八年级数学下期末复习平行四边形矩形菱形正方形折叠问题专题训练

合集下载

专题07 特殊的平行四边形中折叠问题(解析版)八年级数学下册期末综合复习专题提优训练(人教版)

专题07 特殊的平行四边形中折叠问题(解析版)八年级数学下册期末综合复习专题提优训练(人教版)

2020-2021学年八年级数学下册期末综合复习专题提优训练(人教版)专题07 特殊的平行四边形中折叠问题【典型例题】1.如图所示,长方形纸片ABCD 的长AD =8cm ,宽AB =4cm ,将其折叠,使点D 与点B 重合. (1)求证:BE =BF ;(2)求折叠后DE 的长;(2)求以折痕EF 为边的正方形面积.【答案】(1)证明见解析;(2)5cm ;(3)20cm 2.【详解】(1)在长方形ABCD 中,AD //BC ,DEF EFB ∴∠=∠,DEF BEF ∠=∠,EFB BEF ∴∠=∠,∴ BE =BF ,设DE =x cm ,则BE =x cm ,AE =()8x cm -,在Rt ABE △中,由勾股定理()22248x x +-=, ∴5x =,即DE 的长为5cm .(2)过E 作EH BF ⊥于点H ,则EH =AB =4,BH =AE =3,∴ HF =BF -BH =5-3=2,∴2222420EF =+=,∴ 以EF 为边长的正方形的面积为220cm .【专题训练】一、选择题1.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A B .2 C .D .4【答案】B【分析】 根据菱形的性质证明∴ABD 是等边三角形,求得BD =4,再证明EF 是∴ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∴四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∴ABC ,4AB BC CD DA ==== ∴∴111206022ABD ABC ︒=∠=⨯=︒ ∴AB AD =∴∴ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∴BD AC ⊥,∴//EF BD∴EF 为∴ABD 的中位线, ∴122EF BD == 故选:B .【点睛】本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力.2.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点C 折叠纸片,使点C 落在MN 上的点F 处,折痕为BE .若AB 的长为1,则FM 的长为( )A .1B .2C .2D .12【答案】B【分析】根据翻折得到1FB BC ==,12BM =,在Rt BFM 中,可利用勾股定理求出FM 的值. 【详解】 解:四边形ABCD 是正方形, 1AB BC ∴==,由折叠的性质可知,1FB BC ==,1122BM AB ==, 在Rt BFM 中,由勾股定理得:2FM ===. 故选:B .【点睛】本题考查翻折、正方形的性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键. 3.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2CD 【答案】D【分析】 根据菱形及矩形的性质可得到∴BAC 的度数,从而根据直角三角形的性质求得BC 的长.【详解】解:∴四边形AECF 为菱形,∴∴FCO =∴ECO ,EC =AE ,由折叠的性质可知,∴ECO =∴BCE ,又∴FCO +∴ECO +∴BCE =90°,∴∴FCO =∴ECO =∴BCE =30°,在Rt ∴EBC 中,EC =2EB ,又∴EC =AE ,AB =AE +EB =3,∴EB=1,EC=2,∴Rt∴BCE中,BC ,故选:D.【点睛】本题主要考查了菱形的性质以及矩形的性质,解决问题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.4.如图,在正方形ABCD中,AB=6,点E,F分别在边AB,CD上,∴EFC=120°.若将四边形EBCF沿EF 折叠,点B恰好落在AD边上,则AE的长度为()A.2B C D.1【答案】A【分析】依据正方形的性质以及折叠的性质,即可得到∴AEB'=60°,再根据含30°角的直角三角形的性质,即可得到AE的长.【详解】解:∴四边形ABCD是正方形,∴AB∴CD,∴A=90°,∴∴BEF=180°-∴EFC=60°,∴将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∴BEF=∴FEB'=60°,BE=B'E,∴∴AEB'=180°-∴BEF-∴FEB'=60°,∴∴AB'E=30°,∴B'E=2AE,设AE=x,则B'E=2x=BE,∴AB=6,∴x+2x=6,解得x=2.故选:A.【点睛】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.5.如图,菱形ABCD中,∴ABC=60°,AB=4,E是边AD上一动点,将∴CDE沿CE折叠,得到∴CFE,则∴BCF 面积的最大值是()A.8B.C.16D.【答案】A【分析】由三角形底边BC是定长,所以当∴BCF的高最大时,∴BCF的面积最大,即当FC∴BC时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∴将∴CDE沿CE折叠,得到∴CFE,∴FC=CD=4由此,∴BCF的底边BC是定长,所以当∴BCF的高最大时,∴BCF的面积最大,即当FC∴BC时,三角形有最大面积∴∴BCF面积的最大值是11448 22BC FC=⨯⨯=故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键. 6.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ′,C ′上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为( )cm .A 32B .52CD .32【答案】A【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】解:如图1中,∴四边形ABCD 是矩形,∴AB ∴CD ,∴∴1=∴3,由翻折的性质可知:∴1=∴2,BM =MB ′,∴∴2=∴3,∴MB ′=NB ′,∴NB '==cm ),∴BM NB '==(cm ).如图2中,当点M 与A 重合时,同理可得:AE =EN ,设AE =EN =x cm ,在Rt ∴ADE 中,则有2222(4)=+-x x ,解得x =52, ∴53422DE =-=(cm ), 如图3中,当点M 运动到MB ′∴AB 时,DE ′的值最大,DE ′=5-1-2=2(cm ),如图4中,当点M 运动到点B ′落在CD 时,DB ′(即DE ″)51(4=-=(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径3322(4)22EE E B '''=+=-+-=(cm ). 故选:A .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.二、填空题7.如图a 是长方形纸带,∴DEF =22°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∴CFE 的度数是________°.【答案】114°【分析】根据两直线平行,内错角相等可得∴EFB=∴DEF,再根据翻折的性质,图c中∴EFB处重叠3层,然后根据∴CFE=180°-3∴EFB代入数据行计算即可得解【详解】∴∴DEF =22°长方形ABCD的对边AD//BC∴∴EFB=∴DEF=22°由折叠,∴EFB处折叠了3层∴∴CFE=180° -3∴EFB=180°—3 × 22°=114°故答案为:114°【点睛】本题考查折叠问题,熟知折叠中蕴含着全等,有相等的角与边进行分析是关键.8.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC 边上的点F处,则CE=_____.【答案】4 3【分析】由折叠求出BF和CF,再设CF=x,在∴CEF中用勾股定理列方程即可得答案.【详解】解:∴矩形ABCD沿AE折叠,AB=3,AD=5,∴AF=AD=5,∴B=∴C=90°,DE=EF,∴BF4,∴CF=BC﹣BF=1,设CE=x,则EF=DE=3﹣x,在Rt∴CEF中,CE2+CF2=EF2,∴x2+12=(3﹣x)2,解得x=43,∴CE=43.故答案为:43.【点睛】本题考查矩形性质及勾股定理应用等知识,解题的关键是在Rt∴CEF中用勾股定理列方程.9.如图,将正方形纸片ABCD折叠,使点D落在BC边点E处,点A落在点F处,折痕为MN,若32NEC FMN∠=︒∠=,_____︒.【答案】119【分析】根据正方形的性质得到∴A=∴C=∴D=90°,根据折叠的性质得到∴F=∴A=90°,∴FEN=∴C=90°,∴DNM=∴ENM,根据平角的定义得到∴ENM=12(180°-∴ENC)=12(180°-58°)=61°,根据四边形的内角和即可得到结论.【详解】解:∴四边形ABCD是正方形,∴∴A=∴C=∴D=90°,∴将正方形纸片ABCD折叠,使点D落在BC边点E处,点A落在点F处,∴∴F=∴A=90°,∴FEN=∴D=90°,∴DNM=∴ENM,∴∴NEC=32°,∴∴ENC=58°,∴∴ENM=12(180°-∴ENC)=12(180°-58°)=61°,∴∴FMN =360°-90°-90°-61°=119°,故答案为:119.【点睛】本题考查了角的计算,翻折变换的问题,折叠问题其实质是轴对称,对应线段相等,对应角相等,找到相等的角是解决本题的关键.10.对角线长分别为6和8的菱形ABCD 如图所示,点O 为对角线的交点,过点O 折叠菱形,使B ,B '两点重合,MN 是折痕.若1B M '=,则CN 的长为_______.【答案】4【分析】连接AC 、BD ,如图,利用菱形的性质得132OC AC ==,142OD BD ==,90COD ∠=︒,再利用勾股定理计算出5CD =,接着证明OBM ODN ∆≅∆得到DN BM =,然后根据折叠的性质得1BM BM'==,从而有1DN =,于是计算CD DN -即可.【详解】解:连接AC 、BD ,如图,点O 为菱形ABCD 的对角线的交点,132OC AC ∴==,142OD BD ==,90COD ∠=︒, 在Rt COD ∆中,5CD ==,//AB CD ,MBO NDO ∴∠=∠,在OBM ∆和ODN ∆中MBO NDO OB ODBOM DON ∠=∠⎧⎪=⎨⎪∠=∠⎩, OBM ODN ∴∆≅∆,DN BM ∴=,过点O 折叠菱形,使B ,B ′两点重合,MN 是折痕,1BM BM'∴==, 1DN ∴=,514CN CD DN ∴=-=-=,故答案为:4.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.11.如图,矩形ABCD 中,6,8AB BC ==,点E 是BC 边上一点,连接AE ,把ABE △沿AE 折叠,使点B 落在点F 处,当CEF △为直角三角形时,CF 的长为________.【答案】4或【分析】当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,先利用勾股定理计算出10AC =,根据折叠的性质得90AFE B ∠=∠=︒,而当CEF △为直角三角形时,只能得到90EFC ∠=︒,所以点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,则,6EB EF AB AF ===,可计算出CF ; ②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,根据勾股定理计算出CF .【详解】解:当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt ABC 中,6,8AB BC ==,∴10AC =,∴B 沿AE 折叠,使点B 落在点F 处,∴90AFE B ∠=∠=︒,当CEF △为直角三角形时,只能得到90EFC ∠=︒,∴点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴,6EB EF AB AF ===,∴1064CF =-=;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴6,862BE AB CE ===-=,∴CF =综上所述,CF 的长为4或.故答案为:4或.【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.12.如图,在正方形ABCD 中,12AB =,点E 在边CD 上,3CD DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连接AG ,CF .有下列结论:①ABG AFG ≅;②BG GC =;③//AG CF ;④6FGC S =△.其中正确的结论是__________.(填序号)【答案】①②③【分析】由正方形的性质和折叠的性质得出AB =AF ,∴AFG =90°,由HL 证明Rt ∴ABG ∴Rt ∴AFG ,得出①正确;设BG =FG =x ,则CG =12-x .由勾股定理得出方程,解方程求出BG ,得出GC ,即可得出②正确;由全等三角形的性质和三角形内角和定理得出∴AGB =∴AGF =∴GFC =∴GCF ,得出AG ∴CF ,即可得出③正确;通过计算三角形的面积得出④错误;即可得出结果.【详解】解:①正确.