排列组合、二项式定理、概率与统计课后练习 理

合集下载

第三章排列组合和二项式定理

第三章排列组合和二项式定理

第3章排列组合和二项式定理一.分类加法计数原理(共1小题)1.现有30个分别标有不同编号的球,其中有27个红球,3个黑球,若从这30个球中取出3个球,则至少取到两个黑球的取法总数为.(用数字作答)二.分步乘法计数原理(共2小题)2.现有5名同学去听同时进行的6个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.54B.65C.D.6×5×4×3×23.从分别印有数字0,3,5,7,9的5张卡片中,任意抽出3张组成三位数.①求可以组成多少个大于500的三位数;②求可以组成多少个三位数;③若印有9的卡片,既可以当9用,也可以当6用,求可以组成多少个三位数.三.计数原理的应用(共10小题)4.将(x﹣1)(x﹣2)(x﹣3)(x﹣4)展开,则x3的系数等于()A.﹣10B.﹣12C.12D.105.4位同学每人从甲、乙、丙3门课程中选修2门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种6.如图,从甲地到乙地有3条路,从乙地到丁地有2条路;从甲地到丙地有3条路,从丙地到丁地有4条路.从甲地到丁地的不同路线共有()A.12条B.15条C.18条D.72条7.甲、乙、丙三家公司承包6项工程,甲承包3项,乙承包2项,丙承包1项.不同的承包方案有()A.720种B.127种C.60种D.24种8.某省示范高中将6名教师分配至3所农村学校支教,每所学校至少分配一名教师,其中甲必去A校,乙、丙两名教师不能分配在同一所学校的不同分配方法数为()A.36B.96C.114D.1309.我班制定了数学学习方案:星期一和星期日分别解决4个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有()A.50种B.51种C.140种D.141种10.某学校一天共排7节课(其中上午4节、下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有()A.16B.15C.32D.3011.用0,1,2,3,4,5,6七个数共可以组成个没有重复数字的三位数.12.要从5名男生,3名女生中选出3人作为学生代表参加社区活动,且女生人数不多于男生人数,那么不同的选法种数有种.13.3名男生、4名女生按照不同的要求排队,求不同的排队方案的方法种数.(1)选其中5人排成一排(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,男不站排头也不站排尾.四.排列及排列数公式(共5小题)14.若=,则n=()A.1B.8C.9D.1015.若A=4C,则n=()A.5B.6C.7D.816.设m∈N*,且m<20,则(20﹣m)(21﹣m)…(26﹣m)等于()A.B.C.D.17.=.(结果用数字作答)18.若A=4C,则m=.五.组合及组合数公式(共5小题)19.若,则实数x的值为()A.1B.3C.1或3D.0(多选)20.若C>3C,则m的取值可能是()A.6B.7C.8D.921.若,则=.22.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是.(用数字作答)23.一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?六.排列、组合及简单计数问题(共1小题)24.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求出现如下结果时,各有多少种情况?(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋子有2只成双,另两只不成双.七.二项式定理(共36小题)25.在(x﹣1)5展开式中,x2的系数为()A.10B.5C.﹣10D.﹣526.设,则a0+a1+a2+a3+a4的值为()A.1B.0C.16D.1527.当n∈N时,将三项式(x2+x+1)n展开,可得到如图所示的三项展开式和“广义杨辉三角形”:若在(1+ax)(x2+x+1)5的展开式中,x8的系数为75,则实数a的值为()A.1B.﹣1C.2D.﹣228.在﹣的展开式中,只有第5项的二项式系数最大,则展开式中所有项的系数之和为()A.﹣B.C.﹣256D.25629.已知的展开式中,各二项式系数和为64,则x7的系数为()A.15B.20C.60D.8030.若的展开式中的第4项和第5项的二项式系数相等,则展开式中x的系数为()A.280B.﹣280C.560D.﹣56031.若(2x﹣1)4=a4x4+a3x3+a2x2+a1x+a0,则a2=()A.6B.24C.﹣6D.﹣2432.在的展开式中,若二项式系数的和为32,则的系数为()A.﹣80B.80C.﹣40D.4033.已知(1+ax)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,若a3=﹣80,则a1+a2+a3+a4+a5=()A.1B.0C.﹣1D.﹣234.的展开式中常数项为()A.30B.20C.15D.1035.已知(2x+1)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则a1的值为()A.6B.12C.60D.19236.(x﹣2)3的展开式中x2的系数是()A.﹣12B.12C.﹣6D.637.若(1﹣4x)2021=a0+a1x+a2x2+⋯+a2021x2021,则的值是()A.﹣2B.﹣1C.0D.138.关于(2+x)7的二项展开式,下列说法正确的是()A.(2+x)7的二项展开式的各项系数和为37B.(2+x)7的二项展开式的第五项与(x+2)7的二项展开式的第五项相同C.(2+x)7的二项展开式的第三项系数为24CD.(2+x)7的二项展开式第二项的二项式系数为2C39.若(2x﹣1)4=a4x4+a3x3+a2x2+a1x+a0,则a0+a2+a4=()A.40B.41C.﹣40D.﹣4140.若(1﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+a3+a5=()A.121B.﹣122C.﹣121D.12241.关于及其展开式,下列说法正确的是()A.该二项展开式中奇数项的二项式系数和是22020B.该二项展开式中第六项为C.该二项展开式中不含有理项(有理项即为x的指数为整数的项)D.当x=100时,除以100的余数是142.在的展开式中,下列说法正确的有()A.所有项的系数和为0B.所有项的二项式系数和为64C.存在常数项D.第4项和第5项的系数相等43.若的展开式中的常数项为﹣20,则a=()A.2B.﹣2C.1D.﹣144.在(a+b)n的展开式中,只有第4项的二项式系数最大,则n=()A.4B.5C.6D.745.已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.12246.在(3x﹣2)5的展开式中,各项系数的和是()A.25B.55C.1D.﹣147.二项式的展开式中,常数项是,各项二项式系数之和是.(本题用数字作答)48.的展开式中的常数项为,各项的系数和为.49.若(1﹣2x)5=a5x5+a4x4+…+a1x+a0,则a0+a1+a2+a3+a4+a5=.50.若,则a1+a3=.51.已知二项式(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+a3+a5=.52.