费;时长费按行车的实际时间计算,运途费的收取方式为:行车7公里以内(含7公里)不收运途费超过7公里的,超出部分每公里收0.8元小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A、10分钟B、13分钟C、15分钟D、19分钟二、填空题(共5题;共5分)8、(2021•宁波)分式方程的解是________9、(2021·嘉兴)若分式的值为0,则的值为________.10、(2021•杭州)若•|m|= ,则m=________.11、(2021•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:________.12、(2021•杭州)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉________千克.(用含t的代数式表示.)三、解答题(共2题;共15分)13、(2021·金华)(本题6分) 解分式方程: .14、(2021•宁波)2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?答案解析部分一、单选题1、【答案】B【考点】二元一次方程组的解【解析】【解答】解:①-②得:4y=8, 解得y=2;将y=2代入①得x=4;∴原方程组的解为:;故选B.【分析】利用两个方程作差就可以直接求出y=2,将其代入即可求出x=4,从而得出答案.2、【答案】B【考点】解一元二次方程-配方法【解析】【解答】解:方程两边都“+2”,得x2+2x+1=2,则(x+1)2=2。

浙江省最新中考数学复习微专题训练(打包10套,Word版,含答案)

微专题一 数形结合与实数的运算姓名:________ 班级:________ 用时:______分钟1.两个实数互为相反数,在数轴上的对应点分别是点A 、点B ,则下列说法正确的是( ) A .原点在点A 的左边 B .原点在线段AB 的中点处 C .原点在点B 的右边D .原点可以在点A 或点B 上2.(2018·浙江绍兴模拟)计算-(2)2+(2+π)0+(-12)-2的结果是( )A .1B .2C.114D .33.定义一种新运算☆,其规则为a☆b=1a +1b ,根据这个规则,计算2☆3的值是( )A.56B.15C .5D .64.如图,数轴上的A ,B ,C ,D 四点中,与表示数-3的点最接近的是( )A .点AB .点BC .点CD .点D5.若实数a 满足|a -12|=32,则a 对应于图中数轴上的点可以是A ,B ,C 三点中的点______.6.计算:8-|2-22|+2tan 45°=______.7.(2019·创新题)按所给程序计算:输入x =3,则输出的答案是________.输入x →立方→-x →÷2→答案8.观察下列各式: 11×2=1-12=12; 11×2+12×3=1-12+12-13=23; 11×2+12×3+13×4=1-12+12-13+13-14=34; …按以上规律,写出第n 个式子的计算结果(n 为正整数)____.(写出最简计算结果即可) 9.设S 1=1+112+122,S 2=1+122+132,S 3=1+132+142,…,S n =1+1n 2+1(n +1)2.设S =S 1+S 2+…+S n ,则S =____(用含n 的代数式表示,其中n 为正整数). 10.设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6.则a 1+a 2+a 3+…+a 2 017+a 2 018+a 2 019=______________.11.(2019·创新题)有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是8,第2次输出的结果是4…则第2 018次输出的结果是______.12.(2019·改编题)计算:2-2+(327-146)÷6-3sin 45°.13.计算:(13)-1-|-2+3tan 45°|+(2-2 018)0-(2-3)(2+3).14.如图,点A ,B 在数轴上分别表示有理数a ,b ,且A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b|.回答下列问题:(1)在数轴上表示2和5的两点之间的距离是________,在数轴上表示1和-3的两点之间的距离是________;(2)在数轴上表示x 和-5的两点之间的距离是________;(3)若x 表示一个有理数,则|x -1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.15.我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i ”,使其满足i 2=-1(即方程x 2=-1有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i2=-1,i 3=i 2·i =(-1)·i =-i ,i 4=(i 2)2=(-1)2=1,从而对于任意正整数n ,我们可以得到i4n +1=i 4n ·i =(i 4)n ·i =i ,同理可得i4n +2=-1,i4n +3=-i ,i 4n =1.求i +i 2+i3+i 4+…+i 2 018+i 2 019的值.参考答案1.D 2.D 3.A 4.B5.B 6.4 7.12 8.nn+19.n2+2nn+110.6 666 11.412.解:原式=4+3276-14-3×22=4+922-14-322=154+3 2.13.解:原式=3-(2-3)+1-(2-3)=3-2+3+1-(-1)=3+ 3.14.解:(1)3 4(2)|x+5|(3)根据绝对值的定义知|x-1|+|x+3|可表示点x到表示1与-3的两点的距离之和.根据几何意义分析可知当x在-3与1之间时,|x-1|+|x+3|有最小值4.15.解:由题意得,i1=i,i2=-1,i3=-i,i4=1,i5=i4·i=i,i6=i5·i=-1,故可发现4个一循环,一个循环内的和为0.∵2 019÷4=504 (3)∴i+i2+i3+i4+…+i2 018+i2 019=504×0+(i-1-i)=-1.微专题二 代数式的化简与求值姓名:________ 班级:________ 用时:______分钟1.下列运算正确的是( ) A .x -2x =-x B .2x -y =-xy C .x 2+x 2=x 4D .(x -1)2=x 2-12.(2018·浙江丽水模拟)已知1a -1b =13,则2aba -b 的值是( )A.16B .-16C .6D .-63.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为( )A .7B .-7C .2a -15D .无法确定4.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A .9B .±3C .3D .55.已知2a -3b =7,则8+6b -4a =________. 6.已知a<0,化简:4-(a +1a)2-4+(a -1a)2=________.7.