理由如下:四边形ABCD 是正方形,12AB BC CD AD ∴====,90B GCE D ∠=∠=∠=︒,由折叠的性质得:AF AD =,90AFE D ∠=∠=︒,90AFG ∴∠=︒,AB AF =,在Rt ABG △和Rt AFG △中,AG AG AB AF=⎧⎨=⎩, Rt Rt (HL)ABG AFG ∴≅△△;②正确.理由如下: 由题意得:143EF DE CD ===,设BG FG x ==,则12CG x =-. 在直角ECG 中,根据勾股定理,得222(12)8(4)x x -+=+,解得:6x =,6BG ∴=,1266GC ∴=-=,BG GC ∴=;③正确.理由如下:CG BG =,BG GF =,CG GF ∴=,FGC ∴△是等腰三角形,GFC GCF ∠=∠.又∴Rt Rt ABG AFG ≅△△,AGB AGF ∴∠=∠,218022+==︒-=+==∠∠∠∠∠∠∠∠AGB AGF AGB FGC GFC GCF GFC GCF ,AGB AGF GFC GCF ∴∠=∠=∠=∠,//AG CF ∴;④错误;理由如下:11682422GCE S GC CE =⋅=⨯⨯=△, 6GF =,4EF =,GFC 和FCE △等高,:3:2GFC FCE S S ∴=△△,37224655GFC S ∴=⨯=≠△. 故④不正确.∴正确的个数有①②③.故答案为:①②③.【点睛】本题考查的是翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识;本题综合性强,有一定的难度.三、解答题13.如图,矩形纸片 ABCD 的长 AD =10cm ,宽 AB =5cm ,将其折叠,使点 D 与点 B 重合,那么折叠后AE 的长是多少?【答案】154cm【分析】设DE =x ,根据折叠的性质可得BE =x ,表示出AE =10−x ,然后在Rt ∴ABE 中,利用勾股定理列式计算即可得解.【详解】解:设 DE =xcm ,则BE =xcm ,∴AE =(10﹣x )cm ,∴在 Rt ∴ABE 中,AB 2+AE 2=BE 2,∴52+(10﹣x )2=x 2,∴解得:x =254, ∴AE =10﹣254=154cm 答:折叠后AE 的长是154cm . 【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,根据勾股定理列出方程是解题的关键. 14.如图,在菱形ABCD 中,120ABC ∠=︒,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B D ,重合),折痕为EF ,若26DG BG ==,,求AF 的长.【答案】AF 的长为267. 【分析】 作FH BD ⊥于点H ,通过菱形的性质和折叠的性质证明ABD △为等边三角形,设AF x =,则FG x =,8DF x =-,在Rt DFH 中,利用特殊角表示出DH ,FH ,最后在Rt FHG 中利用勾股定理即可求解.【详解】如图,作FH BD ⊥于点H .由折叠的性质可知,FG FA =.由题意,得8BD DG BG =+=.∴ 四边形ABCD 是菱形. ∴1602AD AB ABD CBD ABC =∠=∠=∠=︒,, ∴ABD △为等边三角形,∴8AD BD ==.设AF x =,则FG x =,8DF x =-,在Rt DFH 中,∴60FDH ∠=︒,∴()118422DH x x =-=-,)822FH x x =-=, ∴1222HG DH x =-=-. 在Rt FHG 中,222FG FH GH =+,即222122x x x ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭, 解得267x =, ∴AF 的长为267. 【点睛】本题主要考查菱形的性质,含30°的直角三角形的性质,折叠的性质,勾股定理,掌握菱形的性质,勾股定理及方程的思想是解题的关键.15.如图,正方形纸片ABCD 的边长为6,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都在点G 处,已知2BE =,求FC 的长.【答案】3【分析】因为正方形ABCD 的边长为6,由图形折叠可得=2BE EG =,624EC =-=,6DF FG x ==-, 再利用勾股定理进行计算即可.【详解】解:设FC x =,由图形折叠可得=2BE EG =,624EC =-=,6DF FG x ==-,在直角ECF ∆中,∴222EF EC CF =+,∴222(426)x x +-=+,解得3x =,∴3=FC .【点睛】此题考查了折叠问题,解题的关键是找准不变的线段,利用勾股定理求解线段.16.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处.(1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.【答案】(1)证明见解析;(2)30.【解析】试题分析:(1)首先由矩形的性质和折叠的性质证得AB =CD ,AD ∴BC ,∴ANF =90°,∴CME =90°,易得AN =CM ,可得∴ANF∴∴CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8-x,CM=10-6=4,在Rt∴CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.试题解析:(1)证明:∴折叠,∴AM=AB,CN=CD,∴FNC=∴D=90°,∴AME=∴B=90°,∴∴ANF=90°,∴CME=90°,∴四边形ABCD为矩形,∴AB=CD,AD∴BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在∴ANF和∴CME中,{FAN EMC AN CMANF CME∠=∠=∠=∠,∴∴ANF∴∴CME(ASA),∴AF=CE,又∴AF∴CE,∴四边形AECF是平行四边形;(2)解:∴AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt∴CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.17.如图1.将矩形ABCD沿DE折叠使点A落在A'处,然后将矩形展平,沿EF折叠使点A落在折痕DE 上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF∴CDE的面积.【答案】(1)见解析;(2)∴CDE的面积=4+【分析】(1)由折叠的性质及矩形的性质可得AD AE BC ==,AE EG =,BC CH =,可得结论;(2)由折叠的性质可知45ADE ∠=︒,90FGE A ∠=∠=︒,AF =,那么DG =,利用勾股定理求出2DF =,于是可得2AD AF DF =+=;再利用AAS 证明AEF BCE △≌△,得到AF BE =,于是22AB AE BE =+=+=,即可求解.【详解】(1)证明:四边形ABCD 是矩形, AD BC ∴=,将矩形ABCD 沿DE 折叠使点A 落在A '处,AD A D '∴=,AE A E '=,45ADE A DE '∠=∠=︒,45ADE AED ∴∠=∠=︒,AD AE ∴=,AE BC ∴=,由折叠的性质可得AE EG =,BC CH =,EG CH ∴=;(2)45ADE ∠=︒,90FGE A ∠=∠=︒,AFDG ∴=2DF =,2AD AF DF ∴=+;由折叠知AEF GEF ∠=∠,BEC HEC ∠=∠,90GEF HEC ∴∠+∠=︒,90AEF BEC ∠+∠=︒,90∠+∠=︒AEF AFE ,BEC AFE ∴∠=∠,在AEF 与BCE 中,90AFE BEC A B AE BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()AEF BCE AAS ∴△≌△,AF BE∴=,22AB AE BE CD ∴=+=+==,CDE ∴的面积11(2(24 22CD AD=⨯⨯=⨯+⨯=+【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了全等三角形的判定与性质,矩形的性质,勾股定理等知识.18.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF 折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∴BAE为多少度时,四边形AECF是菱形?请说明理由.【答案】(1)证明见解析(2)当∴BAE=30°时,四边形AECF是菱形【分析】(1)首先证明∴ABE∴∴CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF是平行四边形;(2)由折叠性质得到∴BAE=∴CAE=30°,求得∴ACE=90°-30°=60°,即∴CAE=∴ACE,得到EA=EC,于是得到结论.【详解】(1)∴四边形ABCD为矩形,∴AB=CD,AD∴BC,∴B=∴D=90°,∴BAC=∴DCA.由翻折的性质可知:∴EAB=12∴BAC,∴DCF=12∴DCA.∴∴EAB=∴DCF.在∴ABE和∴CDF中B DAB CDEAB DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴∴ABE∴∴CDF(ASA),∴DF=BE.∴AF=EC.又∴AF∴EC,∴四边形AECF是平行四边形;(2)当∴BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∴BAE=∴CAE=30°,∴∴B=90°,∴∴ACE=90°-30°=60°,即∴CAE=∴ACE,∴EA=EC,∴四边形AECF是平行四边形,∴四边形AECF是菱形.【点睛】本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.19.探究:如图①点E、F分别在正方形ABCD的边BC、CD上,连结AE、AF、EF,将∴ABE、∴ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与∴AEF完全重合的三角形.若BE=2,DF=3,求AB的长;拓展:如图②点E、F分别在四边形BACD的边BC、CD上,且∴B=∴D=90°.连结AE、AF、EF将∴ABE、∴ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与∴AEF完全重合的三角形.若∴EAF=30°,AB=4,则∴ECF的周长是.【答案】探究:AB=6;拓展:.3【分析】探究:设:正方形的边长为a,则EC=a-2,CF=a-3,则由勾股定理得:EF2=EC2+CF2,即可求解;拓展:证明∴ABC∴∴ADC,∴BAE+∴DAF=∴EAF=30°,则∴BAD=60°,∴BAC=∴DAC=12(∴BAD)=30°,CD=BC=ABtan∴BAC,即可求解.【详解】探究:设:正方形的边长为a,则EC=a﹣2,CF=a﹣3,则EF=BE+DF=5,则EF2=EC2+CF2,即:25=(a﹣2)2+(a﹣3)2,解得:a=6或﹣1(舍去﹣1),故AB=6;拓展:由题意得:AB=CD=4,连接AC,∴AB=CD,AC=AC,∴∴ABC∴∴ADC,∴BC=CD,∴BAC=∴DAC,∴点E、F分别在四边形BACD的边BC、CD上,故:∴BAE+∴DAF=∴EAF=30°,则∴BAD=60°,∴∴BAC=∴DAC=12(∴BAD)=30°,CD=BC=ABtan∴BAC=4∴ECF的周长=EF+EC+FC=AE+FD+EC+FC=AC+CD=2CD,故答案为:3. 【点睛】 本题考查的是翻折变换(折叠问题),涉及到正方形的性质、三角形全等等,其中(2)证明∴ABC ∴∴ADC ,是本题解题的关键.20.(1)如图1,将矩形ABCD 折叠,使AB 落在对角线AC 上,折痕为AE ,点B 落在点1B 处,若66DAC ∠=︒,则BAE ∠= º;(2)小丽手中有一张矩形纸片,9AB =,4=AD .她准备按如下两种方式进行折叠:①如图2,点F 在这张矩形纸片的边CD 上,将纸片折叠,使点D 落在边AB 上的点1D 处,折痕为FG ,若5DF =,求AG 的长;②如图3,点H 在这张矩形纸片的边AB 上,将纸片折叠,使HA 落在射线HC 上,折痕为HK ,点A ,D 分别落在1A ,2D 处,若73DK =,求1AC 的长. 【答案】(1)12;(2)①AG =32;②13A C = 【分析】 (1)由折叠的性质可得∴BAE =∴CAE =12°;(2)①过点F 作FH ∴AB 于H ,可证四边形DFHA 是矩形,可得AD =FH =4,由勾股定理可求D 1H =3,由勾股定理可求AG 的长;②首先证明CK =CH ,利用勾股定理求出BH ,可得AH ,再利用翻折不变性,可知AH =A 1H ,由此即可解决问题.【详解】解:(1)∴∴DAC =66°,∴∴CAB =24°∴将矩形ABCD 折叠,使AB 落在对角线AC 上,∴∴BAE=∴CAE=12°故答案为:12;(2)如图2,过点F作FH∴AB于H,∴∴D=∴A=90°,FH∴AB∴四边形DFHA是矩形∴AD=FH=4,∴将纸片ABCD折叠∴DF=D1F=5,DG=D1G,∴D 1H2225163FH,∴AD1=2∴AG2+D1A2=D1G2,∴AG2+4=(4−AG)2,∴AG=32;②∴DK=73,CD=9,∴CK=9−73=203,∴四边形ABCD是矩形,∴DC∴AB,∴∴CKH=∴AHK,由翻折不变性可知,∴AHK=∴CHK,∴∴CKH=∴CHK,∴CK=CH=203,∴CB=AD=4,∴B=90°,∴在Rt∴CDF中,BH22400161693BC,∴AH=AB−BH=11 3,由翻折不变性可知,AH=A1H=11 3,∴A1C=CH−A1H=3.【点睛】本题考查四边形综合题、矩形的性质、翻折变换、勾股定理,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题,属于中考压轴题.。