二项式(x﹣1)n的二项式系数和为64,则n=;二项式的展开式中常数项为.(用数字作答)53.已知的展开式中,第3项与第6项的系数互为相反数,则展开式中系数最小的项为.54.在的展开式中,x﹣1的系数为.55.在的展开式中,各项系数之和与二项式系数之和的比为64,则x3的系数为.56.已知f(x)=(2x﹣3)n展开式的二项式系数和为512,且(2x﹣3)n=a0+a1(x﹣1)+a2(x﹣1)2+…+a n(x﹣1)n.(1)求a2的值;(2)求a1+a2+a3+⋯+a n的值;(3)求f(20)﹣20被6整除的余数.57.将二项式(2x﹣)n展开,若展开式中各项的二项式系数之和为64.(Ⅰ)求n的值;(Ⅱ)求展开式中的常数项.58.已知(x+)n的展开式中第2项与第5项的二项式系数相等.(Ⅰ)求n的值;(Ⅱ)求展开式中各项系数的和;(Ⅲ)判断展开式中是否存在常数项,并说明理由.59.(1)(x﹣1)7展开式中第几项的系数最大,并写出这一项;(2)求(x+1)(x﹣1)7展开式中x2项的系数.60.在(2x﹣3y)10的展开式中,求:(1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和;(4)奇数项系数和与偶数项系数和;(5)x的奇次项系数和与x的偶次项系数和.第三章排列组合和二项式定理参考答案与试题解析一.分类加法计数原理(共1小题)1.【考点】分类加法计数原理;排列、组合及简单计数问题.【分析】利用分类加法计数原理求解.【解答】解:由分类加法计数原理可知,至少取到两个黑球的取法总数为=82种,故答案为:82.【点评】本题主要考查了分类加法计数原理,属于基础题.二.分步乘法计数原理(共2小题)2.【考点】分步乘法计数原理.【分析】5名同学去听同时进行的6个课外知识讲座,实际上是有6个人选择座位,且每人有6种选择方法,根据分步计数原理得到结果.【解答】解:∵每位同学均有6种讲座可选择,∴5位同学共有6×6×6×6×6=65种,故选:B.【点评】本题考查分步计数原理,解题的关键是看清题目的实质,分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成.3.【考点】分步乘法计数原理.【分析】①.首位是5、7、9的三位数都大于500.即可求解.②.共有三位数:4=48个.③.求出有数字9的三位数个数即可.【解答】解:①.首位是5、7、9的三位数都大于500.故大于500的三位数有:3=36个;②.共有三位数:4=48个.③.取出的三张卡片中有0也有9:有×2×2=12种情况,取出的三张卡片中有9但没有0:C32A33=18种情况,结合②,可得②②印有9的卡片,既可以当9用,也可以当6用,可以组成48+30=78个三位数【点评】本题考查排列、组合的实际应用,注意依据题意进行分情况讨论,一定做到不重不漏.三.计数原理的应用(共10小题)4.【考点】计数原理的应用.【分析】将(x﹣1)(x﹣2)(x﹣3)(x﹣4)展开,可得x3的系数.【解答】解:∵(x﹣1)(x﹣2)(x﹣3)(x﹣4)=(x2﹣5x+4)(x2﹣5x+6)=(x2﹣5x)2+10(x2﹣5x)+24=x2(x2﹣10x+25)+10(x2﹣5x)+24=x4﹣10x3+35x2﹣50x+24,∴展开式中x3的系数为﹣10,故选:A.【点评】本题主要考查了多项式相乘展开,属于基础题.5.【考点】计数原理的应用.【分析】本题是一个分步计数问题,恰有2人选修课程甲,共有C42种结果,余下的两个人各有两种选法,共有2×2种结果,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,∵恰有2人选修课程甲,共有C42=6种结果,∴选了甲的两人分别有两种选择,共有2×2=4种结果,根据分步计数原理知共有6×4=24种结果.故选:B.【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.6.【考点】计数原理的应用.【分析】先分类,再分步,即可求出答案.【解答】解:分两类,第一类,从甲到乙再到丁,共有3×2=6种,第二类,从甲到丙再到丁,共有3×4=12种,根据分类计数原理可得,共有6+12=18种,故从甲地到丁地共有18条不同的路线.故选:C.【点评】本题考查了分步和分类计数原理,属于基础题.7.【考点】计数原理的应用.【分析】由题意,甲承包3项,有种方法,乙承包2项,有种方法,丙承包1项,有1种方法,利用乘法原理可得结论.【解答】解:∵甲、乙、丙三家公司承包6项工程,甲承包3项,乙承包2项,丙承包1项,∴甲承包3项,有种方法,乙承包2项,有种方法,丙承包1项,有1种方法∴不同的承包方案有=60种故选:C .【点评】本题考查计数原理的应用,考查学生分析解决问题的能力,属于基础题.8.【考点】计数原理的应用.【分析】按照其余5人是否都去A 校分类计数.【解答】解:甲去A 校,再分配其他5个人,①如果都不去A 校,则分配方法有×2×2×2=16种;②如果5人分成1,1,3三组,则分配方法有()=42种;③如果5人分成1,2,2三组,则分配方法有()=72种;由加法原理可得不同分配方法有16+42+72=130种.故选:D .【点评】本题考查排列、组合的应用,注意要先分组,再进行排列,属于中档题.9.【考点】计数原理的应用.【分析】因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.【解答】解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有=141种.故选:D .【点评】本题考查组合知识的运用,考查学生分析解决问题的能力,确定中间“多一个”或“少一个”的天数必须相同是关键.10.【考点】计数原理的应用.【分析】直接分类讨论得以解决.【解答】解:该教师一个班上第1节课,则另一个班有5种情况,考虑顺序,有10种方法;一个班上第2节课,则另一个班有4种情况,考虑顺序,有8种方法;一个班上第3节课,则另一个班有3种情况,考虑顺序,有6种方法;一个班上第4节课,则另一个班有3种情况,考虑顺序,有6种方法;一个班上第5节课,则另一个班有7种情况,考虑顺序,有2种方法;共有10+8+6+6+2=32种方法.故选:C.【点评】本题考查了排列组合问题,考查分类讨论的数学思想,属于基础题.11.【考点】计数原理的应用.【分析】因为元素0特殊,故选0时和不选0时两类,根据分类计数原理可得.【解答】解:选0时,0不能在首位,故有C21A62=60个,不选0时,有A63=120个,根据分类计数原理,共有60+120=180个,故答案为:180.【点评】本题考查了分类计数原理,关键是分类,属于基础题.12.【考点】计数原理的应用.【分析】由题意知这3人中既有男生又有女生,包括2男1女和3男0女两种情况,分别求出这两种情况下的选法的数量,利用分类计数原理相加即得结果.【解答】解:由题意知本题是一个分类计数原理的应用,这3人女生人数不多于男生人数,包括2男1女和3男0女两种情况.若3人中有2男1女,则不同的选法共有C52C31=30种,若3人中有3男0女,则不同的选法共有C53=10种,根据分类计数原理,所有的不同的选法共有30+10=40种,故答案为:40.【点评】本题主要考查计数原理的应用,考查了运算求解能力,本题是一个基础题.13.【考点】计数原理的应用.【分析】相邻问题一般看作一个整体处理,不相邻,用插空法,即可求解.