离散数学试题带答案(五)

合集下载

离散数学 (5)

离散数学 (5)

15
一阶逻辑中命题符号化( 一阶逻辑中命题符号化(续)
例3 在一阶逻辑中将下面命题符号化 (1) 正数都大于负数 (2) 有的无理数大于有的有理数 注意: 题目中没给个体域, 解 注意 题目中没给个体域 一律用全总个体域 (1) 令F(x): x为正数 G(y): y为负数 L(x,y): x>y 为正数, 为负数, 为正数 为负数 →y(G(y)→L(x,y))) 或 x(F(x)→ → → xy(F(x)∧G(y)→L(x,y)) ∧ → 两者等值 (2) 令F(x): x是无理数 G(y): y是有理数 是无理数, 是有理数, 是无理数 是有理数 L(x,y):x>y : ∧y(G(y)∧L(x,y))) x(F(x)∧ ∧ ∧ 或 xy(F(x)∧G(y)∧L(x,y)) ∧ ∧ 两者等值
6
谓词: 谓词 表示个体词的性质或相互之间关系的词 谓词常项: 谓词常项:表示具体性质或关系的谓词 F: …是人,F(a):a是人 是人, 是人 : 是人 是自然数, G: …是自然数, F(2):2是自然数 是自然数 : 是自然数 谓词变项: 谓词变项:表示抽象的或泛指的谓词 F: …具有性质 ,F(x):x具有性质 具有性质F, 具有性质具有性质 : 具有性质 元数: 元数:谓词中所包含的个体变项个数 一元谓词: 一元谓词 表示事物的性质 多元谓词(n元谓词 ≥ 元谓词, 多元谓词 元谓词 n≥2): 表示个体词之间的关系 有关系L, 如 L(x,y): x与y有关系 , L(x,y): x比y高2厘米 : 与 有关系 : 比 高 厘米 注意:多元谓词中, 注意:多元谓词中,个体变项的顺序不能随意改动
9
例1(续) 续
(2) 2 是无理数仅当 3 是有理数 2 在命题逻辑中, 是有理数. 在命题逻辑中 设 p: 2 是无理数,q: 33 : 2是无理数, : 是有理数 符号化为 q→p, 这是假命题 → 在一阶逻辑中, x是无理数 是无理数, x是有理 在一阶逻辑中, 设F(x): x是无理数, G(x): x是有理 数符号化为 F ( ( 22 ) → G (3 )3 ) F ) → G( (3) 如果 如果2>3,则3<4 , 在命题逻辑中, 在命题逻辑中 设 p:2>3,q:3<4. : , : 符号化为 p→q, 这是真命题 → 在一阶逻辑中, 在一阶逻辑中 设 F(x,y):x>y,G(x,y):x<y, : , : 符号化为 F(2,3)→G(3,4) →

《离散数学》课后习题解答--第5章

《离散数学》课后习题解答--第5章

习题5.11.设A=⎨a,b,c⎬,B=⎨1,2,3⎬,试说明下列A到B二元关系,哪些能构成A到B的函数?⑴f1=⎨<a,1>,<a,2>,<b,1>,<c,3>⎬⑵f2=⎨<a,1>,<b,1>,<c,1>⎬⑶f3=⎨<a,2>,<c,3>⎬⑷f4=⎨<a,3>,<b,2>,<c,3>,<b,3>⎬⑸f5=⎨<a,2>,<b,1>,<b,2>⎬解:⑴不能构成函数。

因为<a,1>∈f1且<a,2>∈f1⑵能构成函数⑶不能构成函数。

因为dom f3≠A⑷不能构成函数。

因为<b,2>∈f4且<b,3>∈f4⑸能构成函数。

2.试说明下列A上的二元关系,哪些能构成A到A的函数?⑴A=N(N为自然数集合),f1=⎨<a,b>| a∈A∧b∈A∧a+b<10⎬⑵A=R(R为实数集合),f2=⎨<a,b>| a∈A∧b∈A∧b=a2⎬⑶A=R(R为实数集合),f3=⎨<a,b>| a∈A∧b∈A∧b2=a⎬⑷A=N(N为自然数集合),f4=⎨<a,b>| a∈A∧b∈A∧b为小于a的素数的个数⎬⑸A=Z(Z为整数集合),f5=⎨<a,b>| a∈A∧b∈A∧b=|2a|+1⎬解:⑴不能构成函数。

