中考第一轮复习第9课时函数概念与平面直角坐标系(含答案)
第09章 平面直角坐标系与函数初步-2021年中考数学一轮复习(通用版)(含答案)

2021年中考数学一轮复习(通用版)第09章平面直角坐标系与函数初步考点梳理考点一平面直角坐标系及点的坐标1.平面直角坐标系(1)在平面内画两条互相垂直并且原点重合的数轴,就建立了平面直角坐标系.其中,水平的数轴叫做x轴或横轴,取为正方向;垂直的数轴叫做y轴或纵轴,取为正方向;两轴的交点为原点.(2)坐标平面内点与有序实数对建立的关系,即坐标平面内的任何一点可以用一对有序实数来表示;反过来,每一对有序实数都表示坐标平面内的一点.2.点的坐标(1)各象限内点的坐标的符号特征. 如图所示.①点P(x,y)在第一象限①x>0,y>0;①点P(x,y)在第二象限①;①点P(x,y)在第三象限①;①点P(x,y)在第四象限①;①坐标轴不属于任何象限.(2)坐标轴上点的坐标特征①点P(x,y)在x轴上①y=0;①点P(x,y)在y轴上①=0;①原点的坐标为.(3)各象限角平分线上点的坐标特征①点P(x,y)在第一、三象限角平分线上①x=y;①点P(x,y)在第二、四象限角平分线上①.(4)对称点的坐标特征①点P(x,y)关于x轴对称的点的坐标为(x,-y);①点P(x,y)关于y轴对称的点的坐标为;①点P(x,y)关于原点对称的点的坐标为.(5)平行于坐标轴的点的坐标特征①平行于x轴,纵坐标都,直线上两点A(x1,y),B(x2,y)的距离为|x1-x2|;①平行于y轴,横坐标都,直线上两点A(x,y1),B(x,y2)的距离为|y1-y2|.(6)点平移的坐标特征(7)①点P(a,b)到x轴的距离为|b|;①点P(a,b)到y轴的距离为;①点P(a,b)到原点的距离为①.考点二函数的概念及其表示方法1.函数及相关概念(1)变量与常数:在一个变化过程中,可以变化的量,是变量;保持不变的量,是常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x,y,且对于x在它允许取值范围内的每一个值,y 都有的值与它对应,那么就说x是自变量,y是x的函数.(3)函数值:对于一个函数,取自变量x在允许范围内的一个确定值,代入函数表达式求得的函数y的值,就叫做函数值.2.函数的表示方法(1)列表法:通过列出自变量的值与对应函数值的表格来表示函数的方法叫做列表法.(2)解析法:用数学式子表示函数关系的方法叫做解析法.其中的等式叫做函数表达式(或函数解析式或函数关系式).(3)图象法:用图象来表示两个变量间的函数关系的方法,叫做图象法.①函数的图象:对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形就是这个函数的图象.①画函数图象的步骤:列表、描点、连线.3.函数自变量取值范围重难点讲解考点一点的坐标与图形的变化规律方法指导:点的坐标在变换中的规律:(1)平移:左右平移时横坐标左减右加,纵坐标不变;上下平移时纵坐标上加下减,横坐标不变;(2)关于坐标轴对称,与其同名的坐标不变,另一个坐标变为相反数;(3)关于原点对称,其坐标互为相反数;(4)点(x,y)关于原点顺时针旋转90°后的点坐标为(y,-x),点(x,y)关于原点逆时针旋转90°后的点坐标为(-y,x).经典例题1 (2020•安徽宿州模拟)已知点M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M 的坐标为()A.(2,3) B.(2,-3) C.(3,2) D.不能确定【解析】M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3).【答案】B考点二函数图象的分析与判断方法指导:根据函数的图象分析实际意义:要读懂图象的意义,就要会析图、用图.在解答过程中,要弄清楚图象的横、纵坐标表示的意义,函数图象上的点的意义,图象的变化趋势、变化快慢等,特别地,若是问题在整体过程中分为几个阶段,则其对应的图象也应分段分析,注意特殊点,如起点、终点、交点、转折点等的实际意义.经典例题2 (2020•湖南衡阳模拟)如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B 出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x 的函数图象如图2所示,则矩形ABCD的面积是()图1 图2A.20B.24C.48D.60【解析】如图2所示,当OP⊥BC时,BP=CP=4,OP=3,所以AB=2OP=6,BC=2BP=8,所以矩形ABCD的面积=6×8=48.【解析】C过关演练1. (2020•湖南长沙模拟)点P在第二象限内,若P到x轴的距离是3,到y轴的距离是4,那么点P的坐标为()A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)2. (2020·安徽阜阳模拟)如果m是任意实数,则点P(m-4,m-1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3. (2020•湖南邵阳中考)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b) B.(﹣a,b) C.(﹣a,﹣b) D.(a,﹣b)4.(2020•山东滨州中考)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5) B.(﹣5,4) C.(4,﹣5) D.(5,﹣4)5.(2020•四川甘孜州中考)函数y=13x中,自变量x的取值范围是()A.x>﹣3 B.x<3 C.x≠﹣3 D.x≠36.(2020•江苏无锡中考)函数y=2+31x-中自变量x的取值范围是()A.x≥2 B.x≥13C.x≤13D.x≠137.(2020•四川遂宁中考)函数y中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x>﹣2且x≠1 D.x≥﹣2且x≠18.(2020·河北模拟)如图所示,两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;①甲的速度比乙快1.5米/秒;①乙的起跑点在甲的前方12米处;①8秒钟后,甲超过了乙其中正确的说法是()A.①① B.①①① C.①① D.①①①9.(2020·安徽模拟)小明、小刚兄弟俩的家离学校的距离是5km.一天,兄弟俩同时从家里出发到学校上学,小刚以匀速跑步到学校;小明骑自行车出发,骑行一段路程后,因自行车故障,修车耽误了一些时间,然后以比出发时更快的速度赶往学校,结果比小刚早一点到了学校.下列能正确反映两人离家的距离y(米)与时间x(小时)之间的函数关系的图象是()A BC D10.(2020·江苏徐州一模)已知A,B两地相距1000米,甲从A地步行到B地,乙从B地步行到A地,若甲行走的速度为100米/分钟,乙行走的速度为150米/分钟,且两人同时出发,相向而行,则两人之间的距离y(米)与时间t(分钟)之间的函数图象是()A BC D11.(2020•安徽淮南模拟)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B,C不重合)EF ∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A B C D 12.