【解答】解:(1)选其中5人排成一排,不同的排队方案的方法有=2520种(2)排成前后两排,前排3人,后排4人,不同的排队方案的方法种;(3)全体站成一排,男、女各站在一起,有=288种方法;(4)全体站成一排,男生不能站在一起,有=1440种方法;(5)全体站成一排,男不站排头也不站排尾,有=1440种方法.【点评】本题考查排列的应用,相邻问题一般看作一个整体处理,不相邻,用插空法,属于基本知识的考查.四.排列及排列数公式(共5小题)14.【考点】排列及排列数公式.【分析】利用排列数的计算公式即可得出.【解答】解:∵=,∴2n(2n﹣1)(2n﹣2)=10n(n﹣1)(n﹣2),化为:4n﹣2=5n﹣10,则n=8.故选:B.【点评】本题考查了排列数的计算公式,考查了推理能力与计算能力,属于基础题.15.【考点】排列及排列数公式;组合及组合数公式.【分析】由题意利用排列数公式、组合数公式,求得n的值.【解答】解:A=4C,则5×4×3=4×,∴n=6,故选:B.【点评】本题主要考查排列数公式、组合数公式的应用,属于基础题.16.【考点】排列及排列数公式.【分析】根据题意,由排列数公式可得(20﹣m)(21﹣m)…(26﹣m)==,即可得答案.【解答】解:根据题意,(20﹣m)(21﹣m)…(26﹣m)==,故选:A.【点评】本题考查排列数公式,关键是掌握排列数公式的形式.17.【考点】排列及排列数公式.【分析】利用排列数的计算公式即可得出结论.【解答】解:原式=5×4×3×2×1﹣19×3×2×1=6,故答案为:6.【点评】本题考查了排列数的计算公式,考查了推理能力与计算能力,属于基础题.18.【考点】排列及排列数公式.【分析】根据排列数以及组合数公式,进行求解即可.【解答】解:∵A=4C,∴m(m﹣1)=4×且m≥4,∴6=(m﹣2)(m﹣3),解得m=5,(0舍去)故答案为:5.【点评】本题考查了排列数以及组合数公式的应用问题,是基础题.五.组合及组合数公式(共5小题)19.【考点】组合及组合数公式.【分析】根据组合数的性质列式求解即可.【解答】解:∵,∴2x+1=x+2或2x+1+x+2=12,解得x=1或3.故选:C.【点评】本题考查了组合数公式的应用,是基础题目.20.【考点】组合及组合数公式.【分析】根据题意,由组合数的定义可得0≤m﹣1≤8且0≤m≤8以及>3×,变形解可得m的取值范围,结合m为正整数即可得答案.【解答】解:根据题意,对于C和3C,有0≤m﹣1≤8且0≤m≤8,则有1≤m≤8,若C>3C,则有>3×,变形可得:m>27﹣3m,解可得:m>,综合可得:<m≤8,则m=7或8;故选:BC.【点评】本题考查组合数公式的计算,关键是掌握组合数公式的形式,属于基础题.21.【考点】组合及组合数公式.【分析】根据组合数的性质计算可得.【解答】解:因为,由组合数的性质可得n=3+6=9,∴==72.故答案为:72.【点评】本题考查了组合数公式的应用问题,是基础题目.22.【考点】组合及组合数公式.【分析】甲、乙大学生从4个公司中各选2个作为实习单位可分两步完成,第一步甲大学生选实习公司,第二步乙大学生选实习公司,两个步骤相乘可以得到结果.【解答】解:由题意知本题需要分步来解,第一步甲大学生选实习公司,有=6种方法,第二步乙大学生选实习公司,有=4种方法,由乘法原理得:两人所选的实习单位中恰有1个相同的选法有6×4=24种.故答案是24.【点评】本题考查了乘法计数问题.23.【考点】组合及组合数公式;分类加法计数原理.【分析】(1)由题意知本题是一个分类计数问题,取4个红球,没有白球,有C44种,取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,根据加法原理得到结果.(2)设出取到白球和红球的个数,根据两个未知数的和是5,列出方程,根据分数不少于7,列出不等式,根据这是两个整数,列举出结果.【解答】解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则∴∴符合题意的取法种数有C42C63+C43C62+C44C61=186种【点评】本题考查分类加法原理,是一个基础题,解题的关键是对于分类要做到不重不漏,准确的表示出结果.六.排列、组合及简单计数问题(共1小题)24.【考点】排列、组合及简单计数问题.【分析】(1)先从10双中取出4双,然后再从每双中取出一只,结果就是取出的4只鞋子,任何两只都不能配成1双,根据分步计数原理得,(2)4只恰好成两双,从10双中取出2双,问题得以解决(3)先从10双中取出1双,再从9双中取出2双,然后再从每双中取出一只,结果就是4只鞋子中有2只成双,另2只不成双,根据分步计数原理得.【解答】解:(1)从10双鞋子中选取4双,有C104种不同的选法,每双鞋子各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C104•24=3360(种).(2)从10双鞋子中选取2双有C102种取法,即45种不同取法.(3)先选取一双有C101种选法,再从9双鞋子中选取2双鞋有C92种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C101C92•22=1440(种).【点评】本题考查排列、组合及简单计数问题,解题的关键是审清题意,本题考查了推理判断的能力及计数的技巧.七.二项式定理(共36小题)25.【考点】二项式定理.【分析】直接利用二项展开式和组合数求出结果.【解答】解:根据二项展开式:,当r=3时,x2的系数为.故选:C.【点评】本题考查的知识要点:二项展开式和组合数,主要考查学生的理解能力和计算能力,属于基础题和易错题.26.【考点】二项式定理.【分析】令x=1即可求解.【解答】解:由题意令x=1,则a0+a1+a2+a3+a4=(2×1﹣1)4=1,故选:A.【点评】本题考查了二项式定理的应用,属于基础题.27.【考点】二项式定理.【分析】先阅读题意,然后结合二项式定理求解即可.【解答】解:由题意可得“广义杨辉三角形”的第5行为1,5,15,30,45,51,45,30,15,5,1,则在(1+ax)(x2+x+1)5的展开式中,x8的系数为15+30a=75,即a=2,故选:C.【点评】本题考查了二项式定理,重点考查了阅读理解能力,属基础题.28.【考点】二项式定理.【分析】先根据只有第5项的二项式系数最大确定n的值,再令x=1求解即可.【解答】解:因为展开式中只有第5项的二项式系数最大,所以展开式共有9项,则n=8.即﹣=()8,令x=1,得到()8=.故选:B.【点评】本题主要考查二项式定理,属于基础题.29.【考点】二项式定理.【分析】根据二项式系数和求出n的值,再求出二项式的展开式的通项公式,然后令x的指数为7,由此即可求解.【解答】解:由二项式系数和为64可得:2n=64,解得n=6,则二项式(x)6的展开式的通项公式为T=C,r=0,1, (6)令12﹣,解得r=2,所以x7的系数为C=60,故选:C.【点评】本题考查了二项式定理的应用,考查了学生的运算求解能力,属于基础题.30.【考点】二项式定理.【分析】由题意,先求出n的值,在二项式展开式的通项公式,再令x的幂指数等于1,求得r的值,即可求得展开式中的x的系数.【解答】解:∵的展开式中的第4项和第5项的二项式系数相等,∴=,∴n=3+4=7,故它的通项公式为T r+1=•(﹣2)r•x7﹣2r,令7﹣2r=1,可得r=3,∴展开式中x的系数为•(﹣2)3=﹣280,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于中档题.31.【考点】二项式定理.【分析】由题意求出展开式中含x2的项,由此即可求解.【解答】解:展开式中含x2的项为C=24x2,所以a2=24,故选:B.