人教版高中数学选修4-4课件:2.3直线的参数方程 2.4 渐开线与摆线
合集下载
高中数学人教A版选修4-4课件 第二讲参数方程2.3直线的参数方程

π 1 + ������cos , 3 π (t 为参数), 3 + ������sin 3
它是标准形式 , 所以参数 t 具有标准形式中参数的几何意义, 即参数 t 的绝对值是有向线段������0 ������ (点 M 为直线 l 的任一点 )的长 度. ������ = 1 + ������, 而方程 (t 为参数 )不是标准形式 , ������ = 3 + 3������ 所以参数 t 不具有标准形式中参数的几何意义.
答案:(1)
������ = 1 + ������, ������ = 5 +
3 ������ 2
1 2
(t 为参数)
(2)50°
做一做2 若直线的参数方程为 截式方程为 .
1 ������ = 2 + ������, 2 3 ������ = 3 + ������ 2
(t为参数),则它的斜
解析:消去参数 t 可得 y=3+ 3(x-2), 化为斜截式方程为 y= 3x+3-2 3.
π 3
即
������ = 1 + ������, ������ = 5 +
3 ������ 2
1 2
3
(t 为参数). ������ = -1 + ������cos50 °, (t 为参数 ), ������ = 3 + ������sin50 °
(2)直线的参数方程可化为 故倾斜角等于 50°.
三
直线的参数方程
学 习 目 标 思 维 脉 络 1.掌握 直线参数方程的标 准形式,理解 参数 t 的几何 直线的参数方程 直线的参数方程 意义. 2.能 利用直线的参数方程 直线的参数方程的应用 解决简单的实际问题.
高中数学人教A版选修4-4课件:2-3直线的参数方程

首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIAN
直线参数方程的标准形式 (1)标准形式:过点M0(x0,y0),倾斜角为α的直线l的参数方程为 ������ = ������0 + ������cos������, (t 为参数). ������ = ������0 + ������sin������ (2)参数t的几何意义:参数t的绝对值表示直线上的动点M到定点 M0的距离.
由������0 ������ =te(e 为直线的单位方向向量),得 ①当������0 ������ 与 e 同向时,t>0; ②当������0 ������ 与 e 反向时,t<0; ③当点 M 与点 M0 重合时 ,t=0.
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIAN
名师点拨1.直线参数方程的标准形式主要用来解决过定点的直 线与圆锥曲线相交时的弦长或距离问题.它可以避免求交点时解方 程组的烦琐运算,但应用直线的参数方程时,需先判别是不是标准 形式再考虑t的几何意义. ������ = ������0 + ������������, 2.直线参数方程的一般形式是 (t 为参数). ������ = ������0 + ������������ ������ = ������0 + ������������, 3.直线参数方程的一般形式 (t 为参数 ),可化为标准形 ������ = ������0 + ������������ ������ = ������0 + ������'cos������, ������ 式 (t'为参数),其中 α 是直线的倾斜角,且 tan α= ,此 ������ ������ = ������0 + ������'sin������ 时参数 t'才有标准形式中参数的几Fra bibliotek意义.三
人教A版高中数学选修4-4课件第二讲四渐开线与摆线.pptx

旋轮线
3.圆的渐开线和摆线的参数方程
x=rcos φ+φsin φ (1)圆的渐开线方程:y=rsin φ-φcos φ
(φ 为参数) .
(2)摆线的参数方程:x=rφ-sin φ y=r1-cos φ
.(φ 为参数)
.
[例1] 求半径为4的圆的渐开线的参数方程. [思路点拨] 关键根据渐开线的生成过程,归结到向量知 识和三角的有关知识建立等式关系.
作 AB 垂直于 x 轴,过 M 点作 AB 的垂线,由三角函数
和向量知识,得
uuur OA=(4cos θ,4sin θ).
由几何知识知∠MAB=θ, uuuur AM =(4θsin θ,-4θcos θ),
uuur uuur uuuur 得OM =OA+ AM .
=(4cos θ+4θsin θ,4sin θ-4θcos θ)
所以xy==221α--csoins
α, α.
这就是所求摆线的参数方程.