(2020•四川州模拟)小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;①他步行的速度是100m/min;①他在校车站台等了6min;①校车运行的速度是200m/min;其中正确的个数是()A.1 B.2 C.3 D.413. (2020•湖北黄冈中考)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A B C D14. (2020•青海中考)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A B C D 15.(2020•贵州遵义中考)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1,S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A B C D 16.(2020·贵州贵阳模拟)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是.17.(2020·安徽铜陵模拟)若点P(a,b)在第四象限,则点M(b-a,a-b)在第象限.18.(2020·安徽合肥二模)函数y的自变量取值范围是.19.(2020•上海一模)在平面直角坐标系xOy中,点A(4,3)为O上一点,B为O内一点,请写出一个符合条件要求的点B的坐标.20.(2020·河南模拟)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.当它们行驶7h时,两车相遇,则乙车速度的速度为.21.(2020•浙江金华中考)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).22.(2020•黑龙江齐齐哈尔中考)在函数y中,自变量x的取值范围是.23.(2020•上海中考)已知f(x)=21x-,那么f(3)的值是.参考答案考点梳理考点一 1. (1)向右向上(2)一一对应 2. (1)①x<0,y>0 ①x<0,y<0 ①x>0,y<0 (2)①x ①(0,0) (3)①x=-y (4)①(-x,y) ①(-x,-y) (5)①相等①相等(6)(x,y+b) (x,y-b) (7)①|a|考点二 1. (2)唯一确定 3.不等于0 非负数不为0过关演练1. A解析:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0,又∵P到x轴的距离是3,到y轴的距离是4可知,∴点P的横坐标是-4,纵坐标是3,即点P的坐标为(-4,3).2. D 解析:①(m-1)-(m-4)=m-1-m+4=3,①点P的纵坐标大于横坐标,①点P一定不在第四象限.3. B 解析:①a+b>0,ab>0,①a>0,b>0.(a,b)在第一象限,因为小手盖住的点在第二象限,故选项A不符合题意;(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故选项B符合题意;(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故选项C不符合题意;(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故选项D不符合题意.4. D 解析:①在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,①点M 的纵坐标为﹣4,横坐标为5,即点M的坐标为(5,﹣4).5. C 解析:由题意得x+3≠0,解得x≠﹣3.6. B 解析:由题意得,3x﹣1≥0,解得x≥13.7. D 解析:根据题意,得21xx≥-⎨≠+⎧⎩,,解得x≥﹣2且x≠1.8. B9. A 解析:由题意可知,小刚匀速从家去学校,故小刚对应的函数图象是一条线段,故选项D错误;小明骑自行车先行一段路程,中途出现故障需要维修,然后以更快的速度赶往学校,比小刚早到一点到达学校,故选项B、C错误,选项A正确.10. C 解析:两人相遇时所用时间为1000÷(100+150)=4(分钟),乙从B 地步行到A 地所用时间为1000÷150=203(分钟),则203分钟后,甲、乙两人之间距离的变化变缓,甲从A 地步行到B 地所用时间为1000÷100=10(分钟),由此可知选项C 能反映两人之间的距离y (米)与时间t (分钟)之间的关系.11. C 解析:∵菱形ABCD 中,∠B =60°,∴△ABC 是等边三角形,∵EF ∥AC ,∴△BFE 是等边三角形,∴BE =BF =x ,∵BE =x ,∴S △BFE =12x ﹒=x 2,∵AB =1,∴EC =AF =1-x ,∴S △AFD =S △CED =12(1-x )﹒=-x ,∵S 菱形ABCD =12×1×=,∴S △DFE =-x 2-2(-x )=-4(x -1)2(其中0<x <1).符合此图象表达式为选项C .12. C 解析:根据题意得:小明用了10分钟步行了1km 到校站台,即小明步行了1km 到校车站台,①正确,1000÷10=100m/min ,即他步行的速度是100m/min ,①正确,小明在校车站台从第10min 等到第16min ,即他在校车站台等了6min ,①正确,小明用了14min 的时间坐校车,走了7km 的路程,7000÷14=500m/min ,即校车运行的速度是500m/min ,①不正确,即正确的是①①①.13. D 解析:根据题意:时间t 与库存量y 之间函数关系的图象为先平,再逐渐减小,最后为0.14. B 解析:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.15. C 解析:此函数图象中,S 2先达到最大值,即兔子先到终点,故选项A 不符合题意;此函数图象中,S 2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,故选项B 不符合题意;此函数图象中,S 1,S 2同时到达终点,故选项C 符合题意;此函数图象中,S 1先达到最大值,即乌龟先到终点,故选项D 不符合题意.16. (-2,3)或(-2,-3)17. 二 解析:①点P (a ,b )在第四象限,①a >0,b <0,①b -a <0,a -b >0,①点M (b -a ,a -b )在第二象限.18. x≤2且x≠0 解析:根据题意得,2-x≥0,且x≠0,解得x≤2且x≠0.19. (2,2) 解析:连结OA,OA5,∵B为O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.20. 75千米/小时解析:甲返程的速度为600÷(14-6)=75(千米/时),设乙车的速度为x(千米/时),由题意得600=7x+75,解得x=75.21. ﹣1(答案不唯一) 解析:①点P(m,2)在第二象限内,①m<0,则m的值可以是﹣1.(答案不唯一)22. x≥﹣3且x≠2 解析:由题可得,3020xx+≥⎧⎨-≠⎩,,解得32xx≥-⎧⎨≠⎩,,①自变量x的取值范围是x≥﹣3且x≠2.23. 1 解析:①f(x)=21x-,①f(3)=231-=1.。