【点评】本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.32.【考点】二项式定理.【分析】根据二项式系数的和为2n,可得n=5,再利用展开式的通项,即可得解.【解答】解:二项式系数的和为2n=32,所以n=5,展开式的通项为T r+1=x5﹣r•=(﹣2)r x5﹣2r,令5﹣2r=﹣1,则r=3,所以的系数为=﹣80.故选:A.【点评】本题考查二项式定理,熟练掌握展开式的通项,二项式系数的性质是解题的关键,考查运算求解能力,属于基础题.33.【考点】二项式定理.【分析】由题意,根据a3=﹣80利用通项公式求出a和a0,再令x=1,可得要求式子的值.【解答】解:∵(1+ax)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,a3=•a3=﹣80,∴a=﹣2,a0==1,∴(1﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,∴令x=1,可得1+a1+a2+a3+a4+a5=(﹣1)5=﹣1,则a1+a2+a3+a4+a5=﹣2,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于中档题.34.【考点】二项式定理.【分析】求出展开式的通项公式,令x的指数为0,由此即可求解.【解答】解:展开式的通项公式为,r=0,1, (6)令12﹣3r=0,解得r=4,所以的展开式中常数项为,故选:C.【点评】本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.35.【考点】二项式定理.【分析】写出展开式的通项,再令6﹣r=1,求出r,再代入计算即可.【解答】解:二项式(2x+1)6展开式的通项T r+1=C(2x)6﹣r=C26﹣r x6﹣r.令6﹣r=1,解r=5,所以T6=C21•x=12x,所以a1=12.故选:B.【点评】本题主要考查二项式定理,属于中档题.36.【考点】二项式定理.【分析】利用二项式定理的展开式,即可解出.【解答】解:展开式中x2的系数为:C(﹣2)1=﹣6,故选:C.【点评】本题考查了二项式定理的展开式,学生的数学运算能力,属于基础题.37.【考点】二项式定理.【分析】利用赋值法,即可解出.【解答】解:令x=0,得a0=1,令,得a0++...+=(﹣1)2021=﹣1,∴+...+=﹣2.故选:A.【点评】本题考查了二项式定理,赋值法,学生的数学运算能力,属于基础题.38.【考点】二项式定理.【分析】直接根据二项展开式的性质依次判断四个选项即可.【解答】解:选项A:(2+x)7的二项展开式的各项系数和为(2+1)7=37,故A正确,选项B:(2+x)7的二项展开式的第五项为:•23•x4,而(x+2)7的二项展开式的第五项为:•x3•24,不相同,故B错误,选项C:(2+x)7的二项展开式的第三项系数为:25•,故C错误,选项D:(2+x)7的二项展开式第二项的二项式系数为:,故D错误,故选:A.【点评】本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.39.【考点】二项式定理.【分析】法一:由题意,利用二项式展开式的通项公式,求出a0和a2,以及a4的值,可得结论.解法二:在所给的等式中,分别令x=1,x=﹣1,得到两个等式,再把两个等式相加并处以2可得a0+a2+a4的值.【解答】解:法一:∵(2x﹣1)4=a4x4+a3x3+a2x2+a1x+a0,可得a0==1,a2=×22=24,a4=×24=16,∴a0+a2+a4=41,故答案为:41.法二:∵(2x﹣1)4=a4x4+a3x3+a2x2+a1x+a0,令x=1,可得a0+a1+a2+a3+a4=1,再令x=﹣1,可得a0﹣a1+a2﹣a3+a4=(﹣3)4=81,∴两式相加处以2可得,a0+a2+a4==41,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于基础题.40.【考点】二项式定理.【分析】分别令x=1,x=﹣1,建立方程联立即可求解.【解答】解:令x=1,则a0+a1+...+a5=(1﹣2)5=﹣1①,令x=﹣1,则a0﹣a1+...﹣a5=(1+2)5=243②,则①﹣②可得:a1+a3+a5=﹣122,故选:B.【点评】本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.41.【考点】二项式定理.【分析】由奇数项的二项式系数和为2n﹣1,即可判断A,由二项展开式的通项公式求得第六项即可判断B,求出二项展开式的通项公式即可判断C,由二项式定理求得(10﹣1)2020=100(102018﹣102017+102016﹣102015+…+﹣202)+1,即可判断D.【解答】解:A,的展开式中奇数项的二项式系数和为22019,故A错误,B,展开式中第六项为T6=(﹣1)5=﹣,故B错误,C,该二项展开式的通项公式为T r+1=(﹣1)r=(﹣1)r,当r=0,2,4,…,2020时,T r+1为有理项,故C错误,D,当x=100时,(10﹣1)2020的通项公式为(﹣1)r102020﹣r,所以(10﹣1)2020=102020﹣102019+102018﹣102017+…+102﹣101+1=100(102018﹣102017+102016﹣102015+…+﹣202)+1,所以(10﹣1)2020除以100的余数是1,故D正确.故选:D.【点评】本题主要考查二项式定理及其应用,考查二项展开式的通项公式及二项式系数,属于中档题.42.【考点】二项式定理.【分析】利用二项展开式的通项公式,二项式系数的性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:在的展开式中,二项式系数之和为25=32,故B错误;令x=1,可得各项系数之和为05=0,故A正确;根据通项公式为T r+1=•x5﹣r•(﹣)r=(﹣1)r••x5﹣2r,令5﹣2r=0,求得r=(舍去),故C 错误;根据二项式系数的性质,第4项和第5项的系数一正一负,故D错误,故选:A.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.43.【考点】二项式定理.【分析】求出展开式的常数项,其等于﹣20,化简即可求解.【解答】解:展开式的常数项为C=C=﹣20,解得a=﹣1,故选:D.【点评】本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.44.【考点】二项式定理.【分析】由题意利用二项式系数的性质,求得n的值.【解答】解:在(a+b)n的展开式中,只有第4项的二项式系数最大,则展开式共有7项,∴n=6,故选:C.【点评】本题主要考查二项式系数的性质,属于基础题.45.【考点】二项式定理.【分析】依题意,可得a0﹣a1+a2﹣a3+…﹣a5=﹣35,|a0|+|a1|+…+|a5|=﹣a0+a1﹣a2+...+a5=﹣(a0﹣a1+a2﹣a3+…﹣a5)=35,从而得到答案.【解答】解:∵(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0=25x5﹣24x4+23x3﹣...+(﹣1)5x0,∴a0=﹣1<0,a1>0,a2<0,...,a5>0,令x=﹣1,得a0﹣a1+a2﹣a3+…﹣a5=﹣35,∴|a0|+|a1|+…+|a5|=﹣a0+a1﹣a2+...+a5=﹣(a0﹣a1+a2﹣a3+…﹣a5)=35=243,故选:B.。