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷一、选择题1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12 3D.16 32.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,将△BCD沿CD折叠,点B恰好落在AB中点E处,则∠A=()A.75° B.60° C.45° D.30°5.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )A.78°B.75°C.60°D.45°6.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)7.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是( )A. B.﹣1 C. D.二、填空题8.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______9.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.10.如图,已知在矩形ABCD中,AB=4,AD=8,将△ABC沿对角线AC翻折,点B落在点E处,联结DE,则DE的长为______________.11.如图,在▱ABCD中,AB=13,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为 .12.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为 .13.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为 .14.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.15.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.16.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.17.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为__________.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.三、解答题19.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE.直线CE的关系式是y=﹣0.5x+8,与x轴相交于点F,且AE=3.(1)求OC 长度;(2)求点B'的坐标;(3)求矩形ABCO 的面积.20.已知函数y=x 34,完成下列问题: (1)画出此函数图象;(2)若B 点(6,a )在图象上,求a 的值;(3)过B 点作BA ⊥x 轴于A 点,BC ⊥y 轴于C 点,求OB 的长;(4)将边OA 沿OE 翻折,使点A 落在OB 上的D 点处,求折痕OE 直线解析式.21.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌△CDE ;(2)若AB=4,BC=8,求图中阴影部分的面积.22.准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.23.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.24.如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t <6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD的长;(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)连接DE,当t为何值时,△DEF为直角三角形?(4)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?25.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形.(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.参考答案1.答案为:D;2.B3.C4.D5.B6.B.7.答案为:A.8.答案为:51.9.答案为:2.10.答案为: .11.答案为:3.12.答案为: 2.13.答案为:3.7514.答案为:4﹣6.15.答案是:2.16.解:在Rt△ABC中,由勾股定理可知:AC=4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.17.答案为:2;18.答案为:(-2014,+1).19.解:(1)∵直线y=﹣0.5x+8与y轴交于点为C,∴令x=0,则y=8,∴点C坐标为(0,8),∴OC=8;(2)在矩形OABC中,AB=OC=8,∠A=90°,∵AE=3,∴BE=AB﹣BE=8﹣3=5,∵是△CBE沿CE翻折得到的,∴EB ′=BE=5,在Rt △AB ′E 中,AB ′===4,由点E 在直线y=﹣0.5x+8上,设E (a ,3),则有3=﹣0.5a+8,解得a=10,∴OA=10,∴OB ′=OA ﹣AB ′=10﹣4=6,∴点B ′的坐标为(0,6);(3)由(1),(2)知OC=8,OA=10,∴矩形ABCO 的面积为OC ×OA=8×10=80.20.(1)画图略;(2)a=8;(3)OB=10;(4)y=0.5x.21.解:(1)证明:由翻折的性质可得AF=AB ,∠F=∠B=90°.∵四边形ABCD 为矩形,∴AB=CD ,∠B=∠D=90°.∴AF=CD ,∠F=∠D.又∵∠AEF=∠CED ,∴△AFE ≌△CDE(AAS).(2)∵△AFE ≌△CDE ,∴AE=CE.根据翻折的性质可知FC=BC=8.在Rt △AFE 中,AE 2=AF 2+EF 2,即(8-EF)2=42+EF 2,解得EF=3.∴AE=5.∴S 阴影=12EC ·AF=12×5×4=10. 22.(1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∴∠EBD=∠FDB ,∴EB ∥DF ,∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)∵四边形BFDE 为菱形,∴BE=ED ,∠EBD=∠FBD=∠ABE ,∵四边形ABCD 是矩形,∴AD=BC ,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,∴菱形BFDE 的面积为:×2=23. (1)证明:根据翻折的方法可得EF=EC ,∠FEG=∠CEG.又∵GE=GE ,∴△EFG ≌△ECG.∴FG=GC.∵线段FG 是由EF 绕F 旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE 是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8-x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,=,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=0.5BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=0.5BE.∴G为BE的中点.∴CG=BG=0.5BE.24.解:(1)如图①∵DF⊥BC,∠C=30°,∴DF=0.5CD=0.5×2t=t.∵AE=t,∴DF=AE.∵∠ABC=90°,DF⊥BC,∴DF∥AE∴四边形AEFD是平行四边形;(2)①显然∠DFE<90°;②如图①′,当∠EDF=90°时,四边形EBFD为矩形,此时AE=0.5AD,∴t=0.5(12−2t),∴t=3;③如图①″,当∠DEF=90°时,此时∠ADE=90°∴∠AED=90°-∠A=30°∴AD=0.5AE,∴12−2t=0.5t,∴t=4.8.综上:当t=3秒或t=4.8秒时,△DEF为直角三角形;(3)如图②,若四边形AEA′D为菱形,则AE=AD,∴t=12-2t,∴t=4.∴当t=4时,四边形AEA′D为菱形.25.(1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.∵点B与点E关于PQ对称,∴CE=BC=5cm.在Rt△CDE中,DE=4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm.在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=5/3cm,∴菱形BFEP的边长为5/3cm.②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.。

人教版初中数学讲义八年级下册第07讲 专题2 平行四边形(特殊的平行四边形)中的折叠问题(解析版)

人教版初中数学讲义八年级下册第07讲 专题2  平行四边形(特殊的平行四边形)中的折叠问题(解析版)