2020年九年级中考数学一轮复习 平面直角坐标系 练习(含答案)

2020年中考数学一轮复习平面直角坐标系一、单选题1.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)2.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系的第四象限内有一点P,点P到x轴的距离为4,到y轴的距离为3,则点P的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)4.如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)5.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.﹣2<a<0 B.0<a<2C.a>2 D.a<06.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30) B.(8,10) C.(9,10) D.(10,10)8.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)9.在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为())C.()D.(﹣1,1)A.(1,1)B.(010.直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(+1,+1)二、填空题11.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.12.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.14.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)三、解答题15.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为______,A n的坐标(用n的代数式表示)为______.(2)2020米长的护栏,需要两种正方形各多少个?16.已知△ABC中,点A(-1,2),B(-3,-2),((3,-3),试解決下列问题:(1)在直角坐标系中画出△ABC.(2)求△ABC的面积17.在直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得△A′B′C′(其中B′、C′分别是B、C的对应点).(2)(1)中所得的点B′,C′的坐标分别是,.(3)求出△ABC的面积.18.在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.19.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面积为______;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.答案1.C 2.B 3.A 4.C 5.B 6.B 7.C 8.C 9.D10.A11.3612.(-2,-2)13.0.14.1(21,2)n n --15.解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2, ∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3, ∴A 3(5+3,2),A n (()132333n -++++n L 个,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.16.解:(1)△ABC 如图所示:(2)△ABC的面积是13.17.(1)如图所示:△A′B′C′即为所求;(2)点B′的坐标是;(5,3),点C′的坐标是:(8,4);故答案为(5,3),(8,4);(3)△ABC的面积为:6−12×1×2−12×1×2−12×3=52.18.(1)∵a、b60.b-=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.19.(1)解:如图1中,∵|a+3|+(b-a+1)2=0,∴a=-3,b=4,∵点C(0,-3),D(-4,-3),∴CD=4,且CD∥x轴,∴△BCD的面积=1212×4×3=6;故答案为-3,-4,6.(2)证明:如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)解:如图3中,结论:BECBCO∠∠=定值=2.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-3),D(-4,-3),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴BEC BCO∠∠=2。
中考数学专题复习平面直角坐标系及函数(含解析)

平面直角坐标系及函数一、选择题1.函数y=错误!中,自变量x的取值范围是()A.x≠-2 B.x≠2C.x<2 D.x〉2解析根据题意得:x-2≠0,解得:x≠2.答案B2.函数y=错误!的自变量x的取值范围是( )A.x>1 B.x<1C.x≤1 D.x≥1解析根据题意得:1-x≥0,解得:x≤1。
答案C3.函数y=错误!+错误!中自变量x的取值范围是( ) A.x≤3 B.x=4C.x<3且x≠4 D.x≤3且x≠4解析二次根式的被开方数是非负数,∴3-x≥0,即x≤3;分式的分母不等于0,∴x-4≠0,即x≠4.∴x≤3.故选A.答案A4.若a>0,则点P(-a,2)应在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析∵a>0,∴-a<0。
∵点P的横坐标是负数,纵坐标是正数,∴点P在平面直角坐标系的第二象限.答案B5.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C。
设BE=x,BC=y,则y关于x的函数解析式是()A.y=-错误!B.y=-错误!C.y=-错误!D.y=-错误!解析作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°,∴∠BDE=∠FEG。
在△DBE与△EGF中,错误!∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y-3x。
∵FG⊥BC,AB⊥BC,∴FG∥AB,CG∶BC=FG∶AB,即错误!=错误!,∴y=-错误!.答案A二、填空题6.已知函数y=错误!,则自变量x的取值范围是________.解析由题意得,x-1〉0,解得x>1。
答案x>17.函数y=错误!+错误!中,自变量x的取值范围是________.解析由题意得,x+1≥0且x≠0,解得x≥-1且x≠0。
平面直角坐标系与一次函数(一轮复习)

