2015六年级圆柱和圆锥的计算公式

合集下载

圆柱和圆锥公式汇总

圆柱和圆锥公式汇总
正方体的表面积:S表=6a2
长方体(正方体、圆柱)的体积=底面积×高(柱体的体积统一公式)
⑼已知周长求面积:①r=c÷π÷2②s=πr2
圆柱的侧面积=底面周长×高
圆柱的表面积=底面积×2+侧面积
已知周长和高求侧面积:S侧=ch
圆柱的表面积字母公式:
S表=S底×2+S侧、
S表=2πr2+2πr h
已知直径和高求侧面积:S侧=πdh
已知半径和高求侧面积:S侧=2πrh
已知侧面积求高(底面周长)
h=S侧÷c C= S侧÷h
圆柱的体积=底面积×高圆柱体Biblioteka 字母公式:V柱=S底h、V=πr2h
圆锥的体积= ×底面积×高
已知圆柱的体积求高:h=v柱÷S底
圆锥体积字母公式V锥= S底h、V= πr2h
管的体积:V管=V大-V小
已知圆锥的体积求它的高或底面积
h=V锥÷ ÷S底S底= V锥÷ ÷h
长方体的表面积:S表=2(ab+ah+bh)
V锥:指圆锥的体积(圆锥的体积= ×底面积×高)
关于圆、圆柱和圆锥的计算公式
⑴已知半径求直径:d=2r
⑵已知直径求半径:r=d÷2
⑶已知直径求周长:c=πd
⑷已知半径求周长:c=2πr
⑸已知周长求直径:d=c÷π
⑹已知周长求半径:r=c÷π÷2
⑺已知半径求圆的面积:s=πr2
⑻已知直径求圆的面积:
①r=d÷2②s=πr2
r:指圆的半径d:指圆的直径(d=2r直径是半径的两倍)
C:指圆的周长。C=2πr=πdh:表示圆柱或圆锥的高
S表:指圆柱的表面积(圆柱的表面积由一个侧面的面积+两个底面面积组成)

圆柱、圆锥常用的表面积、体积公式

圆柱、圆锥常用的表面积、体积公式

刘老师圆柱的侧面积=底面圆周长×高 字母表示:S 侧=C 底h 2. 底面圆周长=圆周率×直径=圆周率×2×半径 字母表示:C 底=πd=2πr 3. 求圆柱的表面积三步:(1)圆柱的底面积=S 底=πr²=π(d÷2)²=πd²÷4(2)圆柱侧面积=S 侧=h×C 底(底面圆周长)=2πrh=πdh (3)圆柱表面积=S 表=S 侧+2S 底圆柱体积的公式 圆柱的体积=底面积×高 字母表示:V 柱=S 底h 圆锥体积的公式(1) 圆锥的体积等于与它等底等高圆柱体积的1/3 V 锥=V 柱÷3=S 底h÷3 (2) 已知圆锥底面积(S )和高(h ),求体积的公式:V 锥=S 底h÷3 (3) 已知圆锥体积(V )和高(h ),求底面积的公式:S 底=3V 锥÷h (4) 已知圆锥体积(V )和底面积(S ),求高的公式:h=3V 锥÷S 底板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5例题精讲圆柱与圆锥【例 2】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 3】(第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【例 4】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【例 6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是________2cm.(π取3.14)第2题【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【例 10】(2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)(单位:厘米)【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【巩固】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)253015【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3)5cm【例 11】(第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【例 12】有两个棱长为8厘米的正方体盒子,A盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A盒注满水,把A盒的水倒入B盒,使B盒也注满水,问A盒余下的水是多少立方厘米?【例 13】兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【例 15】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【例16】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【例17】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【例18】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【例19】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米?【例20】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.【例21】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【例 22】(2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【例23】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.板块二旋转问题【例 24】如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆∆绕AC旋转一周,求ABC 扫出的立体图形的体积.(π 3.14=)CB A 【例 25】已知直角三角形的三条边长分别为3cm,4cm,5cm,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14)【巩固】如图,直角三角形如果以BC边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB为轴旋转一周,那么所形成的几何体的体积是多少?ABC【例 26】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)AB【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米?BA。