若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =____,b =______;计算:m =11×3+13×5+15×7+…+119×21=____.8.(2019·改编题)若m 2=n +2,n 2=m +2(m≠n),则m 3-2mn +n 3的值为________. 9. 先化简,再求值:(x +2)(x -2) +x(1-x),其中x =-1.10.化简:(a +1a -1-a a +1)÷3a +1a 2+a11.已知A =x 2+2x +1x -1-xx -1.(1)化简A.(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.12.先化简,再求值:m 2-4m +4m -1÷(3m -1-m -1),其中m =2-2.13.为鼓励学生努力学习,某校拿出了b 元资金作为奖学金,其中一部分作为奖学金发给了n 个学生.奖金分配方案如下:首先将n 个学生按学习成绩、思想道德评价(假设n 个学生的综合评分均不相同)从高到低,由1到n 排序,第1位学生得奖金bn 元,然后再将余额除以n 发给第2位学生,按此方法将奖金逐一发给了n 个学生.(1)假设第k 个学生得到的奖金为a k 元(1≤k≤n),试用k ,n 和b 表示a k .(2)比较a k 和a k +1的大小(k =1,2,…,n -1),并解释此结果就奖学金设置原则的合理性.参考答案1.A 2.D 3.A 4.C 5.-6 6.-2 7.1021 8.-29.解:原式=x 2-4+x -x 2=x -4. 当x =-1时,原式=-1-4=-5. 10.解:原式=[(a +1)2(a -1)(a +1)-a (a -1)(a -1)(a +1)]·a 2+a 3a +1 =a 2+2a +1-a 2+a (a -1)(a +1)·a (a +1)3a +1=3a +1(a -1)(a +1)·a (a +1)3a +1=aa -1. 11.解:(1)A =x 2+2x +1x 2-1-xx -1=(x +1)2(x +1)(x -1)-xx -1 =x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x≥1; 解x -3<0,得x<3,∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x<3. ∵x 为整数,∴x=1,2. 当x =1时,分式无意义. 当x =2时,A =12-1=1. 12.解:原式=(m -2)2m -1÷3-m 2+1m -1=(m -2)2m -1÷(2+m )(2-m )m -1=(m -2)2m -1×m -1(2+m )(2-m )=2-m 2+m .当m =2-2时,原式=2-2+22+2-2=4-22=22-1.13.解:(1)a k =b n (1-1n )k -1.(2)∵a k =b n (1-1n )k -1,a k +1=b n (1-1n )k,∴a k +1=(1-1n)a k <a k ,说明排名越靠前获得的奖学金越多.微专题三 列方程(组)解应用题姓名:________ 班级:________ 用时:______分钟1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( ) A .100元 B .90元C .810元D .819元2.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( ) A .不盈不亏 B .盈利20元 C .亏损10元D .亏损30元3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .54.夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A.⎩⎪⎨⎪⎧x +y =5 300200x +150y =30B.⎩⎪⎨⎪⎧x +y =5 300150x +200y =30 C.⎩⎪⎨⎪⎧x +y =30200x +150y =5 300 D.⎩⎪⎨⎪⎧x +y =30150x +200y =5 300 5.滴滴快车是一种便捷的出行工具,计价规则如表:费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟 B .13分钟 C .15分钟D .19分钟6.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为__________________________.7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为________尺,竿子长为________尺.8.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.9.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.10.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a >0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a 的值.参考答案1.A 2.C 3.D 4.C 5.D 6.2x +56=589-x 7.20 15 8.解:设城中有x 户人家. 依题意得x +x3=100,解得x =75.答:城中有75户人家.9.解:设订购了A 型粽子x 千克,B 型粽子y 千克,根据题意得⎩⎪⎨⎪⎧y =2x -20,28x +24y =2 560,解得⎩⎪⎨⎪⎧x =40,y =60.答:订购了A 型粽子40千克,B 型粽子60千克.10.解:(1)设道路硬化的里程数是x 千米,则道路拓宽的里程数是(50-x)千米. 根据题意得x≥4(50-x),解得x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米,x 千米,2x +x =45,x =15,2x =30,设每千米的道路硬化和道路拓宽的经费分别为y 万元,2y 万元, 30y +15×2y=780,y =13, 2y =26,由题意得13(1+a%)·40(1+5a%)+26(1+5a%)·10(1+8a%)=780(1+10a%), 设a%=m ,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m), 10m 2-m =0,m 1=0.1,m 2=0(舍去), ∴a=10.微专题四 反比例函数、二次函数图象与性质的综合应用姓名:________ 班级:________ 用时:______分钟1.如图,若二次函数y =ax 2+bx +c(a≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A ,点B(-1,0),则 ①二次函数的最大值为a +b +c ; ②a-b +c <0; ③b 2-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( ) A .1B .2C .3D .42.如图,点D 为矩形OABC 的AB 边的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC边于点E.