(1)圆的摆线的实质是一个圆沿着一条定直线无滑 动地滚动时圆周上一个定点的轨迹. (2)根据圆的摆线的定义和建立参数方程的过程,可知 其中的字母r是指定圆的半径,参数φ是指圆上定点相 对于某一定点运动所张开的角度大小.
3.摆线xy==221t--scionstt, (0≤t≤2π)与直线 y=2 的交点 的直角坐标是________. 答案:(π-2,2);(3π+2,2)
向量 MB=(2sin α,2cos α),
uuur BM =(-2sin α,-2cos α),
uuur uuur uuur 因此OM =OB+BM
=(2α-2sin α,2-2cos α)
=(2(α-sin α),2(1-cos α)). uuur
人教版高中数学选修2.4渐开线与摆线ppt课件

设 点 M 的 坐 标 为 ( x , y ) , 取 为 参 数 , 根 据 点 M 满 足 的 几 何 条 件 , 有
x O D O A D A O A M C r r s i n ,
y D M A C A B C B r r c o s .
四 渐开线与摆线
1、渐开线 2、摆线
1、渐开线
1、渐开线的定义
探究:P41
把一条没有弹性的细绳绕在一个圆盘上,在绳的 外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切 而逐渐展开,那么铅笔会画出一条曲线。
这条曲线的形状怎样?能否求出它的轨迹方程?
动点(笔尖)满足什么几何条件?
设 开 始 时 绳 子 外 端 ( 笔 尖 ) 位 于 点 A ,
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
B M ( x r c o s , y r s i n ) , | B M | r .
O
A
由 于 向 量 e 1 ( c o s , s i n ) 是 与 O B 同 方 向 的 单 位 向 量 ,
因 而 向 量 e 2 ( s i n , c o s ) 是 与 向 量 B M 同 方 向 的 单 位 向 量 。
x O D O A D A O A M C r r s i n ,
y D M A C A B C B r r c o s .
四 渐开线与摆线
1、渐开线 2、摆线
1、渐开线
1、渐开线的定义
探究:P41
把一条没有弹性的细绳绕在一个圆盘上,在绳的 外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切 而逐渐展开,那么铅笔会画出一条曲线。
这条曲线的形状怎样?能否求出它的轨迹方程?
动点(笔尖)满足什么几何条件?
设 开 始 时 绳 子 外 端 ( 笔 尖 ) 位 于 点 A ,
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
B M ( x r c o s , y r s i n ) , | B M | r .
O
A
由 于 向 量 e 1 ( c o s , s i n ) 是 与 O B 同 方 向 的 单 位 向 量 ,
因 而 向 量 e 2 ( s i n , c o s ) 是 与 向 量 B M 同 方 向 的 单 位 向 量 。
人教版选修A4-4数学课件:2.4 渐开线与摆线(共22张PPT)

-7-
四 渐开线与摆线
探究一 探究二 思维辨析
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
圆的渐开线、摆线的参数方程的理解
������ = 3cos������ + 3������sin������, 【例 1】 已知圆的渐开线的参数方程为 ������ = 3sin������-3������cos������ (φ 为参数). 根据参数方程可以看出该渐开线的基圆的半径是 ,当 π 参数 φ 取 时对应的曲线上的点的坐标是 .
四
渐开线与摆线
-1-
四 渐开线与摆线
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
学 习 目 标 思 维 脉 络 1.了解 圆的渐开线的参 渐开线与摆线 数方程,了解 摆线的生成 渐开线的概念及生成过程 过程及它的参数方程. 摆线的概念及生成过程 2.了解 用向量知识推导 圆的渐开线与摆线的参数方程 运动轨迹的方法和步骤.
-4-
四 渐开线与摆线
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
做一做1 半径为2的圆的渐开线的参数方程为( ������ = 2(������-sin������), A. (θ 为参数) ������ = 2(1-cos������) ������ = 2(1-sin������), B. (θ 为参数) ������ = 2(������-cos������) ������ = 2(cos������ + ������sin������), C. (θ 为参数) ������ = 2(sin������-������cos������) ������ = 2(cos������-������sin������), D. (θ 为参数) ������ = 2(sin������ + ������cos������) 答案:C
高中数学第二讲参数方程2.4渐开线与摆线课件新人教a选

探究一
探究二
思维辨析
变式训练 2
(φ 为参数).