【山东省】2017年高考数学(理科)-排列组合、二项式定理-专题练习-答案

【山东省】2017年高考数学(理科)-排列组合、二项式定理-专题练习-答案

排列组合、二项式定理解析1.[从E到G需要分两步完成:先从E到F,再从F到G。

从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条。

如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F。

因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条)。

所以小明到老年公寓的最短路径条数为6×3=18.]2.D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择。

由分步乘法计数原理,知有C13·A44=72(个)。

]3.C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种。

综上,不同的“规范01数列”共有20-6=14(种)。

故共有14个。

故选C.]4.A[分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法。

由分步乘法计数原理得,不同的选派方案共有2×6=12(种)。

]5.B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种。

根据分类计数原理,得208+264=472,故选B.]6.A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,13·!m!m!=7·+!+!m!=6.]D·。

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理1.(2020·呼和浩特开来中学高二期末(理))六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 2.(2020·广东省高二期末)在()62x +展开式中,二项式系数的最大值为m ,含4x 的系数为n ,则n m=( ) A .3 B .4 C .13 D .143.(2020·青铜峡市高级中学高二期末(理))设2220122(1)...n n n x x a a x a x a x ++=++++,则0a 等于( )A .1B .0C .3D .3n4.(2020·宁夏回族自治区宁夏大学附属中学高二月考(理))3个班分别从5个风景点中选择一处游览,不同的选法有( )A .243B .125C .128D .2645.(2020·洮南市第一中学高二月考(理))求346774C C -的值为( )A .0B .1C .360D .120 6.(2020·洮南市第一中学高二月考(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20C .40D .80 7.(2020·山东省高三其他)若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20 B .15 C .10 D .258.(2020·北京高二期末)5(1)a +展开式中的第2项是( )A .35aB .310aC .45aD .410a 9.(2020·北京高二期末)已知有1B ,2B ,⋯,6B 支篮球队举行单循环赛(单循环赛:所有参赛队均能相遇一次),那么比赛的场次数是( )A.15B.18C.24D.3010.(2020·北京高二期末)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是()A.142B.121C.221D.1711.(2020·江苏省马坝高中高二期中)9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6D.1112.(2020·江西省南昌十中高三其他(理))在6212xx⎛⎫-⎪⎝⎭的展开式中,常数项为__________(用数字作答).13.(2020·北京高二期末)()621x-的展开式中2x的系数为__________(用具体数据作答). 14.(2020·福建省厦门一中高三其他(理))2020年初,湖北面临医务人员不足和医疗物资紧缺等诸多困难,厦门人民心系湖北,志愿者纷纷驰援,若将甲、乙、丙、丁4名医生志愿者分配到A,B 两家医院(每人去一家,每家医院至少安排1人),且甲医生不安排在A医院,则共有__________种分配方案.15.(2020·苏州市第四中学校高二期中)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢.如果让三位同学选取的礼物都满意,则选法有________种.(用数字作答)16.(2020·上海高二期末)请列举出用0,1,2,3,4这5个数字所组成的无重复数字且比3000大的,且相邻的数字的奇偶性不同的所有四位数奇数,它们分别是______.1.(2020·广东省高三二模(文))在此次抗击新冠肺炎疫情过程中,中医治疗起到了重要作用.中医理论讲究食物相生相克,合理搭配饮食可以增强体质,提高免疫力,但不恰当的搭配也可能引起身体的不适.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知猪肉与菊花,猪肉与百合,螃蟹与茄子相克.现从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种,则它们相克的概率为()A .13B .23C .310D .7102.(2020·江苏省丰县中学高二期中)将4个不同的文件发往3个不同的邮箱地址,则不同的方法种数为( )A .43B .34C .34AD .34C 3.(2020·黑龙江省哈师大附中高二期末(理))为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有( )种A .36B .48C .60D .164.(2020·浙江省衢州二中高三其他)将含有甲、乙、丙、丁等共8人的浙江援鄂医疗队平均分成两组安排到武汉的A 、B 两所医院,其中要求甲、乙、丙3人中至少有1人在A 医院,且甲、丁不在同一所医院,则满足要求的不同安排方法共有( )A .36种B .32种C .24种D .20种5.(2020·吉林省松原市实验高级中学高三其他(理))某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有( )A .150种B .120种C .240种D .540种6.(2020·广东省高二期末)广东省实施“3+1+2”的新高考改革模式,“3”指全国统一高考的语文、数学、外语,“1”指物理、历史2门中选择1门,“2”指思想政治、地理、化学、生物4门中选择2门. 已知甲选择物理,乙选择地理,则甲乙两人有( )不同的选择组合方案.A .12种B .18种C .36种D .48种7.(2020·广东省高二期末)东莞近三年连续被评为“新一线城市”,“东莞制造”也在加速转型升级步伐,现有4个项目由东莞市政府安排到2个地区进行建设,每个地区至少有一个项目,其中项目A 和B 不能安排在同一个地区,则不同的安排方式有( )A .4种B .8种C .12 种D .16种8.(2020·河北省衡水中学高三其他(理))在2020年初抗击新冠肺炎疫情期间,某医院派出了3名医生和包括甲、乙、丙在内的6名护士前往武汉参加救治工作.现从这9人中任意抽取1名医生、3名护士组成一个应急小组,则甲、乙、丙这3名护士至少选中2人的概率为( )A .13B .12C .49D .34 9.(2020·四川省绵阳南山中学高三其他(理))()()()2111n x x x ++++++的展开式的各项系数和是( )A .12n +B .121n ++C .121n +-D .122n +-10.(2020·山西省高三其他(理))5(2)(1)x x -+的展开式中,3x 的系数是( )A .32B .40C .32-D .40-11.(2020·黑龙江省大庆一中高三三模(理))已知()512345601234567121x x a x a a x a x a x a x a x a x x -⎛⎫+--=++-++++ ⎪⎝⎭,则4a =( ) A .21 B .42 C .35- D .210-12.(2020·汪清县汪清第六中学高二月考(理))已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a + A .+4B .+3C .+2D .+113.(2020·汪清县汪清第六中学高二月考(文))不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( )A .314B .37C .67D .132814.(2020·江苏省高二期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则( )A .某学生从中选3门,共有30种选法B .课程“射”“御”排在不相邻两周,共有240种排法C .课程“礼”“书”“数”排在相邻三周,共有144种排法D .课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法15.(2020·江苏省扬中高级中学高二期中)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )A .若任意选择三门课程,选法总数为37AB .若物理和化学至少选一门,选法总数为1225C CC .若物理和历史不能同时选,选法总数为3175C C -D .若物理和化学至少选一门,且物理和历史不能同时选,选法总数为121255C C C -16.(2020·三亚华侨学校高二开学考试)已知()n a b +的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10 17.(2020·山东省高二期中)若()2345501234512a a x a x a x a x a x x =+++-++,则下列结论中正确的是( )A .01a =B .123452a a a a a ++++=C .50123453a a a a a a -+-+-=D .0123451a a a a a a三、填空题18.(2020·呼和浩特开来中学高二期末(理))4()(1)a x x ++的展开式中,若x 的奇数次幂的项的系数之和为32,则a =________.19.(2020·全国高三其他(理))“赵爽弦图”是中国古代数学的文化瑰宝,由四个全等的直角三角形和一个小正方形组成(如图所示),简洁对称、和谐优美.某数学文化研究会以弦图为蓝本设计会徽,其图案是用红、黄2种颜色为弦图的5个区域着色(至少使用一种颜色),则一共可以绘制备选的会徽图案数为__________.20.(2020·山东省高三其他)2019年世界园艺博览会在北京延庆区举办,这届世界园艺博览会的核心建筑景观是“四馆一心”:中国馆、国际馆、植物馆、生活体验馆以及演艺中心.现将含甲在内的5名大学生志愿者安排到北京世界园艺博览会的4个场馆担任服务工作,要求每个场馆至少安排一人,且每人仅参加一个场馆的服务工作,其中甲不安排到国际馆去,则不同的安排方法种数为_________.21.(2020·江西省南昌二中高二期末(理))62341()x x x x x ⎛⎫++- ⎪⎝⎭的展开式中x 2项的系数为__________.22.(2020·南京市临江高级中学高二期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有______种(结果用数字表示).1.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种2.(2020•北京)在(√x−2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.103.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(2020•新课标Ⅰ)(x+y2x)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.205.(2019•全国)(2√x+1)6的展开式中x的系数是()A.120B.60C.30D.156.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.24二.填空题(共7小题)7.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.8.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.9.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.10.(2020•新课标Ⅲ)(x2+2x)6的展开式中常数项是(用数字作答).11.(2020•天津)在(x+2x2)5的展开式中,x2的系数是.12.(2019•天津)(2x−18x3)8的展开式中的常数项为.13.(2019•浙江)在二项式(√2+x)9展开式中,常数项是,系数为有理数的项的个数是..。

最新高考一轮复习金榜聚焦: 排列组合二项式定理概率与统计经典精讲 精品讲义

最新高考一轮复习金榜聚焦: 排列组合二项式定理概率与统计经典精讲 精品讲义

排列组合、二项式定理、概率与统计经典精讲主讲教师:陈孟伟 北京八中数学特级教师重难点突破● 计数原理● 二项式定理● 概率● 统计金题精讲题一:将序号分别为1,2,3,4,5的5张参观券全部分给4,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.题二:用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为_________.题三:将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ).A.18B.24 C.30 D.36题四:若4234512345(1)x mx a x a x a x a x a x -=++++,其中26a =-,则实数m 的值为_______,12345a a a a a ++++的值为____________.题五:已知n 为正偶数,且21()2n x x-的展开式中第4项的二项式系数最大,则第4项的系数是.(用数字作答)题六:以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为().A.2,5B.5,5C.5,8D.8,8甲组乙组909x215y87424题七:样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为().A.65B.65C.2D.2题八:从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a .若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为_______.题九:节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是().A.14B.12C.34D.78题十:甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为13,且第一次由甲开始射击.1求前3次射击中甲恰好击中2次的概率____________;2求第4次由甲射击的概率________.排列组合、二项式定理、概率与统计经典精讲金题精讲题一:96 题二:32题三:C 题四:32,116题五:52-题六:C 题七:D 题八:a=0.030; 3人题九:C 题十:1227;21327。

排列组合+二项式定理(含答案)

排列组合+二项式定理(含答案)

高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B 站在A 的左边与B 站在A 的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,即可得到结论.本题考查排列组合知识,考查学生利用数学知识解决实际问题的能力,属于中档题.。

2015届高考数学(理)一轮讲义:第13讲 排列、组合及二项式定理、概率与统计新题赏析 精品讲义

2015届高考数学(理)一轮讲义:第13讲 排列、组合及二项式定理、概率与统计新题赏析 精品讲义

排列组合、二项式定理、概率与统计新题赏析主讲教师:陈孟伟 北京八中数学特级教师重难点突破●计数原理 ●二项式定理 ●概率 ● 统计新题赏析题一:从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ).A .24B .18C .12D .6题二:6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种(用数字作答).题三:从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是_________(用数字作答).题四:已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( ).A .4-B .3-C .2-D .1-题五:设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( ).A .5B .6C .7D .8题六:将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体。