一、平面直角坐标系 1. 有序数对有顺序的两个数a 与b 组成的数对叫做有序数对,记作(),a b .利用有序数对,可以准确地表示出一个位置.2. 平面直角坐标系定义:平面直角坐标系是由两条互相垂直的数轴组成,且两轴的交点是原点,同一数轴上的单位长度是一样的,但两轴上的单位长度不一定相同.注意数轴有三个要素——原点、正方向和单位长度.我们规定水平的数轴叫做横轴,取向右为正方向;另一数轴叫纵轴,取向上为正方向.知识点睛中考要求平面直角坐标系与一次函数3. 象限和轴:横轴(x 轴)上的点(x ,y )的坐标满足:0y =;纵轴(y 轴)上的点(x ,y )的坐标满足:0x =;第一象限内的点(x ,y )的坐标满足:00x y >⎧⎨>⎩;第二象限内的点(x ,y )的坐标满足:00x y <⎧⎨>⎩;第三象限内的点(x ,y )的坐标满足:00x y <⎧⎨<⎩;第四象限内的点(x ,y )的坐标满足:00x y >⎧⎨<⎩;4. 点的坐标:已知点P 分别向x 轴和y 轴作垂线,设垂足分别是A 、B ,这两点在x 轴、y 轴的坐标分别是a 、b ,则点P 的坐标为(a ,b ).点的坐标是一对有序数,横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来.5. 特殊直线:与横轴平行的直线:点表示法(x ,m ),x 为任意实数,0m ≠的常数(即直线y m =);与纵轴平行的直线:点表示法(n ,y ),y 为任意实数,0n ≠的常数(即直线x n =); 一、三象限角平分线:点表示法(x ,y ),x ,y 为任意实数,且x y =; 二、四象限角平分线:点表示法(x ,y ),x ,y 为任意实数,且x y =-;6. 点到线的距离点(a ,b )到直线y m =(m 为常数)的距离为b m -,当0m =时,就是点到横轴(x 轴)的 距离为b ;点(a ,b )到直线x n =(n 为常数)的距离为a n -,当0n =时,就是点到纵轴(y 轴)的距离为a ;这个知识点在已知三点的坐标求三角形面积时会用到.7. 对称:①点(x ,y )关于横轴(x 轴)的对称点为(x ,y -); ②点(x ,y )关于纵轴(y 轴)的对称点为(x -,y );③点(x ,y )关于原点(0,0)的对称点为(x -,y -); ④点(x ,y )关于点(a ,b )的对称点为(2a x -,2b y -);8. 平移:⑴点平移:①将点(x ,y )向右(或向左)平移a 个单位可得对应点(x a +,y )或(x a -,y ). ②将点(x ,y )向上(或下)平移b 个单位,可得对应点(x ,y b +)或(x ,y b -). ⑵图形平移:①把一个图形各个点的横坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向右(或 向左)平移a 个单位.②如果把图形各个点的纵坐标都加上(减去)一个正数a ,相应的新图形就是把原图形向上(或 向下)平移a 个单位.二、函数与变量 常量与变量的概念:我们在现实生活中所遇到的一些实际问题,存在一些数量关系,其中有的量永远不变,同时也出现了一些数值会发生变化的两个量,且这两个量之间相互依赖、密切相关.在某一变化过程中,可以取不同数值的量,叫做变量.在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.例如:圆的面积S 与圆的半径r 存在相应的关系:2πS r =,这里π表示圆周率;它的数值不会变化,是常量,S 随着r 的变化而变化,r 是自变量,S 是因变量;◆ “y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.◆ 判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同. 例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.◆ 函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.数学上表示函数关系的方法通常有三种:⑴解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑵列表法:通过列表表示函数的方法.⑶图象法:用图象直观、形象地表示一个函数的方法.关于函数的关系式(即解析式)的理解:● 函数关系式是等式. 例如4y x =就是一个函数关系式. ● 函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数. ● 函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. ● 求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =中,自变量x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥. 在初中阶段,自变量的取值范围考虑下面几个方面: ⑴根式:当根指数为偶数时,被开方数为非负数. ⑵分母中含有自变量:分母不为0.⑶实际问题:符合实际意义.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:⑴列表; ⑵描点; ⑶连线.函数解析式与函数图象的关系:⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上; ⑵函数图象上点的坐标满足函数解析式.三、一次函数及其性质● 知识点一 一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线. ⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.知识点五 用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法. ⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③解方程(组),得到待定系数的值; ④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.板块一、平面直角坐标系【例1】 ⑴在平面直角坐标系中,点()12A x x --,在第一象限,则x 的取值范围是 ;⑵ 点12,a ⎛⎫- ⎪⎝⎭在第二象限的角平分线上,则a = ;⑶如果点()12P m m -,在第四象限,那么m 的取值范围是( ) A .210<<m B .021<<-m C .0<m D .21>m ⑷对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限【例2】 ⑴点()35P -,关于x 轴对称的点的坐标为( ) A .()35--,B .()53,C .()35-,D .()35, ⑵点()21P -,关于y 轴对称的点的坐标为( ) A .()21--,B .()21,C .()21-,D .()21-,⑶在平面直角坐标系中,点()23P -,关于原点对称点P '的坐标是 . ⑷已知点P (1a +,21a -)关于x 轴的对称点在第一象限,求a 的取值范围.【例3】 ⑴ 如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线.