根据参数方程可以看出该渐开线的基圆的半径是
,当
参数
φ
取π时对应的曲线上的点的坐标是
2
.
分析:本题考查对渐开线参数方程的理解.对照一般情况下基圆
半径为
r
的渐开线的参数方程
������ ������
= =
������������((csions������������-���+���c���o���ss���in���)������),(φ
为参数)可
求 r 的值,然后把 φ=π2代入方程,即得对应的点的坐标.
探究一
探究二
思维辨析
解析:所给的圆的渐开线的参数方程可化为
������ ������
= =
33((csions������������-���+���c���o���ss���i���n)���,���),所以基圆半径
r=3.
把 φ=π2代入方程,可得
为
.
答案:2
√2 2
+
√2π 8
,
√2 2
-
√2π 8
【例2】 已知生成摆线的圆的直径为80 mm,则摆线的参数方程
为
.
分析:直接代入摆线的参数方程即可.
解析:由题意知圆的半径为 40 mm,所以所求的摆线的参数方程
为
������ ������
= =
40(������-sin������), 40(1-cos������) (φ
铅笔,将绳子拉紧,保持绳子与圆相切而逐渐展开,那么笔尖画出的
曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.
人教A版高中数学选修4-4课件 2.4摆线课件
第二讲参数方程 四渐开线与摆线
2.摆线
ቤተ መጻሕፍቲ ባይዱ
人民教育出版社 高中 |选修4-4
人民教育出版社 高中 |选修4-4
摆线的概念
圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上 一个定点 的轨迹,圆的摆线又叫 旋轮线 .
摆线的参数方程:
x=rφ-sin φ y=r1-cos φ
(φ 为参数)
人民教育出版社 高中 |选修4-4
所以xy==221α--csoins
α, α.
这就是所求摆线的参数方程.
人民教育出版社 高中 |选修4-4
总结:
(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动, 圆周上一个定点的轨迹.
(2)在圆的摆线中,圆周上定点的位置也可以由圆心角φ唯 一确定.
人民教育出版社 高中 |选修4-4
[例2] 设圆的半径为8,沿x轴正向滚动,开始时 圆与x轴相切于原点O,记圆上动点为M,它随圆的滚 动而改变位置,写出圆滚动一周时M点的轨迹方程, 画出相应曲线,求此曲线上点的纵坐标y的最大值,说 明该曲线的对称轴.
人民教育出版社 高中 |选修4-4
[精讲详析] 本题考查摆线的参数方程的求 法及应用.解答本题需要先分析题意,搞清M 点的轨迹的形状,然后借助图象求得最值.
人民教育出版社 高中 |选修4-4
轨迹曲线的参数方程为
x=8t-sin t y=81-cos t
(0≤t≤2π)
即 t=π 时,即 x=8π 时,y 有最大值 16.
向量OB =(2α,2), 向量 MB=(2sin α,2cos α), BM =(-2sin α,-2cos α),
因此OM =OB+BM
人民教育出版社 高中 |选修4-4
2.摆线
ቤተ መጻሕፍቲ ባይዱ
人民教育出版社 高中 |选修4-4
人民教育出版社 高中 |选修4-4
摆线的概念
圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上 一个定点 的轨迹,圆的摆线又叫 旋轮线 .
摆线的参数方程:
x=rφ-sin φ y=r1-cos φ
(φ 为参数)
人民教育出版社 高中 |选修4-4
所以xy==221α--csoins
α, α.
这就是所求摆线的参数方程.
人民教育出版社 高中 |选修4-4
总结:
(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动, 圆周上一个定点的轨迹.
(2)在圆的摆线中,圆周上定点的位置也可以由圆心角φ唯 一确定.
人民教育出版社 高中 |选修4-4
[例2] 设圆的半径为8,沿x轴正向滚动,开始时 圆与x轴相切于原点O,记圆上动点为M,它随圆的滚 动而改变位置,写出圆滚动一周时M点的轨迹方程, 画出相应曲线,求此曲线上点的纵坐标y的最大值,说 明该曲线的对称轴.
人民教育出版社 高中 |选修4-4
[精讲详析] 本题考查摆线的参数方程的求 法及应用.解答本题需要先分析题意,搞清M 点的轨迹的形状,然后借助图象求得最值.