苏教版六年级数学下册第二单元知识点归纳

苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。

2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。

3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。

4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。

第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。

第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。

第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。

(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。

与求体积除以3相反。

培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。

2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。

圆柱和圆锥的面积公式

圆柱和圆锥的面积公式

圆柱和圆锥的面积公式圆柱和圆锥是我们日常生活中常见的几何体。

在数学中,我们经常需要计算它们的面积,以便更好地理解它们的性质和应用。

本文将介绍圆柱和圆锥的面积公式,并探讨一些有趣的应用。

一、圆柱的面积公式圆柱是一个由两个平行圆面和一个侧面组成的几何体。

其中,平行圆面的半径相等,侧面是一个矩形,其长为圆柱的高,宽为两个平行圆面的周长之和。

我们可以用下面的公式来计算圆柱的表面积:表面积 = 2πr + 2πrh其中,r是圆柱底面的半径,h是圆柱的高。

这个公式很容易理解,我们可以想象把圆柱展开成一个矩形,然后计算矩形的面积。

其中,矩形的长是圆柱的高,宽是两个平行圆面的周长之和。

而平行圆面的面积分别是πr,因此圆柱的表面积就是2πr + 2πrh。

二、圆锥的面积公式圆锥是一个由一个圆锥面和一个底面组成的几何体。

其中,圆锥面是一个斜面,其侧棱是圆锥的高,底面是一个圆。

我们可以用下面的公式来计算圆锥的表面积:表面积 = πr + πrl其中,r是圆锥底面的半径,l是圆锥的斜高。

这个公式也很容易理解,我们可以想象把圆锥展开成一个扇形和一个圆,然后计算扇形和圆的面积。

其中,扇形的面积是πr/2,而圆的面积是πr,因此圆锥的表面积就是πr + πrl。

三、应用圆柱和圆锥的面积公式在日常生活中有很多应用。

例如,我们可以用圆柱的面积公式来计算一个罐装饮料的包装面积,以便更好地设计包装。

我们也可以用圆锥的面积公式来计算一个冰淇淋锥筒的表面积,以便更好地制作。

此外,圆柱和圆锥的面积公式在工程和建筑等领域也有广泛的应用。

例如,在制造一个油罐或水塔时,我们需要计算圆柱的表面积以确定所需的材料。

在建造一个锥形的建筑物或标志时,我们需要计算圆锥的表面积以确定所需的涂料或其他材料。

总之,圆柱和圆锥的面积公式是数学中的基本公式之一,具有广泛的应用。

通过学习这些公式,我们可以更好地理解它们的性质和应用,并在实际生活和工作中更好地应用它们。

六年级下册圆柱圆锥的手抄报内容

六年级下册圆柱圆锥的手抄报内容

六年级下册圆柱圆锥的手抄报内容
六年级下册圆柱圆锥的手抄报内容可以包括以下几个方面:
1. 圆柱和圆锥的基本概念:圆柱是一个三维图形,由一个矩形绕其一边旋转而成。