实验与探究:①由图观察易知A (2,0)关于直线l 的对称点'A 的坐标为(0,2),请在图中分别标明B (5,3),C (2-,5)关于直线l 的对称点'B 、'C 的位置,并写出他们的坐标: 'B ,'C ; 归纳与发现:②结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点'P 的坐标为 (不必证明); ③点A (a ,b )在直线l 的下方,则a ,b 的大小关系为 ;若在直线l 的上方,则 . ⑵ 已知:如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为(100)A ,,(04)C ,,点D 是OA 的中点,点P 在BC 边上运动.当ODP △是腰长为5的等腰三角形时,点P 的坐标为________.例题精讲y xl665454332121-1-2-3-1-2-3CPBDOAxy【巩固】 如图,把图①中的A 经过平移得到O (如图②),如果图①中A 上一点P 的坐标为()m n ,,那么平移后在图②中的对应点P '的坐标为 .【例4】 在平面直角坐标系中,点()25A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--,B .()25--,C .()25-,D .()25-,【例5】 在平面直角坐标系中,已知线段AB 的两个端点分别是()41A --,,()11B ,,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43,B .()34,C .()12--,D .()21--,板块二、函数及其图像【例6】 ⑴下列图形中的曲线不表示y 是x 的函数的是( ).DCBAyxOyxO yx OyxO⑵小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.请写出小张的存款y 与从现在开始的月份数x 之间的函数关系式及自变量x 的取值范围.【例7】 如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )【例8】 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出水,⑶4点到6点不进水也不出水.其中正确的是( )A .⑴B .⑶C .⑴⑶D .⑴⑵⑶甲 乙 丙(小时)))【例9】 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟DC P B AB .C .D .【例10】 如图表示甲、乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答以下问题:(1)求比赛开始多少分钟时,两人第一次相遇? (2)求这次比赛的全程是多少?(3)求比赛开始多少分钟时,两人第二次相遇?板块三、一次函数图像【例11】 一次函数的图象过点()1,0,且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式 .【巩固】 已知一次函数的图象过点()0,3与()2,1,则这个一次函数y 随x 的增大而 .【例12】 下列图形中,表示一次函数y mx n =+与正比例函数y mnx =(m 、n 为常数且0mn ≠)的图像是下图中的()AB C D【例13】 如图所示,在同一直角坐标系中,一次函数1y k x =,2y k x =,3y k x =,4y k x =的图像分别是1l ,2l ,3l ,4l ;那么1k ,2k ,3k ,4k 的大小关系是.ll【例14】 已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )ABCD板块四、一次函数解析式的确定【例15】 已知一次函数y ax b=+的图象经过点(02A,,(14B ,,()4C c c +,.⑴ 求c ;⑵ 求222a b c ab ac bc ++---的值.【例16】如图,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.板块五、一次函数与几何综合【例17】已知:如图,直线y=+与x轴交于点A,与直线y=相交于点P.(1)求点P的坐标.(2)请判断OPA∆的形状并说明理由.(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E 与点O、A重合),过点E分别作EF x⊥轴于F,EB y⊥轴于B.设运动t秒时,矩形EBOF与OPA∆重叠部分的面积为S.求:①S与t之间的函数关系式.②当t为何值时,S最大,并求S的最大值.【例18】 在平面直角坐标系中,直线162y x =-+与x 轴、y 轴分别交于B 、C 两点,⑴ 直接写出B 、C 两点的坐标;⑵ 直线y x =与直线162y x =-+交于点A ,动点P 从点O 沿OA 方向以每秒1个单位的速度运动,设运动时间为t 秒(即OP t =)过点P 作PQ x ∥轴交直线BC 于点Q ,①若点P 在线段OA 上运动时(如图),过P 、Q 分别作x 轴的垂线,垂足分别为N 、M ,设矩形PQMN 的面积为S ,写出S 和t 之间的函数关系式,并求出S 的最大值;②若点P 经过点A 后继续按原方向、原速度运动,当运动时间t 为何值时,过P 、Q 、O 三点的圆与x 轴相切.【例19】 如图,平面直角坐标系xOy 中,一条直线l 与x 轴交于点A ,与y 轴交于点(0,2)B ,与正比例函数(0)y mx m =≠的图像交于点(1,1)P (1)求直线l 的解析式;(2)求AOP ∆的面积MSDC 模块化分级讲义体系 初中数学.中考复习.第04讲.学生版 Page 13 of 15【例20】 如图,在平面直角坐标系xOy 中,O 是坐标原点。
2022年中考数学总复习平面直角坐标系与函数考点知识梳理 (含答案)

第三章函数3.1平面直角坐标系与函数◎结合丰富的实例进一步体会用有序数对可以表示物体的位置.◎理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.◎在实际问题中,能建立适当的直角坐标系,描述物体的位置.◎会写出简单图形(多边形、矩形)的顶点坐标,体会可以用坐标刻画一个简单图形.◎探索简单实例中的数量关系和变化规律,了解常量、变量的意义.◎结合实例,了解函数的概念和三种表示法,能举出函数的实例.◎能结合图象对简单实际问题中的函数关系进行分析.◎能确定简单实际问题中函数自变量的取值范围,并会求出函数值.◎能用适当的函数表示法刻画简单实际问题中变量之间的关系.◎结合对函数关系的分析,能对变量的变化情况进行初步讨论.本节考点的考查以选择题和填空题为主,试题难度中等.通常用分段函数的图象来表示两个变量之间的函数关系,多与实际问题或其他数学知识(相似、动态问题)相结合考查.命题点分析判断函数图象[10年6考]1.(2018·安徽第10题)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为√2,对角线AC 在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为( A )【解析】由正方形ABCD的边长为√2,易求得其对角线长为2,对角线的一半是1.