若△BDE 的面积为1,则k =______.3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m )与飞行时间x(单位:s )之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.参照学习函数的过程与方法,探究函数y =x -2x 的图象与性质.因为y =x -2x =1-2x ,即y =-2x +1,所以我们对比函数y =-2x 来探究.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y =x -2x 相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连结起来; (2)观察图象并分析表格,回答下列问题:①当x <0时,y 随x 的增大而________;(填“增大”或“减小”) ②y=x -2x 的图象是由y =-2x 的图象向______平移______个单位而得到;③图象关于点______________中心对称.(填点的坐标)(3)设A(x 1,y 1),B(x 2,y 2)是函数y =x -2x 的图象上的两点,且x 1+x 2=0,试求y 1+y 2+3的值.5.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其他费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?6.如图,四边形ABCD 的四个顶点分别在反比例函数y =m x 与y =nx (x >0,0<m <n)的图象上,对角线BD∥y 轴,且BD⊥AC 于点P.已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式;②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由;(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.参考答案1.B 2.43.解:(1)当y =15时,15=-5x 2+20x , 解得x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是1 s 或3 s. (2)当y =0时,0=-5x 2+20x , 解得x 1=0,x 2=4 ∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s. (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时,y =20,答:在飞行过程中,小球飞行高度在第2 s 时最大,最大高度是20 m. 4.解:(1)画出函数图象如图所示.(2)①增大 ②上 1 ③(0,1) (3)∵x 1+x 2=0,∴x 1=-x 2.∴A(x 1,y 1),B(x 2,y 2)关于(0,1)对称, ∴y 1+y 2=2, ∴y 1+y 2+3=5.5.解:(1)设直线AB 的表达式为y =kx +b ,代入A(4,4),B(6,2)得⎩⎪⎨⎪⎧4k +b =4,6k +b =2,解得⎩⎪⎨⎪⎧k =-1,b =8,∴直线AB 的表达式为y =-x +8.同理代入B(6,2),C(8,1)可得直线BC 的表达式为y =-12x +5.∵工资及其他费用为0.4×5+1=3(万元),∴当4≤x≤6时,w 1=(x -4)(-x +8)-3=-x 2+12x -35, 当6<x≤8时,w 2=(x -4)(-12x +5)-3=-12x 2+7x -23.(2)当4≤x≤6时,w 1=-x 2+12x -35=-(x -6)2+1, ∴当x =6时,w 1取最大值是1. 当6<x≤8时,w 2=-12x 2+7x -23=-12(x -7)2+32,当x =7时,w 2取最大值是32.∴1032=203=623, 即最快在第7个月可还清10万元的无息贷款. 6.解:(1)①∵m=4,∴反比例函数为y =4x .当x =4时,y =1,∴B(4,1). 当y =2时,2=4x ,∴x=2,∴A(2,2).设直线AB 的表达式为y =kx +b ,∴⎩⎪⎨⎪⎧2k +b =2,4k +b =1,∴⎩⎪⎨⎪⎧k =-12,b =3,∴直线AB 的表达式为y =-12x +3.②四边形ABCD 是菱形.理由如下:如图,由①知,B(4,1).∵BD∥y 轴,∴D(4,5).∵点P 是线段BD 的中点,∴P(4,3). 当y =3时,由y =4x 得x =43,由y =20x 得x =203,∴PA=4-43=83,PC =203-4=83,∴PA=PC.∵PB=PD ,∴四边形ABCD 为平行四边形. ∵BD⊥AC,∴四边形ABCD 是菱形. (2)四边形ABCD 能是正方形.理由如下:当四边形ABCD 是正方形时, PA =PB =PC =PD =t(t≠0). 当x =4时,y =m x =m4,∴B(4,m4),∴A(4-t ,m 4+t),∴(4-t)(m4+t)=m ,∴t=4-m 4,∴点D 的纵坐标为m 4+2t =m 4+2(4-m 4)=8-m4,∴D(4,8-m 4),∴4(8-m4)=n ,∴m+n =32.微专题五 以特殊三角形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,E 为AB 边的中点,以BE 为边作等边△BDE,连结AD ,CD. (1)求证:△ADE≌△CDB;(2)若BC =3,在AC 边上找一点H ,使得BH +EH 最小,并求出这个最小值.2.如图,在等边△ABC 中,点D ,E ,F 分别同时从点A ,B ,C 出发,以相同的速度在AB ,BC ,CA 上运动,连结DE ,EF ,DF. (1)证明:△DEF 是等边三角形;(2)在运动过程中,当△CEF 是直角三角形时,试求S △DEFS △ABC的值.3.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB 的度数;(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.4.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长.5.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t 的值;若不存在,请说明理由.6.问题:(1)如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连结EC,则线段BC,DC,EC之间满足的等量关系式为________;探索:(2)如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:(3)如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.参考答案1.(1)证明:在Rt△ABC 中,∠BAC=30°,E 为AB 边的中点, ∴BC=EA ,∠ABC=60°. ∵△DEB 为等边三角形,∴DB=DE ,∠DEB=∠DBE=60°, ∴∠DEA=120°,∠DBC=120°, ∴∠DEA=∠DBC, ∴△ADE≌△CDB.