第07讲专题1平行(特殊)四边形中的折叠问题类型一:平行四边形中的折叠问题类型二:矩形中的折叠问题类型三:菱形中的折叠问题类型四:正方形中的折叠问题类型一:平行四边形中的折叠问题1.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△AB′C,B′C交AD于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=,则B′D的长是()A.1B.C.D.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∠ADC=60°,∴∠CAE=∠ACB=45°,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB=45°,∠AB′C=∠B=60°,∴∠AEC=180°﹣∠CAE﹣∠ACB′=90°,∴AE=CE=AC=,∵∠AEC=90°,∠AB′C=60°,∠ADC=60°,∴∠B′AD=30°,∠DCE=30°,∴B′E=DE=1,∴B′D==.故选:B.2.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=65°.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.4.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.5.如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在C′P边上B′处,折痕与AB边交于点N.若∠MPC=74°,则∠NPB′=16°.【解答】解:∵点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M,∴∠MPC′=∠MPC=74°,∴∠BPB′=180°﹣∠CPC′=180°﹣2∠PMC=180°﹣148°=32°,∵∠BPN=∠B′PN,∴∠NPB′=∠BPB′=16°,故答案为:16.类型二:矩形中的折叠问题6.如图,矩形ABCD沿对角线BD折叠,已知长BC=8cm,宽AB=6cm,那么折叠后重合部分的面积是()A.48cm2B.24cm2C.18.75cm2D.18cm2【解答】解:∵四边形ABCD是矩形,∴AD∥CB,∴∠ADB=∠DBC,∵∠C′BD=∠DBC∴∠ADB=∠EBD,∴DE=BE,∴C′E=8﹣DE,∵C′D=AB=6,∴62+(8﹣DE)2=DE2,∴DE=,=DE×CD÷2=18.75cm2.∴S△BDE故选:C.7.如图,长方形纸片ABCD,E为CD边上一点,将纸片沿BE折叠,点C落在点C'处,将纸片沿AE折叠,点D落在点D'处,且D'恰好在线段BE上.若∠AEC'=α,则∠CEB=()A.B.C.D.【解答】解:由折叠的性质得:∠AED=∠AED',∠CEB=∠C'EB,∵∠AED'=180°﹣∠CEB﹣∠AED,∠AED'=∠AEC'+∠C'EB=α+∠C'EB,∴∠AED'=180°﹣∠CEB﹣∠AED',∴2∠AED'=180°﹣∠CEB,∴2(α+∠CEB)=180°﹣∠CEB,∴3∠CEB=180°﹣2α,∴∠CEB=60°﹣α,故选:A.8.数学老师要求学生用一张长方形的纸片ABCD折出一个45°的角,甲、乙两人的折法如下,下列说法正确的是()甲:如图1,将纸片沿折痕AE折叠,使点B落在AD上的点B'处,∠EAD即为所求,乙:如图2,将纸片沿折痕AE,AF折叠,使B,D两点分别落在点B',D'处,AB'与AD'在同一直线上,∠EAF即为所求,A.只有甲的折法正确B.甲和乙的折法都正确C.只有乙的折法正确D.甲和乙的折法都不正确【解答】解:甲:将纸片沿折痕AE折叠,使B点落在AD上的B'点,得到∠EAB=∠EAD=45°;乙:将纸片沿折痕AE,AF折叠,使B,D两点落在AC上的点B',D',得到∠EAF=∠EAB'+∠FAB'=(∠DAC+∠BAC)=×90°=45°;故选:B.9.如图,在矩形ABCD中,M是BC上一点,将△ABM沿AM折叠,使点B落在B'处,若∠AMB=α,则∠B'AD等于()A.α﹣90°B.α﹣45°C.90°﹣2αD.90°﹣α【解答】解:∵四边形ABCD为矩形,∴∠ABC=90°,AD∥BC,∴∠DAM=∠AMB=α,∠BAM=90°﹣α,根据折叠可知,∠B'AM=∠BAM=90°﹣α,∴∠B'AD=∠B'AM﹣∠DAM=90°﹣α﹣α=90°﹣2α,故C正确.故选:C.10.如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFG=37°点H和点G分别是边AD和BC上的动点,现将纸片两端分别沿EF,GH折叠至如图所示的位置,若EF∥GH,则∠KHD 的度数为()A.37°B.74°C.96°D.106°【解答】解:∵EF∥GH,∴∠HGC=∠EFG=37°,∵四边形ABCD是长方形,∴AD∥BC,∴∠GHD+∠HGC=180°,∴∠GHD=143°,根据折叠的性质可得:∠KHG=∠DHG=143°,∴∠KHD=360°﹣∠KHG﹣∠DHG=360°﹣143°﹣143°=74°.故选:B.11.如图,将长方形纸片ABCD沿EF折叠后,点A,D分别落在A1,D1的位置,再将△A1EG沿着AB对折,将△GD1N沿着GN对折,使得D1落在直线GH上,则下列说法正确的是()①GN⊥DC;②GH⊥GD1;③当MN∥EF时,∠AEF=120°.A.①②B.①③C.②③D.①②③【解答】解:由折叠可知:∠A1GE=∠EGH,∠D1GN=∠MGN,∠GMN=∠D1=90°,∠A1=∠EHG=90°,∠AEF=∠A1EF,∴EH∥MN,∵∠A1GE+∠EGH+∠D1GN+∠MGN=180°,∴∠EGN=90°,∴GN⊥DC;故①正确;∵∠D1GN=∠MGN不一定为45°,∴GH不一定垂直GD1,故②错误;∵MN∥EF,EH∥MN,∴EH与EF共线,∴∠AEF=∠A1EF=2∠GEF,∵∠AEF+∠GEF=180°,∴∠AEF=120°,故③正确;故选:B.类型三:菱形中的折叠问题10.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C′,且DC′是AB的垂直平分线,则∠DEC的大小为()A.30°B.45°C.60°D.75°【解答】解:连接BD,如图所示:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵DC′是AB的垂直平分线,∴P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:D.11.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的点F,那么∠BFC的度数是75°.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF,∴FB=BC,∴∠BFC=∠BCF=(180°﹣30°)÷2=75°,故答案为:75°.12.如图,菱形ABCD中,∠D=120°,点E在边CD上,将菱形沿直线AE翻折,使点D恰好落在对角线AC上,连接BD′,则∠AD′B=75°.【解答】解:∵四边形ABCD是菱形,∴AD=DC=BC=AB,CD∥AB,∴∠DAC=∠DCA,∵∠D=120°,∴∠DAC=∠DCA=(180°﹣∠D)=30°.∵CD∥AB,∴∠BAD′=∠DCA=30°.∵将菱形沿直线AE翻折,使点D恰好落在对角线AC上,∴AD=AD′,∴AB=AD′,∴∠AD′B=∠ABD′=(180°﹣∠BAD′)=75°.故答案为75.13.如图,在菱形ABCD中,∠A=120°,AB=2,点E是边AB上一点,以DE为对称轴将△DAE折叠得到△DGE,再折叠BE使BE落在直线EG上,点B的对应点为点H,折痕为EF且交BC于点F.(1)∠DEF=90°;(2)若点E是AB的中点,则DF的长为.【解答】解:(1)由翻折可得∠AED=∠DEG,∠BEF=∠HEF,∴∠DEG+∠HEF=∠AED+∠BEF,∵∠DEG+∠HEF+∠AED+∠BEF=180°,∴∠DEG+∠HEF=90°,即∠DEF=90°.故答案为:90°.(2)∵四边形ABCD为菱形,∴AD∥BC,∴∠A+∠B=180°,由翻折可得AE=EG,BE=EH,∠A=∠EGD,∠B=∠EHF,∵点E是AB的中点,∴AE=BE,∴EG=EH,即点G与点H重合.∵∠EGD+∠EHF=∠A+∠B=180°,∴点D,G,F三点在同一条直线上.过点D作DM⊥BC,交BC的延长线于点M.∵∠A=120°,AB=2,∴∠DCM=60°,CD=2,∴CM=CD=1,DM=CD=,由翻折可得BF=FG,AD=DG=2,设BF=x,则MF=2﹣x+1=3﹣x,DF=2+x,由勾股定理可得,解得x=,∴DF=.故答案为:.类型四:正方形中的折叠问题14.如图,在正方形ABCD中,点E,F分别在边AB,CD上,∠EFC=120°,若将四边形EBCF沿EF 折叠,点B恰好落在AD边上,则∠AEB′为()A.70°B.65°C.30°D.60°【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∴∠BEF+∠EFC=180°,∵∠EFC=120°,∴∠BEF=180°﹣∠EFC=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,故选:D.15.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若FN=3,则正方形纸片的边长为2.【解答】解:设正方形纸片的边长为x,则BF=AB=x,BN=BC=x,∴Rt△BFN中,NF==x=3,∴x=2,故答案为:2.16.如图,在正方形ABCD中,E为边BC上一点,将△ABE沿AE折叠至△AB'E处,BE与AC交于点F,若∠EFC=69°,则∠CAE的大小为()A.10°B.12°C.14°D.15°【解答】解:∵∠EFC=69°,∠ACE=45°,∴∠BEF=69+45=114°,由折叠的性质可知:∠BEA=∠BEF=57°,∴∠BAE=90﹣57=33°,∴∠EAC=45﹣33=12°.故选:B.17.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,折痕BF与AE交于点H,点F在AD上,若DE=5,则AH的长为.【解答】解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF===13,=AB•AF=BF•AH,∵S△ABF∴12×5=13AH,∴AH=,故答案为:.18.如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为()A.100°B.110°C.120°D.130°【解答】解:四边形CDMN与四边形C′D′MN关于MN对称,则∠DMN=∠D′MN,且∠AMD′=90°﹣∠AD'M=40°,∴∠DMN=∠D′MN=(180°﹣40°)÷2=70°由于∠MD′C′=∠NC′D′=90°,∴∠MNC'=360°﹣90°﹣90°﹣70°=110°故选:B.。

人教版初二数学8年级下册 第18章(平行四边形)专项练习(含答案)

人教版初二数学8年级下册 第18章(平行四边形)专项练习(含答案)