由于1+1<10且1+2<10,所以<1,1>∈f1且<1,2>∈f1。

⑵能构成函数。

⑶不能构成函数。

由于12=1且(-1)2=1,所以<1,1>∈f3且<1,-1>∈f3。

⑷能构成函数。

⑸能构成函数。

3. 回答下列问题。

⑴设A=⎨a,b⎬,B=⎨1,2,3⎬。

求B A,验证|B A|= |B||A|。

离散数学第五章习题答案

离散数学第五章习题答案

离散数学第五章习题答案题目1: 定义一个关系R在集合A上,如果对于所有的a, b, c属于A,满足以下条件:- 如果(a, b)属于R,则(b, a)属于R。

- 如果(a, b)属于R且(b, c)属于R,则(a, c)属于R。

证明R是传递的。

答案:根据题目给出的条件,R是对称的和传递的。

首先,对称性意味着如果(a, b)属于R,那么(b, a)也必须属于R。

其次,传递性意味着如果(a, b)和(b, c)都属于R,那么(a, c)也必须属于R。

结合这两个性质,我们可以得出结论:对于任意的a, b, c属于A,如果(a, b)和(b, c)都属于R,那么(a, c)也属于R,从而证明了R的传递性。

题目2: 给定一个函数f: A → B,如果对于A中的每个元素a,都有唯一的b属于B使得f(a) = b,那么称f为单射(或一一映射)。

证明如果函数f是单射,那么它的逆函数f^-1也是单射。

答案:要证明f^-1是单射,我们需要证明对于B中的任意两个元素b1和b2,如果f^-1(b1) = f^-1(b2),则b1 = b2。

假设f^-1(b1) = a且f^-1(b2) = a',其中a, a'属于A。

由于f是单射,我们知道f(a) = b1且f(a') = b2。

根据f^-1的定义,我们有b1 = f(a) = f(a') = b2。

因此,如果f^-1(b1) = f^-1(b2),则b1必须等于b2,这证明了f^-1是单射。

题目3: 证明一个函数f: A → B是满射(或到上映射)当且仅当对于B中的每个元素b,都存在A中的元素a使得f(a) = b。

答案:首先,我们证明如果f是满射,那么对于B中的每个元素b,都存在A 中的元素a使得f(a) = b。

假设f是满射,这意味着B中的每个元素都是A中某个元素的像。

因此,对于B中的任意元素b,我们可以找到一个a属于A,使得f(a) = b。

离散数学-第五章习题答案

离散数学-第五章习题答案

习题答案(P151~P153)1.用枚举法给出下列集合解:(2){-3,2}(4){5,6,7,8,9,10,11,12,13,14,15}2.用抽象法说明下列集合解:(2){x|x为素数,10<x<20}(4){x|x为中国的省会}(6){x|x=2k+1,k∈I}3.判断下列哪些∈关系成立,为什麽?解:根据只有集合中的元素才与该集合有∈关系,故(1)、(4)、(6)、(7)成立,(2)、(3)、(5)、(8)不成立。

4.判断下列哪些集合相等(全集是整数集合I)解:A=G,B=E,C=F6.写出下列集合的幂集解:(2)ρ({1,∅})={∅,{1},{∅},{1,∅}}(4)ρ({∅,{a},{∅}})={∅,{∅},{{a}},{{∅}},{∅,{a}},{∅,{∅}},{{a},{∅}},{∅,{a},{∅}}}7.当把“⊆”插入空位时哪一个为真?解:(1)、(2)、(3)、(6)为真,(4)、(5)为假。

8.设A、B、C分别是集合,若A∈B,B∈C,哪麽A∈C一定成立吗?解:不一定,例如,A={a},B={{a}},C={{{a}}},虽然A∈B,B∈C,但A∈C不成立。

10.设U={1,2,3,4,5},A={1,4},B={1,2,5}和C={2,4}试写出下列集合(8)ρ(A)-ρ(C)解:ρ(A)-ρ(C)={∅,{1},{4},{1,4}}-{∅,{2},{4},{2,4}}={{1},{1,4}}11.证明下列恒等式(1)A-(B⋂C)=(A-B)⋃(A-C)(2)(A-B)⋂B=∅解:(1)A-(B⋂C)= A⋂~(B⋂C)= A⋂(~B⋃~C)=(A⋂~B)⋃(A⋂~C)=(A-B)⋃(A-C)(2)(A-B)⋂B=(A⋂~B)⋂B= A⋂(~B⋂B)= ∅12.设A、B、C是集合,下列等式成立的条件是什么?(1)(A-B)⋃(A-C)=A(2)(A-B)⋃(A-C)= ∅解:(1)因为(A-B)⋃(A-C)= (A⋂~B)⋃(A⋂~C)= A⋂(~B⋃~C)= A⋂~(B⋂C)= A-(B⋂C)所以(A-B)⋃(A-C)=A 当且仅当A-(B⋂C)=A 由-的定义可知A⋂(B⋂C)=∅(2)由(1)可知,(A-B)⋃(A-C)=A-(B⋂C)所以(A-B)⋃(A-C)=∅当且仅当A-(B⋂C)=∅由定理5.11可知A⊆(B⋂C)13. 设A,B是集合(1)A-B=B,问A和B有何关系?(2)A-B=B-A, 问A和B有何关系?解:(1)A=B=φ。