(2)解:如图,作点E 关于直线AC 对称点E′,连结BE′交AC 于点H ,连结EH ,AE′, 则点H 即为符合条件的点.由作图可知,EH =HE′,AE′=AE ,∠E′AC=∠BAC=30°, ∴∠EAE′=60°,∴△EAE′为等边三角形, ∴EE′=EA =12AB ,∴∠AE′B=90°.在Rt△ABC 中,∠BAC=30°,BC =3, ∴AB=23,AE′=AE =3,∴BE′=AB 2-AE′2=(23)2-(3)2=3, ∴BH+EH 的最小值为3.2.(1)证明:∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°,AB =BC =CA. ∵AD=BE =CF ,∴BD=CE =AF. 在△ADF,△BED 和△CFE 中, ∵⎩⎪⎨⎪⎧AD =BE =CF ,∠A=∠B=∠C,AF =BD =CE ,∴△ADF≌△BED≌△CFE, ∴FD=DE =EF , ∴△DEF 是等边三角形.(2)解:∵△ABC 和△DEF 是等边三角形,∴△DEF∽△ABC.当DE⊥BC 时(EF⊥BC 时,同理),∠BDE=30°, ∴BE=12BD ,即BE =13BC ,CE =23BC.∵EF=EC·sin 60°=23BC·32=33BC ,∴S △DEF S △ABC =(EF BC )2=(33)2=13. 3.(1)证明:∵∠A=40°,∠B=60°, ∴∠ACB=80°,∴△ABC 不是等腰三角形. ∵CD 平分∠ACB,∴∠ACD=∠BCD=12∠ACB=40°,∴∠ACD=∠A=40°, ∴△ACD 为等腰三角形.∵∠DCB=∠A=40°,∠CBD=∠ABC, ∴△BCD∽△BAC,∴CD 是△ABC 的完美分割线. (2)解:①当AD =CD 时,如图,则∠ACD=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=96°. ②当AD =AC 时,如图,则∠ACD=∠ADC=180°-48°2=66°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=114°. ③当AC =CD 时,如图,则∠ADC=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°. ∵∠ADC=∠BCD=48°与∠ADC>∠BCD 矛盾, ∴AC=CD 不成立.综上所述,∠ACB=96°或114°. (3)解:由已知得AD =AC =2. ∵△BCD∽△BAC,∴BC BA =BD BC =CDAC .设BD =x(x>0), 则(2)2=x(x +2), 解得x =3-1(负值舍去), ∴CD AC =BD BC =3-12, ∴CD=3-12×2=6- 2. 4.(1)证明:∵△ABC 和△ADE 是等腰直角三角形,∠BAC=∠DAE=90°, ∴AB=AC ,AD =AE ,∠DAB=∠EAC, ∴△ADB≌△AEC,∴BD=CE.(2)解:如图,①当点E 在AB 上时,BE =AB -AE =1.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=15,∴PB=255. ②如图,当点E 在BA 延长线上时,BE =3.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=35,∴PB=655. 综上所述,PB 的长为255或655.5.(1)证明:在Rt△ABC 中,AB =6,AC =8, ∴BC=10,sin∠B=AC BC =810=45,sin∠C=35.如图,过点Q 作QE⊥AB 于点E ,作QD ⊥AC 于点D.在Rt△BQE 中,BQ =5t , ∴sin∠B=QE BQ =45,∴QE=4t.在Rt△CDQ 中,CQ =BC -BQ =10-5t , ∴QD=CQ·sin∠C=35(10-5t)=3(2-t),QE =BQ·sin∠B=5t·45=4t.由运动知AP =3t ,CR =4t ,∴BP=AB -AP =6-3t =3(2-t),AR =AC -CR =8-4t =4(2-t), ∴S △APR =12AP·AR=12×3t×4(2-t)=6t(2-t),S △BPQ =12BP·QE=12×3(2-t)×4t=6t(2-t),S △CQR =12CR·QD=12×4t×3(2-t)=6t(2-t),∴S △APR =S △BPQ =S △CQR ,∴△APR,△BPQ,△CQR 的面积相等.(2)解:由(1)知,S △APR =S △BPQ =S △CQR =6t(2-t). ∵AB=6,AC =8,∴S △PQR =S △ABC -(S △APR +S △BPQ +S △CQR ) =12×6×8-3×6t(2-t)=24-18(2t -t 2) =18(t -1)2+6.∵0≤t≤2,∴当t =1时,S △PQR 最小=6.(3)解:存在.由(1)知QE =4t ,QD =3(2-t),AP =3t ,CR =4t ,AR =4(2-t), ∴BP=AB -AP =6-3t =3(2-t), AR =AC -CR =8-4t =4(2-t). ∵∠A=90°,∴四边形AEQD 是矩形, ∴AE=DQ =3(2-t),AD =QE =4t , ∴DR=|AD -AR|=|4t -4(2-t)| =|4(2t -2)|,PE =|AP -AE|=|3t -3(2-t)| =|3(2t -2)|.∵∠DQE=90°,∠PQR=90°, ∴∠DQR=∠EQP, ∴tan∠DQR=tan∠EQP. 在Rt△DQR 中,tan∠DQR=DR DQ =4|2t -2|3(2-t ),在Rt△EQP 中,tan∠EQP=PE QE =3|2t -2|4t ,∴4|2t -2|3(2-t )=3|2t -2|4t , ∴t=1825或1.6.解:(1) BC =DC +EC (2)BD 2+CD 2=2AD 2,理由如下: 如图,连结CE.∵∠BAC=∠BAD+∠DAC=90°,∠DAE=∠CAE+∠DAC=90°, ∴∠BAD=∠CAE. 在△BAD 与△CAE 中, ∵⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE , ∴△BAD≌△CAE, ∴BD=CE ,∠ACE=∠B, ∴∠DCE=90°,∴CE 2+CD 2=ED 2. 在Rt△ADE 中,AD 2+AE 2=ED 2,AD =AE , ∴BD 2+CD 2=ED 2,ED =2AD , ∴BD 2+CD 2=2AD 2.(3)如图,作AE⊥AD,使AE =AD ,连结CE ,DE.∵∠BAC+∠CAD=∠DAE+∠CAD, 即∠BAD=∠CAE. 在△BAD 与△CAE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE ,∴△BAD≌△CAE(SAS),∴BD=CE =9. ∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE=CE 2-CD 2=6 2. ∵∠DAE=90°,∴AD =AE =22DE =6.