小学六年级数学圆柱和圆锥
人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知
苏教版小学六年级下册数学课件 《圆柱的体积》圆柱和圆锥PPT(第3课时)

0.314m³ 中单位
不一致,要将结
果立方 7.把一块长、宽、高分别是5厘d米m改、写3.1为4立dm方、2dm的长
方体铁块,熔铸成
米。
一个底面半径是2dm的圆柱形铁块,这个圆柱形铁块
的高是多少分2米.5?dm
提示:长方体体 积与圆柱体积相
等。
课堂练 习
8.一根圆柱形钢材长2米,截成3段小圆柱后,
试一试:一个圆柱形水杯的容积是1.6升,从里面量, 平方分米。用这个水杯装3/4杯水,水面高多少分米?
先算出3/4杯水的体积是多少。所以:
V=¾×1.6=1.2(l) 高等于体积除以底面积,所以:
h=V÷s=1.2÷1.2=1(dm)
教学新 知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了4厘米, 能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么? 计算出这个圆钢的体积? (3)这题还可以怎样思考?
试一试:一个圆柱形水池,从里面量,底面直径是8
米,深3.5米。
(1)水池里最多能蓄水多少吨?(1立方米水重1吨)
(2)在水池的底面和四周抹上水泥,抹水泥部分的
(面积1)是V多=少s?h=4²π×3.5=175.84(m³)175.84m³=17 (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新 知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米, 横截面是一个半径 2米的(半1)圆搭形建。这个大棚大约要用多少平方米的塑料薄膜?
S=πrh+πr²=3.14×2×15+3.14×2²=106.76(m
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
六年级数学圆柱和圆锥知识点

六年级数学圆柱和圆锥知识点本课内容是九年制义务教育课程标准实验教材(苏教版)六年级下册第18-20页《圆柱和圆锥的认识》。
学生已经在一年级的时候初次认识了圆柱,已经会辨别;圆锥这一立体图形没有见识过,从未接触;这里给大家分享一些六年级数学圆柱和圆锥知识点,欢迎阅读!六年级数学圆柱和圆锥教案一、说教材。
《圆柱和圆锥是小学阶段几何知识的最后一部分新课内容,内容包括:面的旋转、圆柱的表面积、圆柱的体积及圆锥的体积四小节,本节复习课旨在通过回顾梳理,交流互补,使学生将零散的知识在头脑中串成线,联成片,形成完整的知识网络,加深各个图形之间的内在联系,综合运用有关知识解决实际问题。
《课程标准》中对本学段的教学要求是:认识并掌握圆柱体、圆锥体的特征,明白表面积和体积的意义,通过操作、实验、转化、类比、推理等逻辑方法得到表面积和体积的计算方法,掌握常用的体积(容积)单位,会计算一些形体的表面积和体积(容器的容积),并能应用所学知识解决简单的实际问题。
二、根据此要求以及学生的特点,我确定了如下的教学目标:1、通过复习、交流,我会说出圆柱和圆锥的特征和相关的计算公式。
2、通过练习、展示,我会运用公式正确解决有关圆柱的表面积和体积及圆锥体积的实际问题。
三、教学重点:运用所学知识解决实际问题。
四、教学难点:综合运用所学知识解决问题。
五、说教法学法。
本节课我采取“练习法”,让学生在回顾整理、交流互补、巩固练习、展示自我等一系列活动中掌握知识、发展智力、锻炼能力。
六、说教学过程“复习课”作为数学课的一种基本类型,它不同于新授课的探索发现,也有别于练习课的巩固应用,它的一个重要功能就是引导学生对所学的知识进行整理,把分散的知识综合成一个整体,使之形成一个较为完整的知识体系,提高学生对知识的掌握水平。
承载着“回顾与整理,沟通与生成”的独特功能。
本节课我设计了以下几个环节:第一环节:谈话导入,明确目标。
本学期,我们结识了小学阶段几何形体中的最后两位朋友,他们是——(圆柱和圆锥)。
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)