分三种情况:①当0≤x≤1时,y= 2√2x,函数图象为直线的一部分(线段),且y随x的增大而增大;②当1<x≤2时,y=2√2,函数图象是平行于x轴的一条线段;③当2<x≤3时,y=−2√2x+6√2,函数图象为直线的一部分(线段),且y随x 的增大而减小.只有选项A符合条件.2.(2016·安徽第9题)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米.甲、乙两名长跑爱好者同时从点A出发.甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(时)函数关系的图象是( A )【解析】由题意知甲跑1小时到了B地,在B地休息了半个小时,2小时正好跑到C地;乙跑53小时到了C地,在C地休息了13小时才和甲相遇,由此可知正确的图象是A项.3.(2014·安徽第9题)如图,在矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( B )【解析】依据题意,当点P在AB边上,即0<x≤3时,y=4;当点P在BC边上,即3<x≤5时,12xy=12S矩形ABCD=6,∴y=12x,只有B项满足条件.4.(2013·安徽第9题)如图1所示,在矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是( D )A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC·CF的值增大D.当y增大时,BE·DF的值不变,即xy=9.当x=3时,y=3,此时点C与点M重合,【解析】由图象可知,反比例函数图象经过点(3,3),可求得y=9x有EC=EM,故A项错误;当y=9时,x=1,由题图易知EC<EM,故B项错误;EC·CF=√2x·√2y=2xy=2×9=18,不论x取何值,EC·CF的值不变,故C项错误;BE·DF=xy=9,不论y取何值,BE·DF的值不变,故D项正确.5.(2012·安徽第9题)如图,A点在半径为2的☉O上,过线段OA上的一点P作直线l,与☉O过A点的切线交于点B,且∠APB=60°.设OP=x,则△PAB的面积y关于x的函数图象大致是( D )【解析】由AB与☉O相切可知,△PAB是直角三角形.由题知AP=2-x,则AB=AP·tan 60°=√3(2−x),故S△PAB=√3(x-2)2(0≤x<2),只有D项符合题意.2考点1平面直角坐标系中点的坐标特征典例1在平面直角坐标系中,点A的坐标为(x,y),请回答下列问题:(1)当x=1,y=-2时,①点A在第象限;②点A到x轴的距离为,到y轴的距离为,到原点的距离为,到点(1,3)的距离为,到点(2,-2)的距离为,到点(2,3)的距离为;③点A关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的点的坐标为;④将点A先向下平移4个单位长度,再向右平移3个单位长度后,其对应点A'的坐标为.(2)当y=x-1时,①若点A在第四象限,则x的取值范围为;②若点A在坐标轴上,则点A的坐标为;③若点A到x轴的距离为3,则点A的坐标为;④若点A在第四象限的角平分线上,则x的值为;⑤若点B的坐标为(2,3),且AB⊥y轴,则x的值为,AB的长为.【答案】(1)①四.②2;1;√5;5;1;√26.③(1,2);(-1,-2);(-1,2).④(4,-6).(2)①0<x<1.②(0,-1)或(1,0).③(4,3)或(-2,-3)..④12⑤4;2.点在平面直角坐标系中平移时的变化规律是:左右移动只改变点的横坐标,即“左减右加”;上下移动只改变点的纵坐标,即“上加下减”.考点2分析判断函数图象典例2(2020·贵州遵义)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()【解析】乌龟是匀速行走的,图象为线段;兔子的运动过程是:奔跑——停下休息——奔跑,图象由三条折线组成;最后同时到达终点,即到达终点花的时间相同.A项,此函数图象中,s2先达到最大值,即兔子先到终点,不符合题意;B项,此函数图象中,乌龟到达终点时,兔子还在睡觉,不符合题意;C项,此函数图象中,乌龟和兔子同时到达终点,符合题意;D项,此函数图象中,s1先达到最大值,即乌龟先到达终点,不符合题意.【答案】C分析函数图象判断结论的正误,先分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:(1)分段函数要分段讨论;(2)转折点:判断函数图象的倾斜方向或增减性发生变化的关键点;(3)横轴平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.提分1如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60 s后将容器注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( D )【解析】根据题意可知,在完全淹没铁块之前和完全淹没铁块之后容器内水面的高度是分别匀速变化的,刚开始时由于长方体铁块在水槽里,水槽底面积减小,水面上升的速度较快,水淹没长方体铁块后一直到水注满,底面积是水槽的底面积,水面上升的速度较慢.提分2(2021·海南)李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( B )【解析】设最初的速度为v1千米/小时,加快了速度后的速度为v2千米/小时,则v2>v1>0,中途加油时,y保持不变,加油后的图象更陡,观察四个选项可知,只有B项符合条件.提分3如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP 的面积为y,那么y与x之间的函数关系的图象大致是( D )【解析】由题意,当0≤x≤4时,y=12AD·AB=12×3×4=6;当4<x<7时,y=12PD·AD=12×(7-x)×4=14-2x,只有D项符合条件.。
中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)

技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).
中考数学复习(福建专版 ) 第9课时 平面直角坐标系及函数

3.【2019福建4分】在平面直角坐标系xOy中,▱OABC的三 个顶点分别为O(0,0),A(3,0),B(4,2),则顶点C的 坐标是__(1_,__2_)__.
考点2 平面直角坐标系中点的动态特征 要点知识
教材梳理篇
第三章 函 数 第9课时
平面直角坐标系及函数
1 知识框架 2 考点突破 3 当堂小练
1 知识框架
2 考点突破
· 考点1 平面直角坐标系中点的坐标特征 · 考点2 平面直角坐标系中点的动态特征 · 考点3 函数自变量的取值范围 · 考点4 函数图像的分析 · 考点5 规律问题
考点1 平面直角坐标系中点的坐标特征 要点知识 1.各象限内点的坐标特征:
问题有意义.
题串考点
求下列函数自变量的取值范围.
(1)y=x-1 3; (2)y= x-2;
(3)y=
xx--32;
(4)y=
x-2 x-3 .