《第十八章 平行四边形》专项练习专项1 特殊平行四边形中的折叠问题类型1 矩形中的折叠问题1.如图,将矩形纸片ABCD 的两个直角进行折叠,使CB ,AD 恰好落在对角线AC 上,B',D'分别是B ,D 的对应点,折痕分别为CF ,AE .若AB=4,BC=3,则线段B'D'的长是( )A.52B.2C.32D.12.如图,在矩形ABCD 中,AB=5,BC=6,点M ,N 分别在AD ,BC 上,且AM=BN ,AD=3AM ,E 为BC 边上一动点,连接DE ,将△DCE 沿DE 所在直线折叠得到△DC'E ,当点C'恰好落在线段MN 上时,则CE 的长为( )A.52或2B.52C.32或2D.323.如图,折叠矩形纸片ABCD ,使点B 落在点D 处,折痕为MN ,已知AB=8,AD=4,则MN 的长是( )A.535B.25C.735D.454.如图,在矩形纸片ABCD 中,边AB=12,AD=5,点P 为DC 边上的动点(点P 不与点D ,C 重合),将纸片沿AP 折叠,则CD'的最小值为 .5.如图,在矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,使点C 落在AD 边上的点F 处,过点F 作FG //CD ,交BE 于点G ,连接CG .(1)求证:四边形CEFG是菱形.(2)若AB=6,AD=10,求四边形CEFG的面积.类型2 菱形中的折叠问题6.如图,在菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A 恰好落在BD上的点F处,那么∠BFC的度数是( )A.60°B.70°C.75°D.80°7.如图,已知四边形ABCD是边长为6的菱形,且∠BAD=120°,点E,F分别在AB,BC边上,将菱形沿EF折叠,使点B正好落在AD边上的点G处.若EG⊥AC,则FG的长为( )A.36B.6C.33D.328.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B,D重合),折痕为EF,若DG=2,BG=6,求AF的长.类型3 正方形中的折叠问题9.如图,在正方形ABCD中,AB=6,将△ADE沿AE折叠,使点D落在点F处,延长EF交BC于点G.若点G刚好是BC边的中点,则ED的长是( )A.1B.1.5C.2D.2.510.如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接BP,BH.(1)求证:∠APB=∠BPH.(2)当点P在边AD上移动时,△PDH的周长是否发生变化?请证明你的结论.专项2 平行四边形中的动点问题1.如图,在平行四边形ABCD中,对角线AC,BD相交于点O.若E,F是AC 上两动点,分别从A,C两点同时出发,以1 cm/s的速度向C,A方向运动.(1)四边形DEBF是平行四边形吗?请说明理由.(2)若BD=12,AC=16,则当运动时间t为何值时,四边形DEBF是矩形? 2.如图1,在矩形ABCD中,AB=4 cm,BC=11 cm,点P从点D出发向终点A运动,同时点Q从点B出发向终点C运动.当P,Q两点中任意一点到达终点时,另一点随之停止运动,点P,Q的速度分别为1 cm/s,2 cm/s,连接PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形?(2)如图2,若点E为边AD上一点,当AE=3 cm时,四边形EQCP可能为菱形吗?若能,请求出t的值;若不能,请说明理由.3.如图1,菱形ABCD的对角线AC,BD相交于点O,且AC=6 cm,BD=8 cm,过点B,C分别作AC,BD的平行线相交于点E.(1)判断四边形BOCE的形状并证明;(2)点G从点A出发沿线段AC的方向以2 cm/s的速度运动了t s,连接BG,当S△ABG=2S△OBG时,求t的值.(3)如图2,点G在直线AC上运动,求BG+EG的最小值.4.已知点P,Q分别在菱形ABCD的边BC,CD上运动(点P不与B,C重合),且∠PAQ=∠B.(1)如图1,若AP⊥BC,求证:AP=AQ.(2)如图2,若AP与BC不垂直,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.(3)如图3,若AB=4,∠B=60°,请直接写出四边形APCQ的面积.5在正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的一个动点(不与点A,O重合),过点P作PE⊥PB,交边CD于点E.(1)如图1,求证:PE=PB.(2)如图2,若正方形ABCD的边长为2,过点E作EF⊥AC于点F,在点P 运动的过程中,PF的长度是否发生变化?若不变,试求出PF的长;若变化,请说明理由.(3)用等式表示线段PC,PA,EC之间的数量关系.专项3 与正方形有关的常考模型类型1 十字模型1.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E自D向C、点F自C向B移动时,连接AE和DF交于点P,请写出AE与DF的关系,并说明理由;(2)如图2,当点E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请直接回答“成立”或“不成立”,无需证明)(3)如图3,当点E,F分别在CD,BC的延长线上移动时,连接AE和DF,(1)中的结论还成立吗?请说明理由.2.在正方形ABCD中,E是边CD上一点(点E不与点C,D重合),连接BE.【感知】如图1,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图2,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD 于点G.(1)求证:BE=FG.(2)连接CM.若CM=1,则FG的长为 .【应用】如图3,取BE的中点M,连接CM.过点C作CG⊥BE交AD于点G,连接EG,MG.若CM=3,则四边形GMCE的面积为 .类型2 半角模型3.如图,点M,N分别在正方形ABCD的边BC,CD上,∠MAN=45°,点E在CB 的延长线上,连接AE,BE=DN.(1)求证:AE=AN.(2)若CM=3,CN=4,求EM的长.[变式][2021福建泉州期末]已知正方形ABCD,点E,F分别是边AB,BC上的动点.(1)如图1,点E,F分别是边AB,BC的中点,证明:DE=DF.(2)如图2,若正方形ABCD的边长为1,△BEF的周长为2,证明:∠EDF=45°.类型3 手拉手模型4. [2020河南商丘梁园区期末]小明参加数学兴趣小组的探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1放置,AD 与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A按逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.考答案专项1 特殊平行四边形中的折叠问题1.D 由折叠的性质,可得AD=AD',BC=B'C ,∴AD'=3,B'C=3,∵AB=4,BC=3,∴AC=AB 2+BC 2=5,∴B'D'=AD'+B'C -AC=3+3-5=1.2.B3.B4. 85.(1)证明:由折叠的性质,得∠BEC=∠BEF ,FE=CE .∵FG //CE ,∴∠FGE=∠BEC ,∴∠FGE=∠FEG ,∴FG=FE ,∴FG=CE ,∴四边形CEFG 是平行四边形,又EF=CE ,∴四边形CEFG 是菱形.(2)解:在矩形ABCD 中,∠BAF=90°,AB=6,BF=BC=AD=10,∴AF=BF 2-AB 2=8,∴DF=2.设EF=x ,则CE=x ,DE=6-x ,在Rt △DEF 中,DF 2+DE 2=EF 2,∴22+(6-x )2=x 2,解得x=103,∴四边形CEFG 的面积是CE ·DF=103×2=203.6.C ∵四边形ABCD 是菱形,∴AB=BC ,∠A +∠ABC=180°,BD 平分∠ABC .∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°.由折叠的性质,可得AB=BF ,∴FB=BC ,∴∠BFC=∠BCF=12×(180°-30°)=75°.7.C8.解:如图,过点F 作FH ⊥BD 于H ,由折叠的性质得FG=FA .由题意得BD=DG +BG=8.∵四边形ABCD 是菱形,∴AD=AB ,∠ABD=∠CBD=12∠ABC=60°,∴△ABD 为等边三角形,∴AD=BD=8.设AF=x ,则FG=x ,DF=8-x ,在Rt △DFH 中,∠FDH=60°,∴∠DFH=30°,∴DH=12DF=4-12x ,FH=43−32x ,∴HG=DH -DG=2-12x .在Rt △FHG 中,由勾股定理得x 2=(43−32x )2+(2-12x )2,解得x=267,即AF 的长为267.9.C 10.(1)证明:由折叠的性质,得∠EPH=∠EBC=90°,PE=BE ,∴∠EBP=∠EPB ,∴∠EPH -∠EPB=∠EBC -∠EBP ,即∠PBC=∠BPH .∵AD //BC ,∴∠APB=∠PBC ,∴∠APB=∠BPH .(2)解:△PDH 的周长不变.证明如下:过点B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH .在△ABP 和△QBP 中,∠APB =∠QPB ,∠A =∠BQP ,BP =BP ,∴△ABP ≌△QBP ,∴AP=QP ,AB=QB ,又AB=BC ,∴BC=BQ .在Rt △BCH 和Rt △BQH 中,BC =BQ ,BH =BH ,∴Rt △BCH ≌Rt △BQH ,∴CH=QH .∴△PDH 的周长为PD +DH +PH=PD +DH +AP +HC=AD +CD=8.故△PDH 的周长不发生变化.专项2 平行四边形中的动点问题1.解:(1)是.理由如下:∵四边形ABCD 是平行四边形,∴OD=OB ,OA=OC .∵E ,F 两点运动的速度相同,∴AE=CF ,∴OE=OF .又OD=OB ,∴四边形DEBF 是平行四边形.(2)当四边形DEBF 是矩形时,有EF=BD=12,∴AE=CF=12×(16-12)=2或AE=CF=12×(16+12)=14,∴当t=2或14时,四边形DEBF 是矩形.2.解:(1)由题意可得DP=t cm,BQ=2t cm,则AP=(11-t )cm.若四边形ABQP 是矩形,则AP=BQ ,∴11-t=2t ,解得t=113.故当t=113时,四边形ABQP 是矩形.(2)由题意,得PE=(8-t )cm,CQ=(11-2t )cm,CP 2=CD 2+DP 2=16+t 2.若四边形EQCP 为菱形,则CP=PE=CQ ,∴t 2+16=(8-t )2=(11-2t )2,解得t=3.故当t=3时,四边形EQCP 为菱形.3.解:(1)四边形BOCE 是矩形.证明如下:∵BE //OC ,EC //OB ,∴四边形BOCE 是平行四边形.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠BOC=90°,∴四边形BOCE 是矩形.(2)∵四边形ABCD 是菱形,AC=6 cm,BD=8 cm,∴OA=OC=3 cm,OB=OD=4 cm.∵S △ABG =2S △OBG ,∴AG=2OG ,∴2t=2(3-2t )或2t=2(2t -3),解得t=1或t=3.(3)如图,连接ED 交AC 于点G ,连接BG ,此时BG +EG 的值最小.∵四边形ABCD 是菱形,∴点B 与点D 关于AC 对称,∴BG=DG ,∴BG +EG 的最小值为DE 的长.在Rt △EBD 中,BE=3,BD=8,∴DE=BE 2+BD 2=73,∴BG +EG 的最小值为73 cm.4.(1)证明:∵四边形ABCD 是菱形,∴∠B +∠C=180°,∠B=∠D ,AB=AD .∵∠PAQ=∠B ,∴∠PAQ +∠C=180°,∴∠APC +∠AQC=180°.∵AP ⊥BC ,∴∠APC=90°,∴∠AQC=90°.在△APB 和△AQD 中,∠APB =∠AQD ,∠B =∠D ,AB =AD ,∴△APB ≌△AQD (AAS),∴AP=AQ .(2)解:若AP 与BC 不垂直,(1)中的结论还成立.证明如下:如图1,过点A 作AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F .由(1)可得∠PAQ=∠EAF=∠B ,AE=AF ,∴∠EAP=∠FAQ .在△AEP 和△AFQ 中,∠AEP =∠AFQ ,AE =AF ,∠EAP =∠FAQ ,∴△AEP ≌△AFQ (ASA),∴AP=AQ .(3)解:S 四边形APCQ =43.如图2,连接AC ,BD 交于点O ,过点A 作AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F .∵∠ABC=60°,BA=BC ,∴△ABC 为等边三角形.∵AE ⊥BC ,∴BE=EC ,同理CF=FD ,∴S 四边形AECF =12S 菱形ABCD .由(2)得S 四边形APCQ =S 四边形AECF ,∴S 四边形APCQ =12S 菱形ABCD .∵AB=4,∠ABC=60°,∴OA=12AB=2,∴OB=23,∴S 菱形ABCD =12×23×2×4=83,∴S 四边形APCQ =43.5.(1)证明:如图1,过点P 作MN //AD ,交AB 于点M ,交CD 于点N .∵PB ⊥PE ,∴∠BPE=90°,∴∠MPB +∠EPN=90°.∵四边形ABCD 是正方形,∴∠BAD=∠D=90°.∵AD //MN ,∴∠BMP=∠BAD=∠PNE=∠D=90°,∴∠MPB +∠MBP=90°,∴∠EPN=∠MBP .在Rt △PNC 中,∠PCN=45°,∴△PNC 是等腰直角三角形,∴PN=CN ,∴BM=CN=PN .在△BMP 和△PNE 中,∠PBM =∠EPN ,BM =PN ,∠BMP =∠PNE ,∴△BMP ≌△PNE (ASA),∴PB=PE .(2)解:在点P 运动的过程中,PF 的长度不发生变化.理由如下:如图2,连接OB .∵点O 是正方形ABCD 对角线AC 的中点,∴OB⊥AC,∴∠AOB=90°,∴∠OBP+∠BPO=90°.∵∠BPE=90°,∴∠BPO+∠FPE=90°,∴∠OBP=∠FPE.∵EF⊥AC,∴∠EFP=∠AOB=90°.由(1)得PB=PE.在△OBP和△FPE中,∠OBP=∠FPE,∠BOP=∠PFE, PB=EP,∴△OBP≌△FPE(AAS),∴PF=OB.∵AB=2,△ABO是等腰直角三角形,∴OB=2,∴PF的长为2.(3)解:PC=PA+2EC.如图1,∵∠BAC=45°,∴△AMP是等腰直角三角形,∴PA=2PM.由(1)知PM=NE,∴PA=2NE.∵△PCN是等腰直角三角形,∴PC=2NC=2(NE+EC )=2NE +2EC=PA+2EC,即PC=PA+2EC.专项3 与正方形有关的常考模型1.解:(1)AE=DF,AE⊥DF.理由如下:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°,又DE=CF,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠CDF.∵∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF.(2)成立.(3)成立.理由如下:由(1)同理可证AE=DF,∠DAE=∠CDF.如图,延长FD交AE于点G,则∠CDF +∠ADG=90°,∴∠ADG +∠DAE=90°,∴AE ⊥DF .2.【探究】(1)证明:如图,将GF 平移到AH 处,则AH //GF ,AH=GF .∵GF ⊥BE ,∴AH ⊥BE ,∴∠ABE +∠BAH=90°.∵四边形ABCD 是正方形,∴AB=BC ,∠ABH=∠BCE=90°,∴∠ABE +∠CBE=90°,∴∠BAH=∠CBE .在△ABH 和△BCE 中,∠BAH =∠CBE ,AB =BC ,∠ABH =∠BCE ,∴△ABH ≌△BCE ,∴AH=BE ,∴BE=FG .(2)2【应用】9在Rt △BCE 中,∠BCE=90°,CM 是BE 边上的中线,∴BE=2CM=6.易证△BCE ≌△CDG ,∴CG=BE=6.又ME=12BE=3,且BE ⊥CG ,∴S 四边形GMCE =12ME ·CG=12×3×6=9.3.(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠ABC=∠ABE=∠D=90°.在△ABE 和△ADN 中,AB =AD ,∠ABE =∠D ,BE =DN ,∴△ABE≌△ADN,∴AE=AN.(2)解:∵四边形ABCD是正方形,∴∠BAD=90°.∵∠MAN=45°,∴∠BAM+∠DAN=45°.由(1)知△ABE≌△ADN,∴∠BAE=∠DAN,∴∠BAM+∠BAE=45°,∴∠EAM=∠MAN=45°.在△AME和△AMN中,AE=AN,∠EAM=∠NAM, AM=AM,∴△AME≌△AMN,∴EM=MN.∵CM=3,CN=4,∴MN=CM2+CN2=5,∴EM=MN=5.[变式]证明:(1)∵四边形ABCD是正方形,∴∠A=∠C=90°,AD=CD=AB=BC.∵E,F分别是边AB,BC的中点,∴AE=CF.在△ADE和△CDF中,AD=CD,∠A=∠C, AE=CF,∴△ADE≌△CDF,∴DE=DF.(2)如图,延长BC至G,使CG=AE,∵四边形ABCD是正方形,∴∠A=∠BCD=∠ADC=90°,AD=CD=AB=BC=1,∴BE+AE+BF+CF=BE+CG+BF+CF=2,即BE+BF+FG=2.∵△BEF的周长为2,∴BE+BF+EF=2,∴EF=FG.∵∠DCG=180°-∠BCD=90°,∴∠DCG=∠A.在△DCG和△DAE中,CD=AD,∠DCG=∠A, CG=AE,∴△DCG≌△DAE,∴DG=DE,∠CDG=∠ADE.∵∠ADE+∠EDC=90°,∴∠CDG+∠EDC=90°,∴∠EDG=90°.在△DEF和△DGF中,DE=DG, EF=GF, DF=DF,∴△DEF≌△DGF,∴∠EDF=∠FDG.∵∠EDG=90°,∴∠EDF=∠FDG=45°.4.解:(1)∵四边形ABCD,AEFG均是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,∴△ADG≌△ABE,∴∠AGD=∠AEB.如图1,延长EB交DG于点H.∵∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∴∠DHE=180°-(∠AEB+∠ADG)=90°,∴DG⊥BE.(2)∵四边形ABCD,AEFG均是正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,∴∠DAG=∠BAE,∴△ADG≌△ABE,∴DG=BE.如图2,过点A作AM⊥DG于点M,则∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线,∴∠MDA=45°.在Rt△AMD中,∠MDA=45°,AD=2,可得DM=AM=2.在Rt△AMG中,GM=AG2-AM2=6,∴DG=DM+GM=2+6,∴BE=DG=2+6. 。