5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
六年级数学下第三单元 圆柱与圆锥

第三单元、圆柱与圆锥自主学习一、情境导入1.在生活中有许多这种形状的物体,谁知道它们都是什么形状?这节课我们就一起来认识这样的形状。
2、板书课题:圆柱的认识二、引导自学(1)认识圆柱的面。
师:请同学摸摸自己手中圆柱的表面,说说发现了什么?师:指导看书,引导归纳。
(上下两个面叫做底面,它们是完全相同的两个圆。
圆柱的曲面叫侧面。
)(2)认识圆柱的高(3)圆柱的侧面展开是什么图形,一、前置性作业1、我们以前学过的平面图形有哪些?,学过的立体图行有 .3、观察书中第17页上的物体,这类物体的名称叫().4、举例:生活中有哪些圆柱形的物体?5、求下面各圆的周长:(1)半径是1米(2)直径是3厘米二、探究新知⒈认识圆柱各部分名称及特征。
(1)拿一个圆柱形的实物,看看圆柱有哪几部分组成?自学课本18页。
我的发现:圆柱有两个和一个组成。
圆柱的两个圆面叫做;周围的面叫做;两底面之间的距离叫做。
(2)圆柱有什么特征?小组内说说自己的想法。
圆柱的特征:圆柱的两底面都是,并且大小;圆柱的侧面是;有条高,长度都相等。
⒉认识圆柱的侧面、底面及之间的关系。
圆柱的侧面展开后是什么形状?剪一剪再展开。
第二课时圆柱的表面积主备:胡佳佳辅备:张昌华、盛进仕、杨文静、周正龙自主学习一、导入回忆圆柱的特征二、引导自学1、组织学生预习新知独立完成“自主学习”的练习。
2、自我检测一、知识铺垫⒈复习圆柱的特征:圆柱是由哪几部分组成的?圆柱的上、下两个底面是两个什么样的圆?什么是圆柱的高?高有多少条?围成圆柱的曲面叫圆柱的什么?圆柱的侧面沿着高展开后是什么图形?长方形的长、宽与圆柱有什么关系?2.拿出自己找到的圆柱体,说一说它的组成吧。
3.那我们做这样一个圆柱体,至少需要多大的纸呢?也就是求什么?请用自己的话简单说一说。
二、自主探究⒈圆柱的表面积的意义及计算方法。
(1)圆柱表面积含义。
圆柱体的表面积指的是什么?拿着你的圆柱体小组内说一说吧。
我的想法:圆柱的表面积是指圆柱的和两个的面积之和。
人教版六年级数学下册圆柱与圆锥体积专项练习题精选

人教版六年级数学下册圆柱与圆锥体积专项练习题精选1.把圆柱的侧面沿着高剪开,得到一个矩形,这个矩形的长等于圆柱底面的周长,宽等于圆柱的高,所以圆柱的侧面积等于底面周长乘以高。
2.单位换算:1升=1000毫升=1立方分米=1000立方厘米1平方米=平方分米,1公顷=平方米415平方厘米=41.5平方分米,4.5立方米=4500立方分米2.4立方分米=2400毫升,4070立方分米=4.07立方米3立方分米40立方厘米=3040立方厘米325立方米=立方分米,5380毫升=5.38升380毫升3.基础练:1.将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是20平方分米,体积是4立方分米。
2.一个圆柱底面半径2分米,侧面积是113.04平方分米,这个圆柱体的高是9分米。
4.把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是15.04平方厘米。
5.一个圆柱体的底面半径为r,侧面展开图形是一个正方形。
圆柱的高是r根2.6.一个圆柱的底面周长是12.56厘米,高是6厘米,那么底面半径是2厘米,底面积是4平方厘米,侧面积是75.36平方厘米,体积是50.24立方厘米。
7.一个圆柱和一个圆锥的底面积相等,高也相等,那么圆柱的体积是圆锥的3倍,圆柱的体积的2/3就等于圆锥的体积。
8.一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是4厘米。
9.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是32立方米,圆锥的体积是16立方米。
10.一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是40立方厘米。
11.圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是2厘米。
12.一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是6分米。
13.把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重16千克。
部编版六年级数学下册第三单元《圆锥》(复习课件)