离散数学习题集(十五套) - 答案

离散数学习题集(十五套) - 答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有()个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

全版离散数学 练习题及答案.ppt

全版离散数学 练习题及答案.ppt

课件
例3 对任意两个集合A, B,试证 A (A B) A B
证明 对于任意的x
x A (A B)
x {x x A x ( A B)} x {x x A (x A B)} x {x x A (x A x B)} x {x x A (x A x B)} x {x x A x B}
课件
例10 求图的最小生成树
A 1B34 Nhomakorabea5
2 E
6
1A 2
B
E
4
6
C7 D
C
D
课件
例11
• 无向树T有7片树叶, 3个3度顶点,其余的 都是4度顶点,则T有几个4度顶点?
• 解:设T有x个4度顶点 顶点度数之和: 7+3*3+4x 由树的性质可得总边数: 7+3+x-1 由握手原理可得: 7+3*3+4x=2(7+3+x-1)
求g f
g f { 1,b , 2,b , 3,b }
课件
例12 求复合函数
X {1,2,3}, Y {p, q}, Z {a,b} f { 1, p , 2, p , 3, q } g { p,b , q,b }
求g f
g f { 1,b , 2,b , 3,b }
课件
例: 求幺元、零元、逆元
x A B 因为 x 是任意的,所以有
x ((x A (A B)) (x A B)) 的真值为T,
因此 A ( A B)课件 A B
例4 判断关系的性质
R1 { a, a , a,b , b,b , c,c }
a
1 1 0
M R 1 0 1 0
0 0 1

《离散数学》题库及答案

《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。

答:某,y,某,z5、判断下列语句是不是命题。

若是,给出命题的真值。

((1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。

(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。

(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学习题的答案解析

离散数学习题的答案解析

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :大熊猫产在中国.r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0, ()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:20、求下列公式的成真赋值:(4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒00p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学试题带答案一、选择题1、G是一棵根树,则()。

A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题()。

A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。

A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、下面说法中正确的是()。

A、所有可数集合都是等势的B、任何集合都有与其等势的真子集C、有些无限集合没有可数子集D、有理数集合是不可数集合5、无向完全图K3的不同构的生成子图有()个。

A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。

A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。

A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。

A 、R 是对称的 B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。

A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z 上的二元运算,y x xy y x Z y x -+=*∈∀,,,则*的幺元和零元分别是( )。

A.不存在,0B.0,1C.1,不存在D.不存在,不存在13. 设N N N f ,:→为自然数,且 ⎪⎩⎪⎨⎧=为偶数若为奇数若x xx x f 21)(则})0({)0(f f 和分别是( )。

A.0,0 B.0,{0}C.{0},{0}D.{0},014. 下列命题公式中是矛盾式的有( )。

A.p p p ⌝→⌝→)(B.p p q ∧→⌝)(C.)()(p q q p ⌝→→→⌝D.r q p →∨)(15. 下列各Hasse 图中,是格的有( )。

A. B.C. D.16. 下列命题公式中是永假式的有( )。

A.p p p ⌝→⌝→)(B.p p q ∧→⌝)(C.)()(p q q p →⌝→→⌝D.r q p →∨)(17. 设命题公式⌝(P ∧(Q →⌝P)),记作G ,则使G 的真值指派为0的P ,Q 的取值是( )。

A.(0,0)B.(0,1)C.(1,0)D. (1,1)18. 与命题公式P →(Q →R )等值的公式是( )。

A.(P ∨Q)→RB.(P ∧Q)→RC.(P →Q)→RD. P →(Q ∨R)19. 命题公式(P ∧Q)→P 是( )。

A.永真式B.永假式C.可满足式D.合取范式20. 设命题公式)(),(P Q P H Q P G ⌝→→⇔→⌝⇔,则G 与H 的关系是( ) 。

A.H Q →B.G H →C.G H ⇒D.H G ⇒21.谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )。

A ))()((y yR x P x ∃∨∀ B. P(x) C.)()(y yR x P ∃∨ D.)(x Q22.设个体域为整数集,下列公式中其值为1的是( )。

A.)0(=+∃∀y x y xB.)0(=+∀∃y x x yC.)0(=+∀∀y x y xD.)0(=+∃⌝∃y x y x23.设L(x):x 是演员,J(x):x 是老师,A(x,y):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( )。

A.),()(y x A x xL →∀B.)),()(()((y x A y J y x L x ∧∃→∀C.)),()()((y x A y J x L y x ∧∧∃∀D.)),()()((y x A y J x L y x →∧∃∀24.在谓词演算中,P(a)是)(x xP ∀的有效结论,根据是 ( )。