人民教育出版社 高中 |选修4-4
轨迹曲线的参数方程为
x=8t-sin t y=81-cos t
(0≤t≤2π)
即 t=π 时,即 x=8π 时,y 有最大值 16.
向量OB =(2α,2), 向量 MB=(2sin α,2cos α), BM =(-2sin α,-2cos α),
因此OM =OB+BM
人民教育出版社 高中 |选修4-4
人教版数学选修4-4课件 2.4 渐开线与摆线
课末随堂演练
课后限时作业
制作者:状元桥
适用对象:高二学生
制作软件:Powerpoint2003、 Photoshop cs3
运行环境:WindowsXP以上 操作系统
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆 方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
第二讲
参数方程
• 2.4 渐开线与摆线
•2.1 曲线的参数方程
•2.1.1 参数方程的概念与圆的参数 方程
栏目导 航
课前教材预案 课堂深度拓展 课末随堂演练 课后限时作业
课前教材预案
•要点一 渐开线
以基圆圆心 O 为原点,直线 OA 为 x 轴,建立平面直角坐标系,可得圆的渐开线
的参数方程为yx==rrscions
AM,按渐开线定义,弧A︵M0 的长和线段 AM 的长相等,记―O→A 和 x 轴正向所夹的角为
θ(以弧度为单位),则|AM|=A︵M0 =4θ.
作 AB 垂直于 x 轴,过 M 点作直线 AB 的垂线,由三角函数和向量知识,得―O→A =
(4cos θ,4sin θ),由几何知识知∠MAB=θ,―AM→=(4θsin θ,-4θcos θ),
• 解析A:.根据3渐π开线的定义B可.知弧4πAE 的长是半径为 1C的.圆周5长π的四分之一,长度
高二数学之人教版高中数学选修4-4课件:2.3直线的参数方程 2.4 渐开线与摆线
(2)l1⊥l2⇔a1a2+b1b2=0.
2.标准形式的参数方程中参数的应用 经过点M0(x0,y0),倾斜角为α的直线l的参数方程为
xyxy00ttscions, ( , t为参数)
(1)若P1,P2是直线l上的两个点,对应的参数分别为
t1,t2,则向量
的数量为t2-t1,所以
=|t2-t1|,
2.直线的参数方程形式唯一吗?如果不唯一,同一直线 不同形式的参数方程中的参数都具有相同的几何意义 吗?
提示:直线的参数方程形式不唯一,同一直线不同形式
的参数方程中的参数具有不同的意义,甚至不具有明显
的几何意义,如直线x-y=0的参数方程 x 2 t , (t为参数)
中的参数t就不具有明显的几何意义.
【解析】经过点M(1,-3)且倾斜角为 的直线,以定点 3
M到动点P的位移t为参数的参数方程是
x
1
tc
o
s
3
,
(t为参数)即为
x
1
(1t为t , 参数) 2
y
3
ts
in
3
,
答案:
x
1
1(tt ,为 参y 数 3) 2
3 t. 2
y
3
3 t. 2
【知识探究】
探究点 直线的参数方程、渐近线与摆线
3.摆线及其参数方程
(1)定义.
当一个圆沿着一条定直线_________滚动时,圆周上的 无滑动地
_____________的轨迹叫做平摆线,简称摆线,又叫做 _一__个__定__点. 运动
旋轮线
(2)参数方程. 设圆的半径为r,圆滚动的角为φ,那么摆线的参数方程 是__xy__rr_( (_1__c_soi_sn_) _) ._,(φ是参数)
2.标准形式的参数方程中参数的应用 经过点M0(x0,y0),倾斜角为α的直线l的参数方程为
xyxy00ttscions, ( , t为参数)
(1)若P1,P2是直线l上的两个点,对应的参数分别为
t1,t2,则向量
的数量为t2-t1,所以
=|t2-t1|,
2.直线的参数方程形式唯一吗?如果不唯一,同一直线 不同形式的参数方程中的参数都具有相同的几何意义 吗?
提示:直线的参数方程形式不唯一,同一直线不同形式
的参数方程中的参数具有不同的意义,甚至不具有明显
的几何意义,如直线x-y=0的参数方程 x 2 t , (t为参数)
中的参数t就不具有明显的几何意义.