八年级数学下册 正方形、矩形、菱形_练习 人教版

八年级数学下册 正方形、矩形、菱形_练习 人教版

BCE F A初二正方形、矩形、菱形 练习一.选择题:1.如图,将边长为 8 ㎝的正方形 ABCD 折叠,使点 D 落在 BC 边的中点 E 处,点 A 落在 F 处,折痕为 MN ,则线段 CN 的长是( )A .3cmB .4cmC .5cmD .6cmADMFBNE C2.在矩形 ABCD 中,AB=1,AD= ,正确的是-------------;,AF 平分∠DAB ,过 C 点作 CE⊥BD 于 E ,延长 AF 、EC 交于点 H ,下列结论中:①AF=FH ;②BO=BF ;③CA=CH④BE=3EDA .②③ C .①②④B .③④ D .②③④3.如图,矩形 ABCD 中,AB=3,BC=5, 过对角线交点 O 作 OE⊥AC 交 AD 于 E, 则 AE 的长是( )A .1.6B .2.5C .3D .3.44.如图 2,将一个长为 10cm ,宽为 8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为---------------- cm ; A .10 B .20 C .40 D .80DAC图 2B5.如图,正方形 ABCD 的边长为 2,将长为 2 的线段 QR 的两端放在正方形的相邻的两边上同时滑动.如果 Q 点从 A 点出发,沿图中所示方向按 A→B→C→D→A 滑动到 A 止,同时点 R 从 B 点 AQD出发,沿图中所示方向按 B→C→D→A→B 滑动到 B 止,在这个过程中,线段 QR 的中点 M 所经过的路线围成的图形的面积为( ). A .2 B .4 -πC .πD .π - 1MR6.如图,在菱形 ABCD 中,∠A =110°, , 分别是边 AB 和 BC 的中点,EP ⊥CD 于点 P ,则∠FPC =------------;.35° B .45° C .50° D .55°DAEPCBF7. 如图,矩形 ABCD 中,E 点在 BC 上,且 AE 平分 ÐBAC 。

人教版初二数学8年级下册 第18章(平行四边形)翻折问题专项训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)翻折问题专项训练(含答案)