规则B.UG 规则C.ES 规则D.EG 规则25. 在图G =<V,E>中,结点总度数与边数的关系是( )。

A.deg(v i )=2∣E ∣B. deg(v i )=∣E ∣C.∑∈=V v E v 2)deg(D. ∑∈=Vv E v )deg(26. 设G 是有n 个结点的无向完全图,则图G 的边数为( );设D 是有n 个结点的有向完全图,则图D 的边数为( )。

A. n(n -1)B. n(n+1)C. n(n -1)/2D. n(n+1)/227. 仅有一个孤立结点的图称为( )。

A.零图B.平凡图C.补图D.子图28. 设G =<V,E>为无向简单图,∣V ∣=n ,∆(G)为G 的最大度,则有( )。

A. ∆(G)<nB.∆(G)≤nC. ∆(G)>nD. ∆(G)≥n29. 图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( )。

A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件30. 设},,,{d c b a V =,则与V 能构成强连通图的边集合是( )。

A.},,,,,,,,,{><><><><><=c d b c d b a b d a EB.},,,,,,,,,{><><><><><=c d d b c b a b d a EC.},,,,,,,,,{><><><><><=c d a d c b a b c a ED.},,,,,,,,,{><><><><><=d c d b d a c a b a E31. 相邻矩阵具有对称性的图一定是( )。

A.有向图B.无向图C.混合图D.简单图32. 无向图G 是欧拉图,当且仅当( )。

A.G 的所有结点的度数全为偶数B.G 的所有结点的度数全为奇数C.G 连通且所有结点的度数全为偶数D.G 连通且所有结点的度数全为奇数33. 设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( )。

A. m -n+2B.n -m -2C.n+m-2D.m+n+234. 设G 是由5个结点组成的完全图,则从G 中删去( )条边可以得到树。

A.4B.5C.6D.1035. 由5个结点可构成的根树中,其叉数m 最多为( )。

A.2B.3C.5D. 436. 下图是( ) 。

A.完全图B. 哈密顿图C.欧拉图D.平面图37. 设集合A ={1,2,3,…,10},在集合A 上定义的运算,不是封闭的为( )。

A.∀a,b ∈A, a *b=lcm{a,b}(最小公倍数)B.∀a,b ∈A, a *b=gcd{a,b}(最大公约数)C.∀a,b ∈A, a *b=max{a,b}D.∀a,b ∈A, a *b=min{a,b}38. 在自然数N 上定义的二元运算•,满足结合律的是( )。

A.a •b=a -bB. a •b=a+2bC. a •b=max{a,b}D. a •b=∣a -b ∣39. 下列代数系统(G,*)中,其中*是加法运算. ( )不是群。

A.G 为整数集合B.G 为偶数集合C.G 为有理数集合D.G 为自然数集合40. 设σ1,σ2,σ3是三个置换,其中 σ1=(1 2)(2 3)(1 3),σ2=(2 4)(1 4),σ3=(1 3 2 4)则σ3可以表成( )。

A. 21σB.σ1σ2C.22σD.σ2σ141. 下列图表示的偏序集中,是格的为( )。

A.B.C.D.42. 设)1,0,,,,(+•B 是布尔代数,b a B b a ≤∈∀,,,则下式不成立的是( )。

A.0=b a B.1=+b a C.a b a =+ D.1=+b a43. 布尔代数式)(c b c ab ab +++=( )。

A.b a + B.c b + C.c b + D.c b +44. 设集合A ={1,2},B={a,b,c},C={c,d}, 则A ×(B ⋂C)=( )。

A.{<c,1>,<2,c>}B.{<1,c>,<2,c>}C.{<c,1>,<c,2>}D.{<1,c>,<c,2>}45. 设A ={0,a},B={1,a,3},则A ⋃B 的恒等关系是( )。

A. {<0,0><1,1>,<3,3>,<a,a>}B.{<0,0>,<1,1>,<3,3>}C.{<1,1>,<a,a>,<3,3>}D. {<0,1>,<1,a>,<a,3>,<3,0>}46. 设A={a ,b ,c},R={<a ,a >,<b ,b >},则R 具有性质( )。

A.自反的B.反自反的C.反对称的D.等价的47. 设集合σ},,,{},,,,{3214321b b b B a a a a A ==是从A 到B 的函数, ,,{21><=b a σ},,,,,341322><><><b a b a b a ,则σ是( )。

A.双射B.满射但不是单射C.单射但不是满射D.非单射也非满射48.下列式子中正确的是( )。

A.∅=0B.∅∈∅C.∅∈{a,b}D.∅∈{∅}49.有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) 。

A.度数B. 出度C.最大度数D.入度50. 给定无向图如下所示,下面给出的顶点集子集中,不是点割集的是( )。

A.{b,d}B.{d}C.{e}D.{f,h}51. 谓词公式∃xA(x)∧⌝∃xA(x)的类型是( )。

相关文档
最新文档