圆锥则是由一个直角三角形绕其一直角边旋转而成。

2. 圆柱和圆锥的性质:圆柱和圆锥都有圆形的底面和侧面,圆柱的侧面是平行的,而圆锥的侧面则是弯曲的。

圆柱的高度与其底面圆形的半径相等,而圆锥的高度则是其底面圆形的半径的两倍。

3. 圆柱和圆锥的面积公式:圆柱的侧面积公式为2πrh,其中 r 是底面圆的
半径,h 是圆柱的高度。

圆锥的侧面积公式为πrl,其中r 是底面圆的半径,l 是圆锥的斜边长度。

4. 圆柱和圆锥的体积公式:圆柱的体积公式为πr^2h,其中 r 是底面圆的
半径,h 是圆柱的高度。

圆锥的体积公式为(1/3)πr^2h,其中 r 是底面圆
的半径,h 是圆锥的高度。

5. 圆柱和圆锥的应用:圆柱和圆锥在日常生活和工业生产中有着广泛的应用。

例如,圆柱形的饮料瓶、水管、油罐等,圆锥形的沙堆、煤堆、屋顶等。

以上内容可以帮助学生更好地理解圆柱和圆锥的概念、性质、面积和体积的计算方法,并了解其在生活中的应用。

同时,这些内容也可以作为手抄报的设计元素,通过图文并茂的方式展示出来。

圆锥的表面积公式小学

圆锥的表面积公式小学

圆锥的表面积公式小学圆锥是几何图形中最有趣的形状之一。

它是一种复杂的三维形状,具有特殊的表面积公式。

虽然它看起来复杂,但圆锥的表面积其实是有计算方法的。

本文旨在给小朋友们介绍一下圆锥的表面积公式,让们学会如何计算圆锥的表面积。

首先,我们需要了解圆锥的定义。

圆锥是一种三维物体,它是由圆和柱形组成的,关键是它是是一种凹头形体,有一个圆柱半径和一个圆口径。

这种物体可以用来做一些非常有趣的计算。

其次,我们可以看一下圆锥的表面积公式。

圆锥的表面积计算公式是:表面积=π×圆柱半径×(圆柱半径+圆口径)。

也就是说,如果你已经知道了圆柱半径和圆口径,你就可以用上面的式子来计算出圆锥的表面积了。

接下来,我们来看一下有关圆锥表面积计算的实际例子。

假设我们有一个圆锥,它的圆柱半径是5厘米,圆口径是2厘米。

那么根据圆锥表面积公式,我们就可以计算出这个圆锥的表面积是π×5×(5+2)=80π厘米。

最后,我们来看一下圆锥的表面积的计算过程。

首先,我们需要知道这个圆锥的圆柱半径和圆口径,以便能够应用圆锥表面积公式。

其次,我们用圆锥表面积公式来计算出圆锥的表面积,即π×圆柱半径×(圆柱半径+圆口径)。

最后,根据计算出的表面积就可以得到圆锥的表面积了。

以上就是《圆锥的表面积公式小学》所涵盖的内容,到此结束。

圆锥的表面积公式是一个很有趣的计算方法,它可以让我们更快速准确的计算出圆锥的表面积,可谓是算术的好帮手。

本文旨在为小朋友们介绍圆锥的表面积公式,帮助他们学会如何计算圆锥的表面积,让他们能够独立解算术问题,增强学习兴趣。

圆柱与圆锥知识点整理六年级

圆柱与圆锥知识点整理六年级一、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h1.圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh2.圆柱的特征:①底面的特征:圆柱的底面是完全相等的两个圆。

②侧面的特征:圆柱的侧面是一个曲面。

③高的特征:圆柱有无数条高。

3.圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形二、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h1.圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh2.圆锥的特征:①底面的特征:圆锥的底面一个圆。

②侧面的特征:圆锥的侧面是一个曲面。

③高的特征:圆锥有一条高。

3.圆柱和圆锥的关系①圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

②圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

③圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

④圆柱与圆锥等底等高,体积相差2/3Sh专项练习题一、填空。

1. 把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )。

2. 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=()立方米3立方分米40立方厘米=()立方厘米325 立方米=()立方分米538 升=()升()毫升3. 将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是( )平方分米,体积是( )立方分米。

最新六年级圆柱和圆锥的计算公式

圆柱和圆锥是中学数学中常见的几何体,也是学生需要掌握的基本形状。

在六年级数学中,学生将深入学习圆柱和圆锥的性质、计算公式和解题方法。

圆柱是由一个圆形底面和一个与底面平行的侧面围成的,其计算公式主要包括底面积、侧面积和体积。

1.圆柱的底面积公式圆柱的底面积是一个圆的面积,用公式表示为:底面积=π×半径²其中,π(pi)是一个重要的数学常量,大约等于3.1416、半径是指底面上的半径长度。

2.圆柱的侧面积公式圆柱的侧面积是圆柱的侧面展开后的矩形面积,用公式表示为:侧面积=圆周长×高其中,圆周长可以通过底面积的直径求得,即:圆周长=π×直径3.圆柱的体积公式圆柱的体积是指圆柱所能容纳的物体的空间大小,用公式表示为:体积=底面积×高圆锥是由一个圆形底面和一个顶点连接到底面不同点的侧面围成的,其计算公式主要包括底面积、侧面积和体积。