人教版数学八年级下期第十八章平行四边形翻折问题训练一、选择题1.如图,在矩形ABCD中,AB=2,BC=25,E是BC的中点,将△ABE沿直线AE翻折,点落B在点F处,连结CF,则CF的长为( )A. 83B. 435 C. 855 D. 1032.如图,在边长为4的正方形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,使点A落在点A′处,作射线EA′,交BC的延长线于点F,则CF的长为( )A. 1B. 43C. 32D. 23.如图,菱形ABCD中,点E在AD上,将△ABE沿着BE翻折,点A恰好落在CD上的点F处.若∠A=65°,则∠DFE的度数为( )A. 85°B. 82.5°C. 65°D. 50°4.如图,在▱ABCD中,∠B=45°,AD=2,E,H分别为边AB,CD上一点,将▱ABCD沿EH翻折,使得AD的对应线段FG经过点C.若FG⊥CD,CG=1,则EF的长度为( )A. 2B. 2C. 22D. 2−25.如图,在矩形ABCD中,AB=10,AD=12,点E是AB的中点,点F是AD边上的动点,将△AEF沿EF翻折,得到△A'EF,则A'C的最小值是( )A. 6B. 7C. 8D. 96.如图,矩形ABCD中,E是BC边上一点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处,若AB=4,BE:EC=4:1,则线段DE的长为( )A. 410 B. 4.5 C. 25 D. 173二、填空题7.如图,在平行四边形ABCD中,点E在AD边上,以BE为折痕,将△ABE向上翻折,点A恰好落在CD边上的点F处.若△DEF的周长为8,△BCF的周长为32,则平行四边形ABCD的周长为______.8.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=4,则AD=______.9.如图,在平行四边形ABCD中,E为AB边上的点,BE=BC,将△ADE沿DE翻折,点A的对应点F恰好落在CE上.∠ADF=87°,则∠BEC= .10.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为__________.11.如,▱ABCD中,对C与BD相交点E,∠AEB=°,B=2,将△ABAC所线翻折180°到其原来所在的同一面内若点落点记为B′,则DB的长为______ .12.如图,把菱形ABCD沿折痕AH翻折,使B点落在边BC上的点E处,连接DE.若CD=13,CE=3,则ED= ______ .三、解答题13.在正方形ABCD中,∠A=∠B=90∘,将△AED、△DCF分别沿着DE、DF翻折,点A. C都分别与EF上的点G重合。

八年级数学下册《图形的折叠问题》练习题与答案(人教版)

八年级数学下册《图形的折叠问题》练习题与答案(人教版)一、选择题1.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°2.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.若BE平分∠ABC,且AB=5,BE=4,则AE=( )A.2B.3C.4D.54.在△ABC中,AB=10,AC=12,BC=9,AD是BC边上的高,将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )A.9.5B.10.5C.11D.15.55.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为( )A.7cmB.10cmC.12cmD.22cm6.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题7.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.8.如图,将菱形ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF.若菱形的边长为2 cm,∠BAD=120°,则EF的长为 .9.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC 上的点F处.若点D的坐标为(10,8),则点E的坐标为10.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.若AB=6cm,BC=8cm,则线段FG的长为11.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF面积为________.12.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为______.三、解答题13.如图,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已AB=32cm,BC=40cm,求CE的长.14.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F 处.(1)求EF的长;(2)求四边形ABCE的面积.15.如图①,将矩形ABCD沿DE折叠使点A落在A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.16.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.17.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.18.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.19.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4求QF的值.20.如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.21.如图1,在矩形纸片ABCD中,AB=12 cm,AD=20 cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P,Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P,Q分别在边BA,BC上移动,求出点E在边AD上移动的最大距离.图1 图2参考答案1.A.2.A3.B.4.D.5.C.6.A7.答案为:36°.8.答案为:3(cm).10.答案为:3cm.11.答案为:2.12.答案为:28.8.13.解:∵四边形ABCD是矩形∴AD=BC=40cm,DC=AB=32cm;∠B=90°由题意得:AF=AD=40cm;DE=EF(设为x),EC=40﹣x;由勾股定理得:BF2=402﹣322=576∴BF=24,CF=40﹣24=16;由勾股定理得:x2=162+(40﹣x)2,解得:x=23.2∴EC=32﹣23.2=8.8.14.解:(1)设EF=x依题意知:△CDE≌△CFE∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC=10∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5∴S梯形ABCE=(5+8)×6÷2=39.15.解:(1)证明:由折叠知△AEF≌△GEF,△BCE≌△HCE∵AE=A′E=BC,∠AEF=∠BCE∴△AEF≌△BCE∴△GEF≌△HCE∴EG=CH;(2)∵AF=FG=2,∠FDG=45°∴FD=2,AD=2+2;∵AF=FG=HE=EB=2,AE=AD=2+ 2∴AB=AE+EB=2+2+2=2+2 2.16.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形∴BC=OA=4,∠AOC=∠DCE=90°由折叠的性质可得DE=BD=BC﹣CD=4﹣1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC=22,则有OE=OC﹣CE=m﹣2 2.在Rt△AOE中,OA2+OE2=AE2,即42+(m﹣22)2=m2,解得m=3 2.17.证明:(1)∵AD⊥BC∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°∠BAG=∠BAD,∠CAF=∠CAD∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形解:(2)∵四边形AFHG是正方形∴∠BHC=90°又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去) ∴AD=12∴AB=6 5.18.证明:(1)由题意可得,△BCE≌△BFE∴∠BEC=∠BEF,FE=CE∵FG∥CE∴∠FGE=∠CEB∴∠FGE=∠FEG∴FG=FE∴FG=EC∴四边形CEFG是平行四边形又∵CE=FE∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF∴∠BAF=90°,AD=BC=BF=10∴AF=8∴DF=2设EF=x,则CE=x,DE=6﹣x∵∠FDE=90°∴22+(6﹣x)2=x 2,解得,x =103 ∴CE =103∴四边形CEFG 的面积是:CE •DF =103×2=203. 19.证明:(1)∵E ,F 分别是正方形ABCD 边BC ,CD 的中点 ∴CF =BE在△ABE 和△BCF 中∴Rt △ABE ≌Rt △BCF(SAS)∴∠BAE =∠CBF又∵∠BAE +∠BEA =90°∴∠CBF +∠BEA =90°∴∠BGE =90°∴AE ⊥BF ;(2)解:∵将△BCF 沿BF 折叠,得到△BPF∴FP =FC ,∠PFB =∠BFC ,∠FPB =90°∵CD ∥AB∴∠CFB =∠ABF∴∠ABF =∠PFB∴QF =QB设QF =x ,PB =BC =AB =4,CF =PF =2∴QB =x ,PQ =x ﹣2在Rt △BPQ 中∴x 2=(x ﹣2)2+42解得:x =5,即QF =5.20.解:(1)∵在△OAB 中,∠OAB =90º,∠AOB =30º,OB =8 ∴OA =43,AB =4.∴点B 的坐标为(43,4).(2)∵∠OAB =90º∴AB ⊥x 轴∴AB ∥EC.又∵△OBC 是等边三角形∴OC =OB =8.又∵D 是OB 的中点,即AD 是Rt △OAB 斜边上的中线∴AD =OD∴∠OAD =∠AOD =30º∴OE =4.∴EC =OC -OE =4.∴AB =EC.∴四边形ABCE 是平行四边形.(3)设OG =x ,则由折叠对称的性质,得GA =GC =8-x. 在Rt △OAG 中,由勾股定理,得GA 2=OA 2+OG2 即,解得,x =1. ∴OG 的长为1.21. (1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ∴点B 与点E 关于PQ 对称∴PB =PE ,BF =EF ,∠BPF =∠EPF.又∵EF ∥AB∴∠BPF =∠EFP ,∴∠EPF =∠EFP∴EP =EF ,∴BP =BF =EF =EP ∴四边形BFEP 为菱形.(2)解:①∵四边形ABCD 是矩形∴BC =AD =20,CD =AB =12,∠A =∠D =90°.∵点B 与点E 关于PQ 对称∴CE =BC =20.在Rt △CDE 中,DE =CE 2-CD 2=16∴AE =AD -DE =20-16=4.在Rt △APE 中,AE =4,AP =12-PB =12-PE∴EP 2=42+(12-EP)2.解得EP =203∴菱形BFEP 的边长为203cm. ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =4. 当点P 与点A 重合时,如图点E离点A最远,此时四边形ABQE为正方形,AE=AB=12 ∴点E在边AD上移动的最大距离为8 cm.。

八下 平行四边形9.4 矩形、菱形、正方形练习含答案 含答案

一.选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.43.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.27.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣8.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个9.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD 上,则AP+PQ的最小值为()A.2B.C.2D.310.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9二、填空题17.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.18.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.19.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF 沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.21.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.22.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.三.解答题:1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.一.选择题1.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD3.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.4.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°, ∵a ∥b , ∴DE ∥a ∥b ,∴∠4=∠3=30°,∠2=∠5, ∴∠2=90°﹣30°=60°. 故选C .【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.6.(2016•宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA•PE +OD•PF 求得答案. 【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB•BC=48,OA=OC ,OB=OD ,AC=BD=10, ∴OA=OD=5,∴S △ACD =S 矩形ABCD =24, ∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA•PE +OD•PF=×5×PE +×5×PF=(PE +PF )=12,解得:PE +PF=4.8. 故选:A .【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.(2016•资阳)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( )A .B .C .﹣D .2﹣【分析】延长EG 交DC 于P 点,连接GC 、FH ,则△GCP 为直角三角形,证明四边形OGCM 为菱形,则可证CG=OM=CM=OG=,由勾股定理求得GP 的值,再由梯形的中位线定理CM +DN=2GP ,即可得出答案.【解答】解:延长EG 交DC 于P 点,连接GC 、FH ;如图所示: 则CP=DP=CD=,△GCP 为直角三角形,∵四边形EFGH 是菱形,∠EHG=120°, ∴GH=EF=2,∠OHG=60°,EG ⊥FH , ∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM ,∠MOG=∠MCG ,∴PG==,∵OG ∥CM ,∴∠MOG +∠OMC=180°,∴∠MCG +∠OMC=180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM=CM ,∴四边形OGCM 为菱形,∴CM=OG=,根据题意得:PG 是梯形MCDN 的中位线,∴DN +CM=2PG=,∴DN=﹣; 故选:C .【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.8.(2016•眉山)如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②在△EOB和△CMB中,对应直角边不相等;③可证明∠CDE=∠DFE;④可通过面积转化进行解答.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,但BO≠BM,故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE=S△COF,∵S△COF=2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.9.(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2 D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD 的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.10.(2016•南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.17.(2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.18.(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.19.(2016•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.20.(2016•哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根=BC•FG即可解决问题.据2•S△ABC【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.21.(2016•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=15度.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.22.(2016•包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=22.5度.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.23.(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.1.(2016•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2016•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.。