经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X ,则X 的均值为()E X =( ).A .126125 B .65 C .168125 D .75题七:一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。

方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。

国王用方法一、二能发现至少一枚劣币的概率分别为1p 和2p , 则( ).A .12p p =B .12p p <C .12p p >D .以上均有可能题八:某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物. 根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.排列组合、二项式定理、概率与统计新题赏析新题赏析题一:B 题二:480 题三:590 题四:D题五:B 题六:B 题七:B题八:(1) 2=P ;(2)分布列: X()46=E Y0 1 2 3 4。

排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。

13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。

三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。

排列组合二项式定理概率基础知识点+思维导图练习


;展开
式共有项数为
项.
(2)二项展开式的通项 Tr1
,表示第
项.
(3)二项展开式中的二项式系数为
;项的系数是指
.
11、(1)对称性:与首末两端
的两项的二项式系数相等,即 Cnr
C nr n
(r
0,1, 2,, n)
18
(2)二项式系数最大的项在中间.当幂指数 n 为偶数时,最大的二项式系数为

最大二项式系数为第
项;当 n 为奇数时,最大的二项式系数为

最大的二项式系数为第
项.
(3)二项式系数之和为
.二项展开式中,各奇数项的二项式系数之和与各偶数
项的二项式系数之和相等,即:
==.源自12、若 (x 1)7 a0 a1x a2 x2 a7 x7 ,令
一、特殊元素特殊位置优先
,得 a0 a1 a2 a7
八、合理分类与分步策略 8、在一次演唱会上共有 10 名演员,其中 8 人能够唱歌,5 人会跳舞,现要演出一个 2
人唱歌 2 人伴舞的节目,有多少种选派方法?
九、构造模型策略 9、马路上有编号为 1,2,3,4,5,6,7,8,9 的九只路灯,现要关掉其中的 3 盏,但不能关掉相
邻的 2 盏或 3 盏,也不能关掉两端的 2 盏,求满足条件的关灯方法有多少种?
; Ann
;规定, 0!

7、组合数 Cnm 的含义:
8、计算: Cnm
=

9、组合数的性质
(1)Cnm
;(2)Cnm
C m1 n
10、(1)对于 n N * , (a b)n
;(3)Cn0 Cn1 Cn2 Cnn1 Cnn

「精品」新课标高考数学二轮复习专题七概率与统计专题能力训练19排列组合与二项式定理理

专题能力训练19 排列、组合与二项式定理能力突破训练1.某电视台的一个综艺栏目对含甲、乙在内的六个不同节目排演出顺序,第一个节目只能排甲或乙,最后一个节目不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种2.已知的展开式的各项系数和为32,则展开式中x4的系数为()A.5B.40C.20D.103.已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.294.若的展开式中含有常数项,则n的最小值等于()A.3B.4C.5D.65.展开式中的常数项为()A.-8B.-12C.-20D.206.某学校组织演讲比赛,准备从甲、乙等八名同学中选派四名同学参加,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加时,他们的演讲顺序不能相邻,那么不同的演讲顺序的种数为() A.1 860 B.1 320 C.1 140 D.1 0207.若二项式(3-x)n(n∈N*)中所有项的系数之和为a,所有项的系数的绝对值之和为b,则的最小值为()A.2B.C.D.8.(2017辽宁抚顺一模)在某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电视台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为()A.1 200B.2 400C.3 000D.3 6009.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.21010.(2017湖北孝感第一次联考)已知二项式的展开式中含x3的系数为-,则的值为()A. B.C. D.11.(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)12.(2017山东,理11)已知(1+3x)n的展开式中含有x2项的系数是54,则n=.13.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为.14.在的二项式中,所有项的二项式系数之和为256,则常数项等于.15.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴全运会的四个不同场馆服务,不同的分配方案有种.(用数字作答)16.(2017浙江,13)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.17.(2017浙江,16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)18.某高三毕业班有40名同学,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)思维提升训练19.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种20.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=()A.5B.6C.7D.821.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种22.若x4(x+3)8=a0+a1(x+2)+a2(x+2)2+…+a12(x+2)12,则log2(a1+a3+a5+…+a11)等于()A.27B.28C.7D.823.用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)24.1-90+902-903+…+(-1)k90k+…+9010除以88的余数是()A.-1B.1C.-87D.8725.某人根据自己爱好,希望从{W,X,Y,Z}中选2个不同字母,从{0,2,6,8}中选3个不同数字编拟车牌号,要求前3位是数字,后两位是字母,且数字2不能排在首位,字母Z和数字2不能相邻,那么满足要求的车牌号有()A.198个B.180个C.216个D.234个26.(2017江西模拟)若A,B,C,D四人站成一排照相,A,B相邻的排法总数为k,则二项式的展开式中含x2项的系数为.27.设二项式的展开式中x2的系数为A,常数项为B,若B=4A,则a=.28.在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.参考答案专题能力训练19排列、组合与二项式定理能力突破训练1.B解析完成这件事,可分两类:第一类,第一个节目排甲,其余位置有=120种不同的排法;第二类,第一个节目排乙,最后一个节目有4种排法,其余位置有=24种不同的排法.所以共有+4=216种不同的排法.2.D解析令x=1,得2n=32,所以n=5,则(x2)5-r x10-3r.令10-3r=4,得r=2,所以展开式中x4的系数为=10.3.D解析由条件知,∴n=10.∴(1+x)10中二项式系数和为210,其中奇数项的二项式系数和为210-1=29.4.C解析展开式的通项为T r+1=(x6)n-r,因为展开式中含常数项,所以6n-r=0成立,即n=r.当r=4时,n有最小值5.故选C.5.C解析因为,所以T r+1=x6-r=(-1)r x6-2r,所以当r=3时为常数项,常数项为-=-20.6.C解析依题意,就甲、乙两名同学中实际参与演讲比赛的人数进行分类计数:第一类,甲、乙两名同学中实际参与演讲比赛的恰有一人,满足题意的不同的演讲顺序的种数为=960;第二类,甲、乙两名同学中实际参与演讲比赛的恰有两人,满足题意的不同的演讲顺序的种数为=180.因此满足题意的不同的演讲顺序的种数为960+180=1140.故选C.7.B解析令x=1,a=2n,令x=-1,b=4n,=2n+,令t=2n,t≥2,则=2n+=t+2+故选B.8.B解析若4人中,有甲电视台记者1人,乙电视台记者3人,则不同的提问方式总数是=1200,若4人中,有甲电视台记者2人,乙电视台记者2人,则不同的提问方式总数是=1200,若4人中,有甲电视台记者3人,乙电视台记者1人,则不符合主持人的规定,故所有不同提问方式的总数为1200+1200=2400.9.C解析∵(1+x)6展开式的通项为T r+1=x r,(1+y)4展开式的通项为T h+1=y h,∴(1+x)6(1+y)4展开式的通项可以为x r y h,∴f(m,n)=∴f (3,0)+f(2,1)+f(1,2)+f(0,3)==20+60+36+4=120.故选C.10.C解析二项式的展开式的通项公式为T r+1=x9-r x9-2r,令9-2r=3,r=3,将r=3代入得=-,解得a=-1,d x=故选C.11.-20解析(x+y)8的通项为T r+1=x8-r y r(r=0,1,…,8).当r=7时,T8=xy7=8xy7,当r=6时,T7=x2y6=28x2y6,所以(x-y)(x+y)8的展开式中含x2y7的项为x·8xy7-y·28x2y6=-20x2y7,故系数为-20.12.4解析二项展开式的通项T r+1=(3x)r=3r x r,令r=2,得32=54,解得n=4.13.36解析先分组,再分配.共有两种分组情况:2,2,1和3,1,1.①若分成2,2,1三组,共有=18种分法;②若分成3,1,1三组,共有=18种分法.由分类计数原理知,共有18+18=36种分法.14.112解析由二项式定理,得所有项的二项式系数之和为2n,由题意,得2n=256,所以n=8.二项式展开式的通项为T r+1=)8-r=(-2)r,求常数项则令r=0,所以r=2,所以T3=112.15.1 080解析先将6位志愿者分组,共有种方法;再把各组分到不同场馆,共有种方法.由乘法原理知,不同的分配方案共有=1080.16.164解析由二项式展开式可得通项公式为x3-r x2-m2m,分别取r=3,m=1和r=2,m=2可得a4=4+12=16,令x=0可得a5=13×22=4.17.660解析由题意可得,总的选择方法为种方法,其中不满足题意的选法有种方法,则满足题意的选法有:=660种.18.1 560解析该问题是一个排列问题,故共有=40×39=1560条毕业留言.思维提升训练19.A解析将4名学生均分为2个小组共有=3种分法,将2个小组的同学分给两名教师带有=2种分法,最后将2个小组的人员分配到甲、乙两地有=2种分法,故不同的安排方案共有3×2×2=12种.20.B解析:由题意可知,a=,b=,∵13a=7b,∴13=7,即解得m=6.故选B.21.B解析首先从四个人中选择2个人作为一组,其余2个人各自一组分派到三个竞赛区,共有种方法,再将甲、乙参加同一学科的种数排除,继而所求的安排方法有=30种,故答案为B.22.C解析令x=-1,得a0+a1+a2+…+a12=28,①令x=-3,得a0-a1+a2-a3+…+a12=0,②由①-②,得2(a1+a3+…+a11)=28,∴a1+a3+…+a11=27,∴log2(a1+a3+…+a11)=7.23.A解析本题可分三步:第一步,可取0,1,2,3,4,5个红球,有1+a+a2+a3+a4+a5种取法;第二步,取0或5个蓝球,有1+b5种取法;第三步,取5个有区别的黑球,有(1+c)5种取法.所以共有(1+a+a2+a3+a4+a5)(1+b5)(1+c)5种取法.故选A.24.B解析1-90+902+…+(-1)k90k+…+9010=(1-90)10=8910=(88+1)10=8810+889+…+88+1,∵前10项均能被88整除,∴余数是1.25.A解析不选2时,有=72种;选2,不选Z时,有=72种;选2,选Z时,2在数字的中间,有=36种,当2在数字的第三位时,有=18种,根据分类计数原理,共有72+72+36+18=198,故选A.26解析由题设k=2=12,所以T r+1=x r,则由题设r=2,所以含x2项的系数为=66,应填答案6-r=(-a)r x6-2r,令6-2r=2,得r=2,A=a2=15a2;令6-2r=0,得27.-3解析Tr=3,B=-a3=-20a3,代入B=4A得a=-3.28.解(1)先选内科医生有种选法,再选外科医生有种选法,故选派方法的种数为=120.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,易得出选派方法的种数为=246.若从反面考虑,则选派方法的种数为=246.(3)分两类:一是选1名主任有种方法;二是选2名主任有种方法,故至少有1名主任参加的选派方法的种数为=196.若从反面考虑:至少有1名主任参加的选派方法的种数为=196.(4)若选外科主任,则其余可任选,有种选法.若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有种选法.故有选派方法的种数为=191.。