微专题六以特殊四边形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.2.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连结CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.3.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连结MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.4.如图,点E,F分别是矩形ABCD的边AD,AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.5.问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是________;(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连结CC′,取CC′的中点F,连结AF并延长至点G,使FG=AF,连结CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论;实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连结CC′,试求tan∠C′CH的值.参考答案1.证明:(1)如图,延长AO 到E. ∵OA=OB ,∴∠ABO=∠BAO. 又∠BOE=∠ABO+∠BAO, ∴∠BOE=2∠BAO. 同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO), 即∠BOD=2∠BAD.又∠C=2∠BAD,∴∠BOD=∠C.(2)如图,连结OC.∵OB=OD ,CB =CD ,OC =OC , ∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO. ∵∠BOD=∠BOC+∠DOC, ∠BCD=∠BCO+∠DCO,∴∠BOC=12∠BOD,∠BCO=12∠BCD.又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC. 又OB =OD ,BC =CD , ∴OB=BC =CD =DO , ∴四边形OBCD 是菱形.2.证明:(1)∵E 是AD 的中点,∴AE=DE. ∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB, ∴△AEF≌△DEB (AAS). (2)如图,连结DF.∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形.∵△AEF≌△DEB,∴BE=FE.∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB.∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.3.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°.∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON. (2)解:如图,过点O作OH⊥AD于点H.∵正方形的边长为4,∴OH=HA=2.∵E为OM的中点,∴HM=4,则OM=22+42=25,∴MN=2OM=210.4.(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC ,∴△AEF≌△DCE. ∴ED=AF.∵AE=DC =AB =2DE ,∴AB=2AF ,∴F 是AB 的中点. (2)解:由(1)得AF =FB ,且AE∥BH, ∴∠FBH=∠FAE=90°,∠AEF=∠FHB, ∴△AEF≌△BHF,∴HB=AE. ∵ED=2,且AE =2ED ,∴AE=4, ∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32, ∴AH=4 2. 5.解:(1)菱形(2)在图1中,∵四边形ABCD 是矩形, ∴AB∥CD,∴∠CAD=∠ACB,∠B=90°, ∴∠BAC+∠ACB=90°.在图3中,由旋转知,∠DAC′=∠DAC, ∴∠ACB=∠DAC′, ∴∠BAC+∠DAC′=90°. ∵点D ,A ,B 在同一条直线上, ∴∠CAC′=90°. 由旋转知,AC =AC′.∵点F 是CC′的中点,∴AG⊥CC′,CF =C′F. ∵AF=FG ,∴四边形ACGC′是平行四边形. ∵AG⊥CC′,∴四边形ACGC′是菱形. ∵∠CAC′=90°, ∴菱形ACGC′是正方形.(3)在Rt△ABC 中,AB =2,AC =4, ∴BC′=AC =4,BD =BC =23, sin ∠ACB=AB AC =12,∴∠ACB=30°.由(2)结合平移知,∠CHC′=90°.在Rt△BCH 中,∠ACB=30°, ∴BH=BC·sin 30°=3, ∴C′H=BC′-BH =4- 3. 在Rt△ABH 中,AH =12AB =1,∴CH=AC -AH =4-1=3, 在Rt△CHC′中,tan ∠C′CH=C′H CH =4-33.微专题七 与圆有关的计算与证明姓名:________ 班级:________ 用时:______分钟1.若将半径为12 cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是( ) A .2 cmB .3 cmC .4 cmD .6 cm2.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD,则AB ︵的长为( )A .πB.32πC .3πD .6π3. 如图,已知⊙O 的半径是2,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分的面积为( )A.23π-2 3 B.23π- 3 C.43π-2 3D.43π- 3 4.一般地,如果在一次试验中,结果落在区域D 中每一个点都是等可能的,并用A 表示“试验结果落在区域D 中的某个小区域M 中”这个事件,那么事件A 发生的概率为P A =MD .如图,现在往等边三角形ABC 内投入一个点,则该点落在△ABC 的内切圆中的概率是______.5.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为________.6.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r 的圆内接正n 边形的周长为L ,圆的直径为d.如图所示,当n =6时,π≈l d =6r 2r =3,那么当n =12时,π≈ld =____________.(结果精确到0.01,参考数据:sin 15°=cos 75°≈0.259)7.如图,⊙O 的半径是2,直线l 与⊙O 相交于A ,B 两点,M ,N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是______.8.