解:(1)x≠3. (2)x≥2. (3)x>2. (4)x≥2且x≠3.
考点4 函数图象的分析 福建6年中考聚焦 1.【2022厦门质检4分】[改编]已知学校、花店、书店在同
2.【2022福建二模4分】如图①,正方形ABCD中,点E是边 AD的中点,点P以1 cm/s的速度从点A出发,沿A→B→C运 动到点C后,再沿线段CA到达点A.图②是点P运动时, △PEC的面积y(cm2)随时间x(s)变化的部分图象.根据图象判 断:下列能表示在点P的整个运动过程
中y随x变化的完整图象的是( )
过点E作EM⊥AC于点M,如图,
易得 EM=
22AE=
2025年甘肃省中考数学一轮复习基础巩固-第三单元 函数第9讲 平面直角坐标系与函数

命题考点精析
则下列正确表示 y 与 x 函数关系的图象是( A )
命题考点精析
解 如图,连接 B D ,过点 B 作 B E ⊥A D 于点 E ,当 0≤x<2 时,点 M 在 AB
上.
在菱形 A B C D 中,∠A =60°,A B=4,
A B =A D ,
∴△A B D 是等边三角形,
∴A E =E D =1A D =2,B E = 3A E =2 3.
2 观察 4 个选项,符合题意的为 D .故选 D .齐哈尔)如图,在正方形 A B C D 中,A B =4, 动点 M ,N 分别从点 A ,B 同时出发,沿射线 A B 、射线 B C 的方向匀速运动,且速度的大小相等,连接 D M ,M N , N D .设点 M 运动的路程为 x(0≤x≤4),△D M N 的面积为 S,
则 M H =B M ×sin∠M B H = 3x(cm ),
2
∴y=S△B M
N
=12B N ·M
H
=
3x2(cm
4
2),
命题考点精析
设菱形的边长为 a cm , ∴B D =2B O =2B C cos∠O B C =2×a× 3= 3a(cm ),
2
∴点 M 和点 N 同时到达点 D 和点 C ,此时△B M N 的面积达到最大值 4 3, ∴ 3x2=4 3,
命题考点精析
下列图象能表示 y 与 x 之间函数关系的是( D )
命题考点精析
命题考点精析
解 当点 P 在 B C 上,即 0<x≤4 时,y=1×4x=2x,当 x=4 时,y=8;
2
当点 P 在 C D 上,即 4<x≤8 时,y=1×4×4=8;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品教案_第9课时函数基础知识与平面直角坐标系基础知识回放一、基础知识梳理考点1 平面直角坐标系1.有序实数对:有顺序的两个实数a和b组成的实数叫做有序实数对,利用有序实数对可以很准确地表示①的位置.温馨提示:平面直角坐标系内的点与有序实数是②的,即任意一对有序实数对都可以用坐标平面内的点来表示;反过来,坐标平面内的任意一点都可以用一对有序实数对来表示.2.平面直角坐标系在平面内两条互相垂直且有公共原点的数轴,组成平面直角坐标系,水平的数轴叫做x轴或横轴,取向右为正方向,竖直的数轴叫做y轴或纵轴,取向上为正方向;两坐标轴交点O为平面直角坐标系的③.点的坐标的确定和象限如图如示:温馨提示:(1)特殊点的坐标:x轴、y轴与坐标原点不属于任何象限,x轴上的点,纵坐标为O;y轴上的点,横坐标为0;坐标原点O的坐标为(0,0).(2)对称点的坐标特征:平面直角坐标系中的点A(a,b),关于x轴对称点的坐标为A1 (④);关于y轴对称点的坐标为A2(⑤);关于原点对称点的坐标为A3(⑥).⑶点P(x,y)到x轴的距离是|y|,到y轴的距离是|x|;⑷ x轴上两点(a,0),(b,0)之间的距离是|a-b|或|b-a|;y轴上两点(0,m),(0,n)之间的距离是|m-n|或|n-m|.考点2 函数的初步认识1.函数的概念(1)变量:某一变化过程中可以⑦的量叫做变量.(2)常量:某一变化过程中保持⑩的量叫做常量.(3)函数:在某变化的过程中有两个变量x和y,如果对于x的每一个值,y都有⑧确定的值与它对应,那么称x是⑨,y是x的函数.2.函数的表示方法函数的表示方法有⑩,○11,○12.在解决一些与函数有关的问题时,有时可以同时用两种或是两种以上的方法来表示函数.3.函数图象的画法一般来说,画函数图象的方法可以概括为列表、○13、连线三步.温馨提示:画函数图象时,要注意自变量的○14、当图象有端点时,还要注意端点是否有等号,有等号画○15,无等号画○16.4.函数自变量取值范围的确定(1)如果函数的解析式是整式,则自变量的取值范围是○17.初中英语词汇表注:n 名词v 动词adj形容词adv 副词prep介词conj连词phr.短语num数词第一册1----8331 what pron 什么2 is v 是3 what's what is的缩写形式4 your pron 你的,你们的5 name n 名字6 my pron 我的7 I pron 我8 am v 是9 I'm I am的缩写形式10 in prep 在...里(内,上)11 row n (一)排,(一)行12 one num 一13 number n 数字,号码14 two num 二15 too adv 也16 three num 三17 are v 是18 you pron 你,你们19 yes adv 是20 four num 四21 five num 五22 no adv & adj 不,不是23 not adv 不24 hi interj 喂(问候或唤起注意)25 class n (学校里的)班级,年级26 grade n 年级27 six num 六28 seven num 七29 eight num 八30 nine num 九31 ten num 十32 zero num & n 零33 plus prep 加,加上34 it pron 它35 it's it is的缩写形式36 how adv (指程度)多少,怎样37 old adj ...岁的,老的38 eleven num 十一39 twelve num 十二40 minus prep 减,减去41 thirteen num 十三42 fourteen num 十四43 fifteen num 十五44 hello interj 喂(问候或唤起注意)45 please interj 请46 can v.aux 能,可以,会47 spell v 拼写48 that pron 那,那个49 secret n 秘密50 this pron 这,这个51 in prep 用...