排列组合和二项式定理

9-2排列组合和二项式定理1、的展开式中项的系数是( )A.B.C.D.【答案】B【解析】略2、已知的展开式中的系数是()A.B.C.D.【答案】A【解析】解:=(1-x)4(1-x)4的展开式的通项为T r+1=C4r(-x)r=(-1)r C4r x r令r=1得展开式中x的系数为-4故选项为A.3、设若的最小值为()A.8 B.4 C.1 D.【答案】B【解析】略4、2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码。

公司规定:凡卡号的后四位数带数字“6”或“8”的一律作为“金兔卡”,享受一定的优惠政策,则这组号码中“金兔卡”的个数为()A.2000 B.4096 C.8320 D.5904【答案】D【解析】本题考查排列与组合.首先考虑非金兔卡的个数,即末四位中既无8又无6的卡的个数为,所以金兔卡的个数为帮故正确答案为D.5、已知,则的值为()A.1 B.2 C.4 D.不确定【答案】B【解析】解1:做为选择题从选择支入手也很好.(由,求出值,再值代入检验)解2:得,.6、如图,用四种不同的颜色给图中的六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有(...)A.288种B.264种C.240种D.168种【答案】B【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。

B,D,E,F用四种颜色,则有种涂色方法;B,D,E,F用三种颜色,则有种涂色方法;B,D,E,F用两种颜色,则有种涂色方法;所以共有24+192+48=264种不同的涂色方法。