如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30 cm ,∠B 1D 1C 1=120°. (1)图2中,弓臂两端B 1,C 1的距离为________cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为______________cm .9.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE⊥AC 分别交AC 、AB 的延长线于点E ,F.(1)求证:EF 是⊙O 的切线;(2)若AC =4,CE =2,求BD ︵的长度.(结果保留π)10.如图,已知AB 是圆O 的直径.弦CD⊥AB,垂足为H.与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连结AF 交CD 于点N.(1)求证:CA =CN ;(2)连结DF ,若cos ∠DFA=45,AN =210,求圆O 的直径的长度.11.如图,在平面直角坐标系xOy 中,直线y =3x -23与x 轴,y 轴分别交于A ,B 两点,P 是直线AB 上一动点,⊙P 的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案1.D 2.B 3.C 4.39π 5.πa 6.3.11 7.4 2 8.(1)30 3 (2)105-10 9.解:(1)证明:如图,连结OD.∵OA=OD ,∴∠OAD=∠ODA. ∵AD 平分∠EAF,∴∠DAE=∠DAO, ∴∠DAE=∠ADO,∴OD∥AE. ∵AE⊥EF,∴OD⊥EF, ∴EF 是⊙O 的切线.(2)如图,作OG⊥AE 于点G ,连结BD ,则AG =CG =12AC =2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG 是矩形,∴OA=OB =OD =CG +CE =2+2=4,∠DOG=90°. ∵∠DAE=∠BAD,∠AED=∠ADB=90°, ∴△ADE∽△ABD, ∴AE AD =AD AB ,即6AD =AD 8, ∴AD 2=48.在Rt△ABD 中,BD =AB 2-AD 2=4. 在Rt△ABD 中,∵AB=2BD , ∴∠BAD=30°, ∴∠BOD=60°,则BD ︵的长度为60·π·4180=4π3.10.(1)证明:如图,连结OF. ∵ME 与圆O 相切于点F ,∴OF⊥ME, 即∠OFN+∠MFN=90°.∵∠OFN=∠OAN,∠OAN+∠ANH=90°, ∴∠MFN=∠ANH.(等量代换) 又∵ME∥AC,∴∠MFN=∠NAC, ∴∠ANH=∠NAC.∴CA=CN.(2)解:如图,连结OC , ∵cos ∠DFA=45,∴cos C=45.在直角△AHC 中,设AC =5a ,HC =4a , 则AH =3a.由(1)知,CA =CN ,∴NH=a.在直角△ANH 中,利用勾股定理得AH 2+NH 2=AN 2, 即(3a)2+a 2=(210)2,解得a =2.如图,连结OC ,在直角△OHC 中,利用勾股定理得OH 2+HC 2=OC 2. 设圆O 的半径为R ,则(R -6)2+82=R 2,解得2R =503,∴圆O 的直径长度为2R =503.11.解:(1)原点O 在⊙P 外.理由:∵直线y =3x -23与x 轴,y 轴分别交于A ,B 两点, ∴点A(2,0),点B(0,-23). 在Rt△OAB 中,tan∠OBA=OA OB =33,∴∠OBA=30°.如图,过点O 作OH⊥AB 于点H.在Rt△OBH 中,OH =OB·sin∠OBA= 3. ∵3>1,∴原点O 在⊙P 外.(2)如图,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB=PC ,∴∠PCB=∠OBA=30°,∴⊙P 被y 轴所截得的劣弧所对的圆心角为180°-30°-30°=120°, ∴弧长为120π×1180=2π3.同理,当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧长为2π3.(3)如图,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,连结DP ,则PD⊥x 轴,∴PD∥y 轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP·tan ∠DPA=1×tan 30°=33,∴OD=OA-AD=2-33,∴此时点D的坐标为(2-33,0).当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为(2+33,0).综上所述,当⊙P与x轴相切时,切点的坐标为(2-33,0)或(2+33,0).微专题八巧用图形变换进行计算与证明姓名:________ 班级:________ 用时:______分钟1.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )2.如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )A. 3 B.2 3 C.3 3 D.4 33.如图,已知⊙O的半径为3,∠AOB+∠COD=150°,则阴影部分的面积为_________.4.如图是一个台阶的纵切面图,∠B=90°,AB=3 m,BC=5 m,现需在台阶从点A到点C 处铺上红地毯,则该地毯的长度为______m.5.将一张矩形纸片折叠成如图所示的图形,若AB=6 cm,则AC=______cm.6.如图①,四边形CFDE是正方形,且点E,D,F分别在三角形ABC的三边上,观察图①和图②,请回答下列问题:(1)请简述由图①变成图②的形成过程:______________________________________________________.(2)若AD=3,DB=4,则△ADE和△BDF的面积之和为______.7.如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是______形,点P,E,F分别为线段AB,AD,DB的任意点,则PE+PF的最小值是_________.8.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2 019次后,点P的坐标为______________________.9.如图,在正方形ABCD中,点M,N分别是AD,CD边上的动点(含端点),且∠MBN=45°.求证:AM+CN=MN.10.问题背景:如图1,点A,B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连结AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图2,已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为________.(2)知识拓展:如图3,在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.。