【解析】经过点M(1,-3)且倾斜角为 的直线,以定点 3
M到动点P的位移t为参数的参数方程是
x
1
tc
o
s
3
,
(t为参数)即为
x
1
(1t为t , 参数) 2
y
3
ts
in
3
,
答案:
x
1
1(tt ,为 参y 数 3) 2
3 t. 2
y
3
3 t. 2
【知识探究】
探究点 直线的参数方程、渐近线与摆线
3.摆线及其参数方程
(1)定义.
当一个圆沿着一条定直线_________滚动时,圆周上的 无滑动地
_____________的轨迹叫做平摆线,简称摆线,又叫做 _一__个__定__点. 运动
旋轮线
(2)参数方程. 设圆的半径为r,圆滚动的角为φ,那么摆线的参数方程 是__xy__rr_( (_1__c_soi_sn_) _) ._,(φ是参数)
高二数学人教A版选修4-4课件:2.4 渐开线与摆线
S 随堂练习 UITANG LIANXI
1
2
3
3.圆的渐开线和摆线的参数方程
(1)圆的渐开线的参数方程:
x
= r(������������������φ + φ������������������φ), y = r(������������������φ-φ������������������φ) (φ
x y
= =
���1���1������((φ1--������������������������������������φφ)),(φ
为参数);
所求圆的渐开线的参数方程为
x
=
1 ������
y=
(������������������φ + φ������������������φ),
1 ������
x y
= =
221k1k������������((φ1--������������������������������������φφ)),(φ
为参数,k∈N*).
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
四 渐开线与摆线
-1-
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
课程目标 1.借助教具或计算机软件,观察圆在直 线上滚动时圆上定点的轨迹(平摆线)、 直线在圆上滚动时直线上定点的轨迹 (渐开线).知道平摆线和渐开线的生成 过程,以及它们的参数方程. 2.通过阅读材料,知道外摆线、内摆线 的生成过程;学会摆线在实际应用中的 实例.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
么曲线.
(2)若曲线C1和C2相交于A,B两点,求|AB|.
【解题探究】(1)如何将参数方程化为普通方程? 提示:消去参数即得曲线的普通方程. (2)如何求线段的长度? 提示:利用直线参数方程的几何意义计算线段长度.
【解析】经过点M(1,-3)且倾斜角为 的直线,以定点
M到动点P的位移t为参数的参数方程是
(t为参数)即为
(t为参数)
答案:
(t为参数)
【知识探究】
探究点 直线的参数方程、渐近线与摆线
1.直线的参数方程中,参数的几何意义是什么?
提示:设e表示直线向上方向上的单位向量,
当
参数t>0时, 与e同向;
有向线段
|t|是定点M0(1,0)到t对应的点M(x,y)的 的长.
2.方程组变形为
①代入②消去参数t,得直线的点斜式方程
可得
倾斜角
普通方程为
①②两式平方相加,得(x+3)2+(y-1)2=4t2,
所以
|t|是定点M0(3,1)到t对应
的点M(x,y)的有向线段 的长的一半.
【方法技巧】直线参数方程的标准形式应用技巧 (1)已知直线l经 过 点M0(x0,y0),倾 斜角为α,点M(x,y) 为 直线l上任意一点,则 直线l的参数方程为 (t为 参数) ①
三 直线的参数方程 四 渐开线与摆线
【自主预习 】
1.直线的参数方程
已知直线l经 过 点M0(x0,y0),倾 斜角为
点M(x,y)
为 直线l上任意一点,则 直线l的普通方程和参数方程分
别为
普通方程
参数方程
_y_-_y_0_=_t_a_n_α__(_x_-_x_0_) ___________ (t为 参数)
即
(2)方法一:由(1)得Biblioteka 代入x-y+1=0,
得
解得t=0.
故
即交点坐标为(3,4).
方法二:由(1)中直线的参数方程
化为普通方程为
由
解得
故两直线的交点为(3,4).
类 型二 直线的参数方程的综合题
【典例】(2016·合肥高二检测 )已知曲线C1:
(t为 参数),C2:
(θ为 参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什
【变 式训练 】1.(2016·成都高二检测 )将曲线的参数
方程
(t为 参数)化为普通方程为________.