得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题。
(每空1%,共28%)
1、把圆柱的侧面展开,得到一个(),它的长等于圆柱底面的(),宽等于圆柱的()。
把一张长12.56分米、宽10分米的长方形纸片卷成一个圆柱,并把圆柱直立在桌子上,它的最大容积是(
)这个圆柱的侧面积最多是()平方分米。
(接口处不计)
2、一个圆柱形油桶,侧面展开是一个正方形,已知这个油桶的底面半径是5分米,那么油桶的高是()分米。
3、圆锥的底面是个(),把圆锥的侧面展开得到一个()。
4、圆柱和圆锥等底等高,若圆锥体积是20立方厘米,圆柱的体积是()。
如果二者的体积之和是400立方厘米,那么圆柱的体积是(),圆锥的体积是()。
如果圆锥的体积比圆柱小50立方厘米,那么,圆柱的体积是(),圆锥的体积是()。
5、一根圆柱形有机玻璃棒,体积是400立方厘米,底面积是4立方厘米,把它平均截成5段,每段长()cm。
6、一个圆柱半径是2分米,高是10分米,把圆柱沿水平方向切成两段,表面积增加了()。
7、把一个棱长是10厘米的正方体切成一个最大的圆锥,圆锥体积是()cm。
8、圆柱的底面半径扩大为原来的a倍,高不变,底面积扩大为原来的()倍,底面周长扩大为原来的()倍,侧面积扩大为原来的()倍,体积扩大为原来的()倍。
9、一个圆锥的体积是113.04立方分米,底面半径是1米,这个圆锥的高是()分米。
10、一个圆柱与一个长为20分米,宽5分米,高3分米的长方体体积相等。
如果圆柱的高是15分米,它的底面积是()分米。
11、36个铁圆锥可以熔铸成()个等底等高的圆柱体。
12、一个圆柱有()条高,一个圆锥有()条高。
13、两个完全一样的圆柱能拼成一个高4分米的圆柱,但表面积减少了50.24平方分米。
原来一个圆柱的体积是()。
14、一个圆柱形容器与一个圆锥形容器等底等高,将圆锥形容器装满水后全部倒入空圆柱形容器内,这时水深12厘米,圆锥形容器的高是()厘米。
15、容器的容积和它的体积比较,容积比体积()。
二、判断题。
(每小题2%,共16%。
)
1、圆锥的体积总是比圆柱的体积要小。
()
2、一个圆锥与一个圆柱的体积比是1:3,圆锥和圆柱一定是等底等高。
()
3、圆柱的侧面展开,也可以得到一个梯形。
()
4、用一张长20 cm、宽10 cm的长方形硬纸卷两种不同的圆柱,它们的体积一定相等。
()
5、正方体、长方体、圆柱体的体积都可用公式V=Sh来计算。
()
6、把一个圆柱的侧面展开,得到的不一定是一个长方形。
()
7、圆柱的体积是圆锥体积的3倍。
()
8、底面半径是2分米的圆柱体,侧面积和体积相等。
()
三、学以致用(49%)
1、一只水桶底面直径是60cm,高70cm。
如果每次在桶内盛50cm 深的水,几桶可将一口容积为0.5立方米的水缸盛满?(6%)
2、寒冬将至,卓仁为父母用6节长1米、底面半径为10厘米的圆柱形烟囱管做了一个烟囱,至少需要铁皮多少平方米?(6%)
3、为灌溉方便,施敢在自己承包的山丘上挖一个容积是648立方米的圆柱形蓄水池,池口直径20米,应挖几米深?(5%)
4、一个圆柱形水杯的容积是3.6升,底面积是1.2平方分米,装了
4
3
杯水。
水面高多少分米?水面离杯口高多少厘米?(6%)
5、右图是一块长方形铁皮(每个方格的边长表示1分米),剪下图中的涂色部分可以围成一个圆柱,这个圆柱的体积是多少?(7%)
6、一辆压路机的前轮是圆柱形,轮宽3米,直径是2米。
如果滚每分钟转动50周,那么,(1)每分钟能前进多少米?(2)1小时能压路面多少平方米?(6%)
7、一个圆锥形沙堆, 底面周长是31.4米, 高3米, 每方沙重1.8吨, 用一辆载重6吨的汽车 几次可以运完? (6%)
8、一根横截面直径为20厘米的圆柱形钢材,长2米,如果每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留两位小数)(7%)
四、操作。
(7%)
绕一个直角三角形(如下图)的短直角边旋转一周,得到一个立体图形。
1、这个立体图形是什么?(1%)
2、请在原图上把这个立体图形画出来。
(2%)
3、这个立体图形的体积是多少?(单位:厘米)(4%)
4
2
填空 判断 计算 操作
合计 自估分
实得分
反思。