1.圆锥的底面积公式圆锥的底面积是一个圆的面积,计算公式与圆柱相同,即:底面积=π×半径²2.圆锥的侧面积公式圆锥的侧面积是由圆锥的侧面展开后形成的扇形的面积,用公式表示为:侧面积=½×圆周长×斜高其中,圆周长可以通过底面积的直径求得,即:圆周长=π×直径斜高是指从圆锥的顶点到圆底面上的一个点的直线距离。

3.圆锥的体积公式圆锥的体积是指圆锥所能容纳的物体的空间大小,用公式表示为:体积=1/3×底面积×高其中,底面积和高与圆柱的计算公式相同。

三、解题示例为了更好地理解和应用圆柱和圆锥的计算公式,以下是一些典型的解题示例:示例1:一个圆柱的底面半径为5cm,高为10cm,求底面积、侧面积和体积。

解:底面积= π × 5² = 3.1416 × 25 = 78.54cm²侧面积 = 圆周长× 高= 3.1416 × 10 = 31.416cm²体积 = 底面积× 高= 78.54 × 10 = 785.4cm³示例2:一个圆锥的底面半径为8cm,斜高为12cm,求侧面积和体积。

(完整版)圆柱和圆锥的公式

圆柱和圆锥圆的周长=圆柱和圆锥底面的周长圆的周长=2×圆周率×半径半径=圆的周长÷圆周率÷2c=2∏r r=c÷∏÷2圆的周长=圆周率×直径直径=圆的周长÷圆周率c=∏d d= c÷∏圆的面积=圆柱和圆锥地面的面积=∏×r×r圆的面积=圆周率×半径的平方s底圆柱侧面积原柱侧面积=底面周长×圆柱的高S侧=c×h 因为c=2∏r c=∏d 所以圆柱侧面积还可以写出:s侧=2∏r h 或s侧=∏d h知道圆柱侧面积和圆柱的高,怎么求底面周长、底面直径和底面半径?底面周长=圆柱侧面积÷圆柱的高C=s侧÷h底面直径=圆柱侧面积÷圆柱的高÷圆周率d=s侧÷h÷∏底面半径=圆柱侧面积÷圆柱的高÷圆周率÷2r=s侧÷h÷∏÷2圆柱的表面积表面积:圆柱的表面积=底面周长×高+底面面积×2S表=c×h+ ∏×r×r×2典型情况:做一个油桶需要多少平方米的铁皮。

(需要计算一个侧面积+二个底面面积)特殊情况:一、(1)做无盖的水桶需要多少平方米的铁皮。

(2)圆柱形的游泳池或水池在四周和底部抹水泥或贴瓷砖。

(只要计算一个侧面积+一个底面积)二、(1) 做通风管、落水管、烟囱需要多少铁皮。

(2)压路机前轮压过的路面面积。

(只要计算一个侧面积)圆柱的体积圆柱的体积=底面面积×高V柱=s底×h圆柱底面面积=圆柱体积÷圆柱的高S底=v÷h圆柱的高=圆柱的体积÷圆柱底面面积H= v÷S底圆锥的体积圆锥的体积=圆锥底面积×高V锥=s底×h÷3圆锥的底面积=圆锥的体积×3÷圆锥的高S底=v×3÷h圆锥的高=圆锥的体积×3÷圆锥的底面积h=v×3÷S底圆柱和圆锥面积和体积计算时的注意事项1、看清楚题目中的单位一不一样,最好在所有单位下面画出横线。

六年级数学圆柱和圆锥概念及公式汇总整理

《圆柱和圆锥》概念公式整理一、概念整理:1.圆柱的特征:有2个底面,1个侧面,两个底面是面积相等的圆形。

侧面是一个曲面。

两个底面之间的距离叫做高,圆柱有无数条高。

2.沿着高剪开,圆柱的侧面展开得到一个长方形(特殊情况是一个正方形),长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高,长方形的面积相当于圆柱的侧面积。

3.当圆柱的侧面展开得到一个正方形时,圆柱的底面周长和高相等。

4.求圆柱的表面积时要根据实际情况分析:(1)只求侧面积:商标纸、通风管、压路机前轮滚动、烟囱等(2)求侧面积+一个底面积:水池、笔筒、帽子、无盖水桶等5.把圆柱的底面分成许多相等的扇形,切开后可拼成一个近似长方体,长方体的长相当于圆柱底面周长的一半(∏r),长方体的宽相当于圆柱的底面半径(r),长方体的高相当于圆柱的高(h),长方体的底面积等于圆柱的底面积,长方体的体积等于圆柱的体积。