2025年华师版八年级下册数学期末复习专题训练13 特殊平行四边形中的折叠问题

第19章 矩形、菱形与正方形 专题训练13 【方法整合】
特殊平行四边形中的折叠问题
温馨提示:点击 进入讲评
1
5
2
6
3
7
4
8
1. [2024·四平模拟]如图,在矩形ABCD中,AD>AB,将此 矩形折叠,使点C与点A重合,折痕分别交BC、AD于点 E、F,连结EF,点D的对应点为点D′.若AE平分∠BAD, AB=1,则AF的长为____2____.
解:由折叠的性质可知AF=EF,∵正方形ABCD的边长为3, ∴AB=BC=CD=AD=3,∠B=∠C=∠D=90°, ∵BE=1,∴CE=BC-BE=2,设CF=a, 则DF=CD-CF=3-a,在Rt△ECF和Rt△ADF中, AF2=AD2+DF2,EF2=CE2+CF2, ∴AD2+DF2=CE2+CF2,即 32+3-a2=22+a2, 解得 a=73,∴CF=73.
(2)求△AEF的面积. 解:∵CF=73,∴DF=3-37=32, ∴S△AEF=S 正方形 ABCD-S△ADF-S△ECF-S△ABE =32-21×3×32-21×2×73-12×1×3=9-1-73-32=265.
返回
设 DF=x,则 AF=CF=8-x,
在 Rt△ADF 中,由勾股定理得 AF2-DF2=AD2,
即8-x2-x2=62,解得 x=47,∴FC=8-74=245,
∴S△AFC=12AD·FC=21×6×245=745.
返回
3. [2024·台州一模]如图,在矩形ABБайду номын сангаасD中,点E是边BC 上一点,连结AE,将△ABE沿着AE折叠得到△AFE,延 长EF恰好经过点D. (1)求证:△ADF≌△DEC;
证明:∵四边形ABCD是矩形,△ABE折叠得到△AFE, 延长EF恰好经过点D, ∴AF⊥DE,AF=AB=DC,∠C=90°, ∴∠C=∠AFD=90°, ∵AD∥BC,∴∠ADF=∠DEC, ∴△ADF≌△DEC.

八年级数学下册专题十三特殊平行四边形中的折叠问题作业新版华东师大版


的长为( B
)
A.2 B. 3 C. 2 D.1
9.如图,将边长为 6 cm 的正方形纸片 ABCD 折叠,使点 D 落在 AB 边中 的长是______4________cm.
A.6 cm B.7 cm C.8 cm D.9 cm
3.(南阳镇平县期末)如图,在平面直角坐标系中,将矩形 AOCD 沿直线 AE 折叠(点 E 在边 DC 上),折叠后顶点 D 恰好落在边 OC 上的点 F 处.若点 D 的坐标为(10,8), 则点 E 的坐标为( C )
A.(10,1) B.(10,2) C.(10,3) D.(10,4)
专题(十三) 特殊平行四边形中的折叠问题
类型一 矩形的折叠问题 1.(教材 P100 练习 T3 变式)如图,矩形 ABCD 沿 AE 折叠,使 D 点落在 BC 边上 的点 F 处.若∠BAF=60°,则∠EAF 等于( A ) A.15° B.30° C.45° D.60°
2.如图,矩形纸片 ABCD 中,AD=4 cm,把纸片沿直线 AC 折叠,点 B 落在点 E 处,AE 交 DC 于点 O.若 AO=5 cm,则 AB 的长为( C )
4.如图,将一张矩形纸片 ABCD 折叠,使两个顶点 A,C 重合,折痕为 FG.若 AB =4,BC=8,则△ABF 的面积为___6________
5.(南阳卧龙区五校联考)如图,在矩形 ABCD 中,AB=16,BC=18,点 E 在边 AB 上,点 F 是边 BC 上不与点 B,C 重合的一个动点,把△EBF 沿 EF 折叠,点 B 落 在点 B′处.若 AE=3,当△CDB′是以 DB′为腰的等腰三角形时,线段 DB′的长为 _______1_6_或__1_0________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B
C
D M N
P
Q 折叠问题专题训练
一、计算角度
1.点E 是矩形ABCD 的边CD 上的点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上的F 点处,如果∠BAF =60°,则∠DEA =____________. 2.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边
向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 度.
2.如图,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E (如图②);
(2)以过点E 的直线为折痕折叠纸片,使点A 落在BC 边上A 1,折痕EF 交
AD 边于点F (如图③);(3)将纸片收展平,则∠AFE =____________.
3.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD =____________.
二、折出特殊的四边形
1.如图,一张矩形纸片,腰折出一个最大的正方形.小明把矩形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形.他判定的方法是_________________. 2.如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F . ⑴求证:△ABF ≌△EDF ;
⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.
3.在一张长12cm 、宽5cm 的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法
折出菱形EFGH (见方案一),张丰同学沿矩形的对角线AC 折出∠CAE =∠DAC ,∠ACF =∠ACB 的方法得到菱形AECF (见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?
4.试说明按如下方法折出的矩形是黄金矩形(宽与长的比是
51
的矩形)
A
B
A
B
O
O
C
D
(方案一)
A B
G H (方案二)
A B
C D E
F F C
D
B
A
M
第22题图
F
E
A B
C
D
A B C
D E
三、计算长度及面积
1.如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折, 使DC 落在对角线DB 上,则EB ∶CE =_________.
2.如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,点C 落在C ´的位置, 若BC =2,则BC ´=_________.
3.有一矩形纸片ABCD ,AB =9cm ,BC =12cm ,将纸片沿EF 折叠,使B 与D 重合.求折痕EF 的长.
4.如下图,等腰梯形ABCD 中,AD ∥BC ,0
45=∠DBC .翻折梯形ABCD ,使点B 重合与点D ,折痕分别交边AB 、BC 于点F 、E .若AD =2,BC =8, 求BE 的长;
5.如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG =10.
(1)当折痕的另一端F 在AB 边上时,求△EFG 的面积.
(2)当折痕的另一端F 在AD 边上时,如图,证明四边形BGEF 为菱形,并求出折痕GF 的长.
6.(1)观察与发现
小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到
AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.
(2)实践与运用
将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.
7.已知:如图,矩形AOBC ,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上. 点A 坐标为(0,3),∠OAB =60°,以AB 为轴对折后,使C 点落在D 点处,求D 点坐标.
A
B C
D E F G H (A)(B) A
C D
B
图①
A
C
D B
图②
F
E
E D C
F B A 图③ E D C A B F
G C ' D ' A D E C B F G α
图④ 图⑤
8.如图,在矩形纸片ABCD 中,AB =33,BC =6,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,∠BPE =30°. ⑴ 求BE 、QF 的长.⑵ 求四边形PEFH 的面积. 9.在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 翻折后得△AB ′E ,求△AB ′E 与四边形AECD 重叠部分的面积.
四、综合型问题
1.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.
(1) 将△ECD 沿直线l 向左平移到图(2)的位置,使E 点落在AB 上,则CC ′=______; (2) 将△ECD 绕点C 逆时针旋转到图(3)的位置,使点E 落在AB 上,则△ECD 绕点C 旋转的
度数=______;
(3) 将△ECD 沿直线AC 翻折到图(4)的位置,ED ′与AB 相交于点F ,求证AF =FD ′.
2.如图,把一个等腰直角△ABC 沿斜边上的中线CD (裁剪线)剪一刀,把分割成的两部分拼成一个四边形A ′BCD ,如示意图(1)。

(以下有画图要求的,工具不限,不必写画法和证明) (1)猜一猜:四边形A ′BCD 一定是__________;
(2)试一试:按上述的裁剪方法,请你拼一个与图(1)不同的四边形,并在图(2)中画出示意图.
[探究]在等腰直角△ABC 中,请你沿一条中位线(裁剪线)剪一刀,把分割成的两部分拼成一个特殊四边形。

(1)想一想:你能拼得的特殊四边形分别是________________;(写出两种)
(2)画一画:请分别在图(3)、图(4)中画出你拼得的这两个特殊四边形的示意图。

[拓广]在等腰直角△ABC 中,请你沿一条与中线、中位线不同的裁剪线剪一刀,把分割成的两部分拼成一个特殊四边形。

(1)变一变:你确定的裁剪线是________________,(写出一种)拼得的特殊四边形是______; (2)拼一拼:请在图(5)中画出你拼得的这个特殊四边形的示意。

3.在△ABC 中,借助作图工具可以作出中位线EF ,沿着中位线EF 一刀剪切后,用得到的△AEF 和四边形EBCF 可以拼成平行四边形EBCP ,剪切线与拼图如图示1,仿上述的方法,按要求完成下列操作设计,并在规定位置画出图示,
⑴在△ABC 中,增加条件 ,沿着 一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置;
⑵在△ABC 中,增加条件 ,沿着 一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置;
⑶在△ABC 中,增加条件 ,沿着 一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置;
⑷在△ABC (AB ≠AC )中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是:
然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置.
D
(1)
(2)
C B
E
4 D ’ E ’ A C B
E D
l
(3)
l D ’
F ’ C B
E D
(4)
A C
B E
D
l E ’
C ’
图示1
A B
C P F
E
(E )
(A )
图示2
图示3
图示4
图示5。

相关文档
最新文档