7、在的展开式中的的系数是()、、、、【答案】B【解析】本题考查二项式定理.由二项式定理得的展开式的通项为,因为则的展开式的通项为,令得,的展开式中项的系数为;的展开式的通项为,令,则,的展开式的项的系数为.所以在的展开式中的的系数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲 排列组合、二项式定理、概率与统计经典精讲题一:把座位编号为1、2、3、4、5、6的六张观看《孔子》的电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的票必须是连号,那么不同的分法种数是_________题二:把座位编号为1,2,3,4,5,6的六张同排的电影票全部分给四个人,每人至少分一张,至多分二张,且这两张票必须相隔一个数,则不同的分法种数是__ ____.题三:由1,2,3,4,5组成的五位数中,恰有2个数位上的数字重复且十位上的数字小于百位上的数字的五位数的个数是 ____.题四:用5,6,7,8,9组成没有重复数字的五位数,其中两个偶数数字之间恰有一个奇数数字的五位数的个数是 ____.题五:某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,若甲、乙两名员工必须分到同一个车间,则不同分法的种数为 ____.题六:将编号为①②③④的四个小球放到三个不同的盒子内,每个盒子至少放一个小球,且编号为①②的小球不能放到同一个盒子里,则不同放法的种数为 ____.题七:若(x -m ) 8=a 0+a 1 x +a 2 x 2+…+a 8 x 8,其中a 5=56,则a 0+a 2+a 4+a 6+a 8=________.题八:若多项式x 5+x 10=a 0+a 1(x +1)+a 2(x +1) 2+…+a 9(x +1)9+a 10(x +1)10, 则a 4=______.题九:5)xa x ((x ∈R)展开式中x 3的系数为10,则实数a 等于________.题十:已知(x -2x2) n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含32x 的项;(3)求展开式中系数最大的项和二项式系数最大的项.题十二:8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为 .题十三:已知一个样本中各个个体的值由小到大依次为:4,6,8,9,x ,y ,11,12,14,16,且中位数为10,要使该样本的方差最小,则x y = .题十四:样本中共有四个个体,其值分别为1,2,3,a ,若该样本的平均值为1, 则样本标准差为 .题十五:从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为 .题十六:从某校随机抽取了100名学生,将他们的体重(单位:kg )数据绘制成频率分布直方图(如图),由图中数据可知m = ,所抽取的学生中体重在45~50kg 的人数是 .题十七:已知函数f (x )=ax 2-bx +1,若a 是从区间 [0,2]上任取的一个数,b 是从区间 [0,2]上任取的一个数,则此函数在 [1,+∞)递增的概率为________.题十八:小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若 此点到圆心的距离大于21,则周末去看电影;若此点到圆心的距离小于41,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 .详解:方法一:不在家看书的概率2211134216⎛⎫⎛⎫⨯+⨯ ⎪ ⎪⎝⎭⎝⎭==ππ-ππ.题十九:甲,乙两人射击,每次射击击中目标的概率分别是31,41.现两人玩射击游戏,规则如下:若某人某次射击击中目标,则由他继续射击,否则由对方接替射击.甲、乙两人共射击3次,且第一次由甲开始射击.假设每人每次射击击中目标与否均互不影响. (Ⅰ)求3次射击的人依次是甲、甲、乙,且乙射击未击中目标的概率; (Ⅱ)求乙至少有1次射击击中目标的概率.题二十:甲、乙两人各射击一次,击中目标的概率分别是23和34,假设两人每次射击是否击中目标相互之间没有影响.(Ⅰ)求甲射击5次,有两次未击中目标的概率;(Ⅱ)假设某人连续2次未击中目标,则终止其射击,求乙恰好射击5次后,被终止射击的概率.第12讲 排列组合、二项式定理、概率与统计经典精讲题一:144.详解:先将票分为符合条件的4份;由题意,4人分6张票,且每人至少一张,至多两张,则两人一张,2人2张,且分得的票必须是连号,相当于将1、2、3、4、5、6这六个数用3个板子隔开,分为四部分且不存在三连号;易得在5个空位插3个板子,共有3510C =种情况,但其中有四种是1人3张票的,故有种情况符合题意,再对应到4个人,有4424A =种情况;则共有6×24=144种情况.题二:96.详解:由题意知本题是一个分步计数问题,先4个人中选2人,这2人每人会拿到2张票有246C =,编号为1~6的电影票按连续编号可以分为:13,24,35,46共4组.被选出的2人分别可以从这4组中人选一组,第1人有4种选法,若第一个人选择13,则第二个人就不能选择35,第2人有2种选法,则有4×2=8,剩余的2人2张票有2种结果,∴总的分法有6×8×2=96种.题三:540.详解:从5个位中任意取2个位,使这两个位上的数字相同(这2个位不能是十位和百位),共有(25C )×5=45 种方法,其余的3个位从剩余的4个数种选3个填上,共有34A 种方法,恰有2个数位上的数字重复的五位数的个数是45×34A . 由于十位上的数字小于百位上的数字的五位数占总数的一半, 故满足条件的五位数的个数是(45×34A )÷2=540,故答案为 540.题四:36.详解:如图所示:从5、7、9三个奇数中任选一个放在6与8之间,可用13C 中选法,而6与8可以交换位置有22A 种方法,把6与8及之间的一个奇数看做一个整体与剩下的两个奇数全排列共有33A 种方法, 利用乘法原理可得两个偶数数字之间恰有一个奇数数字的五位数的个数是13C •22A •33A =36.题五: 36.详解:把甲、乙两名员工看做一个整体,5个人变成了4个,再把这4个人分成3部分,每部分至少一人,共有24C 种方法,再把这3部分人分到3个为车间,有33A 种方法,根据分步计数原理,不同分法的种数为24C •33A =36.题六:30.详解:由题意知4个小球有2个放在一个盒子里的种数是24C ,把这两个作为一个元素同另外两个元素在三个位置排列,有33A 种结果,而①②好小球放在同一个盒子里有33A =6种结果,∴编号为①②的小球不放到同一个盒子里的种数是24C •33A .题七:128.详解:由已知条件可得a 5=38C ·(-m )3=-56m 3=56,解得m =-1,所以(x -m )8=(x +1)8,所以a 0+a 2+a 4+a 6+a 8=27=128.题八:205.详解:以x 代x 可得(x)5+(x)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 4为左边x 4的系数,左边x 4的系数为16510205C C -+=.题九:2.详解:552155()r rr r r r r a T x x a xCC --+==,∴5-2r =3,∴r =1,∴15C ·a =10,∴a =2.题十:(1)1;(2)-1632x ;(3)1 1206x -. 详解:由题意知,第五项系数为44(2)n C -,第三项的系数为22(2)nC -,则有4422(2)10(2)1n n C C -=-, 化简得n 2-5n -24=0,解得n =8或n =-3(舍去). (1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式1k T +=8822()k kk C x -⋅-=8(2)k kC -⋅822kk x--,令8-k 2-2k =32,则k =1, 故展开式中含32x 的项为T 2=-1632x .(3)设展开式中的第k 项,第k +1项,第k +2项的系数绝对值分别为1182k k C --⋅,82k k C ⋅,1182k k C ++⋅,若第k +1项的系数绝对值最大,则118811882222k k k k k k k kC C C C --++⎧⋅≤⋅⎪⎨⋅≤⋅⎪⎩解得56k ≤≤. 又T 6的系数为负,∴系数最大的项为T 7=1 79211x -. 由n =8知第5项二项式系数最大,此时T 5=1 1206x -.题十一:C .详解:在这一组数据中10出现次数最多,故众数是10; 这组数据的中位数是(10+10)÷2=10(分);平均数是(3+5+6+7×5+8×4+9×11+10×27)÷50=9(分),这次听力测试成绩的众数、中位数和平均数的和是10+10+9=29(分);故选C .题十二:73.详解:根据平均数的性质,可将平均数乘以8再减去剩余7名学生的成绩,即可求出x 的值.依题意得:x .题十三:100.详解:∵个体的值由小到大依次为4,6,8,9,x ,y ,11,12,14,16,且总体的中位数为10,∴x +y =20,∴这组数据的平均数是(4+6+8+9+x +y +11+12+14+16)÷10=10,要使总体方差最小, 即(x )2+(y )2最小. 又∵(x)2+(y)2=(x )2+(x )2=2(x)2,∴当x =10时,(x )2+(y)2取得最小值.又∵x +y =20,∴x =10,y =10.x y =100, 故答案为:100..详解:由题意知(a+1+2+3)÷4=1,解得2a=-,∴样本标准差为S==.题十五:30.详解:由图知,(0.035+a+0.020+0.010+0.005)×10=1,解得a=0.03,∴身高在[120,130]内的学生人数在样本的频率为0.03×10=0.3,故身高在[120,130]内的学生人数为0.3×100=30.题十六:0.1;50.详解:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故答案为:0.1;50.题十七:34.详解:∵f (x)=ax2-bx+1在 [1,+∞)上递增,∴--b2a≤1,即2a ≥b.由题意得⎩⎪⎨⎪⎧0≤a≤20≤b≤2,2a≥b画出图示得阴影部分面积.∴概率为P =2×2-12×2×12×2=34.题十八:1613. 方法二:不在家看书的概率=1—在家看书的概率=1—2211132416⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=π-ππ.题十九:(Ⅰ)61;(Ⅱ)92. 详解:(Ⅰ)记“3次射击的人依次是甲、甲、乙,且乙射击未击中目标”为事件A . 由题意,得事件A 的概率1231()3346P A =⨯⨯=; (Ⅱ)记“乙至少有1次射击击中目标”为事件B , 事件B 包含以下两个互斥事件:1事件B 1:三次射击的人依次是甲、甲、乙,且乙击中目标, 其概率为11211()33418P B =⨯⨯=; 2事件B 2:三次射击的人依次是甲、乙、乙,其概率为2211()346P B =⨯=. 所以事件B 的概率为122()()9P B P B +=. 所以事件“乙至少有1次射击击中目标”的概率为92.题二十:(1)80243;(2)451024. 详解:(I )设“甲射击5次,有两次未击中目标”为事件A ,则23252180()()()33243P A C ==. 答:甲射击5次,有两次未击中目标的概率为80243. (II )设“乙恰好射击5次后,被终止射击”为事件C ,由于乙恰好射击5次后被终止射击,所以必然是最后两次未击中目标,第一次及第二次至多有一次未击中目标,则12223313145()[()()()]()444441024P C C =⋅⋅⋅=+.答:乙恰好射击5次后,被终止射击的概率为451024.。

相关文档
最新文档