6.把一个圆柱拼成一个长方体后,体积不变,表面积增加了2rh。

(如图:增加了长方体左右两个面)7.把一个圆柱沿着高切开,表面积增加了两个底面积(∏r2×2);把一个圆柱没着底面直径切开,表面积增加了两个长方形(dh×2)。

8.示例:长方形的长是10厘米,宽是5厘米,以长为轴旋转,圆柱体的r=5厘米,h=10厘米。

h=5h=10r=10r=5以宽为轴旋转,圆柱体的r=10厘米,h=5厘米。

9.直角三角形的两条直角边分别是3厘米、4厘米, 以任意一条直角边为轴旋转,均可得到圆锥。

10.圆锥有2个面,底面是一个圆形,侧面是一个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

圆锥只有一条高。

11.圆锥的侧面展开是一个扇形,扇形的弧长就是圆锥的底面周长。

12.等底等高的情况下,圆锥体积是圆柱体积的31,圆柱体积是圆锥体积的3倍。

13.把一个正方体加工成一个最大的圆柱(或圆锥),正方体的棱长等于圆柱(或圆锥)的底面直径,正方体的棱长也等于圆柱(或圆锥)的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆柱:1、怎样求圆柱的侧面积
①知道圆柱的底面周长和高。

★用下面公式计算:
圆柱的侧面积=底面周长×高。

(公式:S侧=C h)
例:圆柱的底面周长是31.4米,高是2米,侧面积是多少?
用公式:S侧=C×h 31.4×2=62.8(平方米)
②知道圆柱的底面直径和高。

★用下面公式计算:
圆柱的侧面积=π×底面直径×高。

(公式:S侧=πd h)例:一个圆柱的底面直径是4米,高是10米,侧面积是多少?
用公式:S侧=π×d×h 3.14×4×10=125.6(平方米)③知道圆柱的底面半径和高。

★用下面公式计算:
圆柱的侧面积=2π×底面半径×高。

(公式:S侧=2πr h) 例:一个圆柱的底面半径是5米,高是10米,侧面积是多少?用公式:S侧=2π×r×h 2×3.14×5×10=314(平方米)2、怎样求圆柱的底面积:(因为圆柱的底面是一个圆。

求圆柱
的底面积必须知道圆柱底面圆的半径。


所以圆柱的底面积公式是: S底面积=πr2
例:一个圆柱的底面半径是3米,高是8米,底面积是多少?
用公式:S底面积=πr2 3.14×3²=28.26(平方米)
3、怎样求圆柱的表面积:因为圆柱体包括一个侧面积和两个
底面积。

(有时让求一个,如求水桶的表面积,这时应计算一个底面积) 计算方法:用上面的圆柱的侧面积和圆柱的底面积相加即可。

圆柱的表面积=圆柱的侧面积+圆柱的底面积×2
公式:S 表面积=S 侧面积+S 底面积×2(有时候不用乘2, 如求水桶的表面积)
4、怎样求圆柱的体积: 圆柱的体积=底面积×高 公式:V 圆柱=S 底面积×h (公式:V 圆柱
=πr 2×h ) 例:圆柱的底面半径是5米,高是4米,圆柱的体积是多少? 用公式:V 圆柱=πr 2
×h 3.14×52×4=314(立方米) 二、怎样求圆锥的体积
圆锥的体积等于与它等底等高圆柱体积的三分之一。

圆锥的体积= 底面积×高 公式:V 圆锥= S 底面积×h 公式:V 圆锥= πr 2×h
注:因为圆锥的底面是一个圆,所以圆锥的底面积(S
底面积) 计算公式是:S 底面积=πr 2
例题: 一个圆锥形的煤堆,底面半径是 1.5 米,高是 1.2 米。

这堆煤有多少立方米?
用公式:V 圆锥= πr 2×h ×3.14×1.52×1.2=2.826(m 3 ) 知道圆锥的体积和底面积,求圆锥的高。

圆锥÷S 底面积
知道圆锥的体积和高,求圆锥的底面积。

圆锥÷h
313131313
1。

相关文档
最新文档