中考数学总复习 专题提升三 列方程组解应用题(含答案)

列方程(组)解应用题一、一元一次方程的应用1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是(A )A. 100元B. 90元C. 810元D. 819元2.某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问:一月份每辆电动车的售价是多少元?解:设一月份每辆电动车的售价是x 元,根据题意,得100x +12200=(x -80)×100×(1+10%),解得x =2100.答:一月份每辆电动车的售价是2100元.3.现有甲、乙两种金属的合金10 kg ,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?解:设原来这块合金中甲种金属的百分比是x ,则甲种金属有10x (kg),乙种金属有(10-10x )kg ,根据题意,得(10-10x )÷310-10=2×[(10-10x )÷25-10], 解得x =40%.则(10-10×40%)÷25-10=5(kg). 答:第一次加入的甲种金属是5 kg ,原来这块合金中甲种金属的百分比是40%.二、二元一次方程(组)的应用4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(B )A. 7,6,1,4B. 6,4,1,7C. 4,6,1,7D. 1,6,4,75.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?解:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得①⎩⎪⎨⎪⎧12x +10y =1118,8(x +y )=816,解得⎩⎪⎨⎪⎧x =49,y =53. ②⎩⎪⎨⎪⎧12x +10y =1118,10(x +y )=816,解得⎩⎪⎨⎪⎧x =151,y =-69.4.(不合题意舍去) 答:七年级(1)班有49人、七年级(2)班有53人.(2)七年级(1)班节省的费用为(12-8)×49=196(元),七年级(2)班节省的费用为(10-8)×53=106(元).6.由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?解:设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得⎩⎪⎨⎪⎧3x +4y =22,2x +6y =23, 解得⎩⎪⎨⎪⎧x =4,y =2.5.则x +y =4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.三、一元二次方程的应用7.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是(B )A. (1+x )2=1110B. (1+x )2=109C. 1+2x =1110D. 1+2x =1098.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m 2?(第8题图)解:设矩形猪舍垂直于住房墙一边长为x (m),则平行于墙的一边的长为(25-2x +1)m ,由题意,得x (25-2x +1)=80,化简,得x 2-13x +40=0,解得x 1=5,x 2=8.当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12,答:所围矩形猪舍的长为10 m 、宽为8 m.9.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率.(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 解:(1)设增长率为x ,根据题意,得2500(1+x )2=3025,解得x =0.1=10%或x =-2.1(不合题意,舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).答:根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.四、分式方程的应用10.现有纯农药一桶,倒出20升后用水补满,然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3∶5,则桶的容积为40升.11.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,则原计划每天栽树多少棵? 解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)棵.由题意,得1200x -1200(1+20%)x=2, 解得x =100.经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.12.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600 m 道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10 h 完成任务.(1)按原计划完成总任务的13时,已抢修道路_________________m. (2)问:原计划每小时抢修道路多少米?解:(1)按原计划完成总任务的13时,已抢修道路3600×13=1200(m), 故答案为1200.(2)设原计划每小时抢修道路x (m),根据题意,得1200x +3600-1200[(1+50%)x ]=10, 解得x =280.经检验,x =280是原方程的解,且符合题意.答:原计划每小时抢修道路280 m.。