【解析】由参数方程 答案:
消去参数t,得
2.下列参数方程中,哪些是直线的参数方程的标准形式 ?若是,求出直线经 过 的起点坐标和倾斜角,若不是参 数方程的标准形式,转 化为标 准形式(其中,t为 参数).
当参数t<0时, 与e反向;
当参数t=0时,点M0,M重合.
故总有
所以参数t为点M0(x0,y0)到直线上点
M(x,y)的有向线段 的数量(即长度+方向),这就是
参数t的几何意义.
2.直线的参数方程形式唯一吗?如果不唯一,同一直线 不同形式的参数方程中的参数都具有相同的几何意义 吗?
提示:直线的参数方程形式不唯一,同一直线不同形式
其中,直线的参数方程中参数t的绝对 值 |t|=____.
2.圆 的渐开 线及其参数方程 (1)定义. 把线绕 在圆周上,假设线 的粗细可以忽略,拉着线头 _________,保持线与圆相切,_____的轨迹就叫做圆的 渐离开开线圆,周相应的_____叫做渐开线线头的基圆.
定圆
(2)参数方程. 设 基圆的半径为r,圆 的渐开 线的参数方程是
的参数方程中的参数具有不同的意义,甚至不具有明显
的几何意义,如直线x-y=0的参数方程
(t为参数)
中的参数t就不具有明显的几何意义.
【归 纳 总 结 】 由直线的参数方程中t的几何意义得出的两个结论 (1)设 A,B是直线上任意两点,它们对 应 的参数分别为 tA和tB,则 (2)线 段AB的中点所对应 的参数值等于
【即时小测】 1.下列点在直线
(t为 参数)上的是 ( )
A.(2,-3)
B.(-2,3)
C.(3,-2)
D.(-3,2)
【解析】选D.直线经过点(-3,2),倾斜角为α.
2.经 过 点M(1,-3)且倾斜角为 的直线,以定点M到动 点P的位移t为 参数的参数方程是________________.
倾斜角为
2.典例2中直线的参数方程是标准形式吗?
提示:不是直线的参数方程的标准形式.
【解析】1.令y=0,得x=1,所以直线l1过定点(1,0). 设直线的倾斜角为α, 所以直线l1的参数方程为
t是直线l1上的定点M0(1,0)到t对应的点M(x,y)的有向 线段 的数量.
由
①,②两式平方相加,得(x-1)2+y2=t2.
类 型一 直线的参数方程的形式
【典例】1.化直线l1的普通方程x+ y-1=0为 参数方 程,并说明参数的几何意义,说 明|t|的几何意义.
2.化直线l2的参数方程
(t为 参数)为 普通
方程,并求倾斜角,说 明|t|的几何意义.
【解题探究】1.典例1中直线的斜率和倾斜角分别是
什么?
提示:直线的斜率为
【解析】
是直线参数方程的标准形式,其
中,起点坐标为(-1,2),
倾斜角
(2)
不是直线参数方程的标准形式,
令t′=-t,得到标准形式的参数方程为
(t′为参数)
3.已知直线l过 点P(3,4),且它的倾斜角θ=120°. (1)写出直线l的参数方程. (2)求直线l与直线x-y+1=0的交点.
【解析】(1)因为直线l过点P(3,4),且它的倾斜角 θ=120°, 故直线l的参数方程为
__________________________
3.摆 线 及其参数方程
(1)定义.
当一个圆沿着一条定直线_________滚 动 时 ,圆 周上的 无滑动地
_____________的轨迹叫做平摆线 ,简 称摆线 ,又叫做 一个定点运动 _______.
旋轮线
(2)参数方程. 设 圆 的半径为r,圆 滚 动 的角为φ,那么摆线 的参数方程 是_____________ (φ是参数)
参数t的几何意义是有向线段
的数量,
其中e=(cosα,sinα).
我们把①称为直线l的参数方程的标准形式.
令a=cosα,b=sinα,则 直线参数方程的标准形式可以
是
(t为 参数,b≥0,a2+b2=1) ②
(2)如果直线的参数方程的一般形式为
③
可以通过转 换
当d≥0时 ,令 当d<0时 ,令 就可以把直线的参数方程化为标 准形式②.