浙江省各市2019年中考数学分类解析 专题3:方程(组)和不等式(组)

浙江11市2019年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1.(2019浙江杭州3分)已知关于x,y的方程组x y=4ax y=3a-⎧⎨-⎩+3,其中﹣3≤a≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是【】A.①②B.②③C.②③④D.①③④【答案】C。

【考点】二元一次方程组的解,解一元一次不等式组。

【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断:解方程组x y=4ax y=3a-⎧⎨-⎩+3,得x=12ay=1a+⎧⎨-⎩。

∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4。

①x=5y=1⎧⎨-⎩不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,y=1﹣a≥1,已知0≤y≤4,故当x≤1时,1≤y≤4,结论正确。

,故选C。

2. (2019浙江丽水、金华3分)把分式方程21=x+4x转化为一元一次方程时,方程两边需同乘以【】A.x B.2x C.x+4 D.x(x+4)【答案】D。

【考点】解分式方程。

【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程。

故选D。

3. (2019浙江台州4分)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是【】A. B. C. D.【答案】A。

【考点】方程的应用(行程问题)。

【分析】方程的应用解题关键是找出等量关系,列出方程求解。

浙江省中考数学总复习 专题提升三 以方程(组)、不等式为背景的应用试题

专题提升三以方程(组)、不等式为背景的应用一、方程(组)的应用热点解读利用方程(组)解决实际问题,关键是揭示数量、数量关系,从而构建数学模型,这是热点考题之一.母题呈现(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?对点训练1.(2017·湖州模拟)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3∶4∶5.若不计杯子厚度,则甲杯内水的高度变为______公分( )A.5.4 B.5.7 C.7.2 D.7.52.(2016·长春)A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.3.(2015·长沙)现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月的投递总件数的增长率相同:(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?4.(2016·云南)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少瓶?5.(2015·绍兴)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.第5题图(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪上建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积.二、不等式的应用热点解读利用不等式解决实际问题,关键是揭示数量、数量关系,从而构建数学模型,这是热点考题之一.母题呈现(2017·绍兴模拟)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.对点训练6.(2017·益阳模拟)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.7.(2015·山西)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价与零售价格如下表:请解答下列问题.(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚的钱不少于1050元,则该经营户最多能批发西红柿多少kg?8.(2017·苏州模拟)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案专题提升三以方程(组)、不等式为背景的应用一、方程(组)的应用【母题呈现】(1)设B 种花木的数量是x 棵,则A 种花木的数量是(2x -600)棵.根据题意,得x +(2x -600)=6600,解得x =2400,2x -600=4200棵.答:A 种花木的数量是4200棵,B 种花木的数量是2400棵. (2)设安排y 人种植A 种花木,则安排(26-y )人种植B 种花木.根据题意,得420060y =240040(26-y ),解得y =14.经检验,y =14是原方程的根,且符合题意.26-y =12人.答:安排14人种植A 种花木,安排12人种植B 种花木,才能确保同时完成各自的任务.【对点训练】1.C2.设A 型机器每小时加工零件x 个,则B 型机器每小时加工零件(x -20)个.根据题意列方程得:400x =300x -20,解得:x =80.经检验,x =80是原方程的解.答:A 型机器每小时加工零件80个.3.(1)设该快递公司投递快递总件数的月平均增长率为x ,根据题意得:10(1+x )2=12.1,解得:x 1=0.1,x 2=-2.1(舍去),即月平均增长率为10%. (2)6月份的快递数量为:12.1×1.1=13.31(万件),快递员能送的快递数量为:21×0.6=12.6万件<13.31万件,∴不能完成快递投递任务.22<13.310.6<23,∴23-21=2(名),即至少需要增加2名业务员.4.设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得:⎩⎪⎨⎪⎧x +y =100,2x +3y =270,解得:⎩⎪⎨⎪⎧x =30,y =70.答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.5.(1)设通道的宽度为x m ,AM =8y m ,∵AM ∶AN =8∶9,∴AN =9y .∴⎩⎪⎨⎪⎧2x +24y =18,x +18y =13,解得:⎩⎪⎨⎪⎧x =1,y =23.∴通道的宽度应设计成1m. (2)∵四块相同草坪中的每一块,有一条边长为8m ,若RP =8,则AB >13,不合题意,∴RQ =8,∴纵向通道的宽为2m ,横向通道的宽为1m ,∴RP =6,∵RE ⊥PQ ,四边形RPCQ 是长方形,∴PQ =10,∴RE ·PQ =PR ·QR =6×8,∴RE =4.8,∵RP 2=RE 2+PE 2,∴PE =3.6,同理可得:QF =3.6,∴EF =2.8,∴四边形RECF 的面积=4.8×2.8=13.44(平方米).答:花坛RECF 的面积为13.44平方米. 二、不等式的应用【母题呈现】(1)90m =75m -3,解得m =18. (2)设买A 型污水处理设备x 台,则B 型(10-x )台,∴18x+15(10-x )≤165,解得x ≤5,由于x 是整数,则有6种方案,当x =0时,y =10,月处理污水量为1800吨,当x =1时,y =9,月处理污水量为220+180×9=1840吨,当x =2时,y =8,月处理污水量为220×2+180×8=1880吨,当x =3时,y =7,月处理污水量为220×3+180×7=1920吨,当x =4时,y =6,月处理污水量为220×4+180×6=1960吨,当x =5时,y =5,月处理污水量为220×5+180×5=2000吨,答:有6种购买方案,每月最多处理污水量的吨数为2000吨.【对点训练】6.(1)设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,得80x +60(17-x )=1220,解得x =10,∴17-x =7棵,答:购进A 种树苗10棵,B 种树苗7棵; (2)设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,得17-x <x ,得x >812,购进A 、B 两种树苗所需费用为80x +60(17-x )=(20x +1020)元,因为A 种树苗贵,则费用最省需x 取最小整数9,此时17-x =8棵,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵.这时所需费用为1200元.7.(1)设批发西红柿x kg ,西兰花y kg.由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元).答:这两种蔬菜当天全部售完后一共能赚960元钱. (2)设批发西红柿x kg ,由题意得(5.4-3.6)x +(14-8)×1520-3.6x8≥1050,解得:x ≤100.答:该经营户最多能批发西红柿100kg.8.(1)设今年5月份A 款汽车每辆售价m 万元.则:90m =100m +1,解得:m =9.经检验,m=9是原方程的根且符合题意.答:今年5月份A 款汽车每辆售价9万元;(2)设购进A 款汽车x 辆.则:99≤7.5x +6(15-x )≤105.解得:6≤x ≤10.因为x 的正整数解为x =6,7,8,9,10,所以共有5种进货方案; (3)设总获利为W 元.则:W =(9-7.5)x +(8-6-a )(15-x )=(a -0.5)x +30-15a .当a =0.5时,(2)中所有方案获利相同.此时,购买A 款汽车6辆,B 款汽车9辆时对公司更有利.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题三 列方程(组)解应用题
姓名:________ 班级:________ 用时:______分钟
1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( )
A .100元
B .90元
C .810元
D .819元
2.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )
A .不盈不亏
B .盈利20元
C .亏损10元
D .亏损30元
3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.
A .2
B .3
C .4
D .5
4.夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )
A.⎩⎪⎨⎪⎧x +y =5 300200x +150y =30
B.⎩
⎪⎨⎪⎧x +y =5 300150x +200y =30 C.⎩
⎪⎨⎪⎧x +y =30200x +150y =5 300 D.⎩⎪⎨⎪⎧x +y =30150x +200y =5 300 5.滴滴快车是一种便捷的出行工具,计价规则如表:
小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时两人所付车费相同,那么
这两辆滴滴快车的行车时间相差( )
A.10分钟B.13分钟
C.15分钟D.19分钟
6.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为__________________________.
7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为________尺,竿子长为________尺.
8.《孙子算经》中有这样一道题,原文如下:
今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?
大意为:
今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?
请解答上述问题.
9.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.
10.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.
(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?
(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.
参考答案
1.A 2.C 3.D 4.C 5.D
6.2x+56=589-x 7.20 15
小学+初中+高中
8.解:设城中有x 户人家.
依题意得x +x 3
=100, 解得x =75.
答:城中有75户人家.
9.解:设订购了A 型粽子x 千克,B 型粽子y 千克,
根据题意得⎩
⎪⎨⎪⎧y =2x -20,28x +24y =2 560, 解得⎩
⎪⎨⎪⎧x =40,y =60. 答:订购了A 型粽子40千克,B 型粽子60千克.
10.解:(1)设道路硬化的里程数是x 千米,则道路拓宽的里程数是(50-x)千米.
根据题意得x≥4(50-x),解得x≥40.
答:原计划今年1至5月,道路硬化的里程数至少是40千米.
(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米,x 千米, 2x +x =45,x =15,2x =30,
设每千米的道路硬化和道路拓宽的经费分别为y 万元,2y 万元,
30y +15×2y=780,y =13,
2y =26,
由题意得13(1+a%)·40(1+5a%)+26(1+5a%)·10(1+8a%)=780(1+10a%),
设a%=m ,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),
10m 2
-m =0,m 1=0.1,m 2=0(舍去),
∴a=10.。

相关文档
最新文档