(表达)52 English n & adj 英语,英国人英国的,英国人的53 in English phr. 用英语(表达)54 a art 一(个,件...)55 clock n 钟56 and conj 和,又,而57 pencil-box n 铅笔盒58 an art 一(个;件.)(用于元音开头的词前)59 pencil n 铅笔60 ruler n 尺子61 pen n 钢笔62 sharpener n 卷笔刀63 eraser n 橡皮擦64 room n 房间65 book n 书66 map n 地图67 desk n 书桌68 cup n 杯子69 bag n 书包70 computer n 电脑,电子计算机71 mouse n 鼠,耗子,鼠标72 bed n 床73 keyboard n 键盘74 isn't is not的缩写形式75 pear n 梨76 cake n 蛋糕,饼,糕77 banana n 香蕉78 apple n 苹果79 orange n 橙子,橘子80 egg n 蛋81 bike n 自行车82 bus n 公共汽车83 car n 汽车,小汽车84 jeep n 吉普车85 Chinese adj 中国的,中国人的n 中国人,汉语86 Japanese adj 日本的,日本人的n 日本人,日语87 look v 瞧,看88 who pron 谁89 she pron 她90 he pron 他91 bird n 鸟92 its pron 它的93 do v.aux (构成否定句,疑问句的助动词)94 don't do not的缩写形式95 know v 知道,懂得96 think v 想,认为97 Mr=mister n 先生(用于姓名前)98 very adv 很,非常99 picture n 图画,照片100 Mrs n 夫人101 boy n 男孩102 girl n 女孩103 woman n 妇女,女人104 man n 男人,人105 cat n 猫106 his pron 他的107 teacher n 教师108 her pron 她的109 everyone pron 每人,人人110 here adv 这里,这儿111 today adv & n 今天112 at prep 在113 school n 学校114 at school phr. 在学校115 sorry adj 对不起,抱歉的116 where adv 在哪里117 home n 家118 at home phr. 在家119 How are you? 你(身体)好吗?120 fine adj (身体)好的121 thanks n 谢谢(只用复数)122 OK adv (口语)好,对,不错,可以123 thank v 谢谢124 goodbye interj 再见,再会125 bye interj 再见126 parrot n 鹦鹉127 sister n 姐,妹128 father n 父亲129 mother n 母亲130 box n 盒子,箱子131 excuse v 原谅132 me pron 我133 Here you are. 给你134 but conj 但是135 these pron 这些136 they pron 他(她,它)们137 good adj 好的138 those pron 那些139 boat n 船140 hill n 小山141 tree n 树142 their pron 他们(她们,它们)的143 much adv 多,很,非常144 very much phr. 很,非常145 all adv 都,完全146 right adv & adj 对的,正确的147 all right phr. 好,行,不错148 mum n (口语)妈妈149 friend n 朋友150 brother n 兄,弟151 nice adj 令人愉快的152 to prep (表示方向)到,向动词不定式符号153 meet v 见面,会面,遇见154 child n 小孩155 children n child的复数形式156 welcome v 欢迎157 our pron 我们的158 come v 来159 come in phr. 进来,进入160 morning n 早晨,上午161 class n 同一个班的学生162 on prep 在,在...上163 duty n 职责,责任164 on duty phr. 值日165 we pron 我们166 aren't are not的缩写形式167 have v 有(2)如果函数的解析式是分式,则自变量的取值范围是○18实数.(3)如果函数的解析式含有二次根式(或偶次根式),则自变量的取值范围是使○19的实数.(4)含有零指数、负整数指数幂的函数,自变量的取值范围是使底数○20的实数.(5)实际问题,函数自变量的取值范围必须使实际问{有意义(如:不能让时间取负值或人数取小数等).(6)如果函数解析式兼上述两种以上的结构特点时,则:按上述方法分别求出它们的取值范围,再求它们的公共部分。
答案: ①点在平面、②一一对应、③原点、④(a,-b)、⑤(-a,b)、⑥(-a,-b)、⑦改变的、⑧唯一、⑨自变量、⑩解析法、○11列表法、○12图像法、○13描点、○14取值范围、○15实心点、○16空心圆圈、○17全体实数、○18使分母不为零的、○19被开方数大于或等于零、○20不为零.中考热点难点突破例1.函数y=x+1x-3中自变量x的取值范围是---------------------------------------------------- ( )A.x≥-1 B.x≠3 C.x≥-1且x≠3 D. x<-1分析:求函数中自变量取值范围也就是保证这种函数有意义,那相应地你就要知道什么情况下,什么式子没有意义.总结起来,初中阶段常见的有如下几种情况:(1)二次根式或偶次根式要保证被开方数大干或等于0,小于0时,被开方数则没有意义;(2)分式中,分母不能为0,否则无意义;(3)在O次方或负整数指数幂中,底数必须要保证不能为0;而且还要注意上述三种情况,必须同时成立.本例中,就要保证被开方数为非负数,同时考虑分母的值不能等于0..解:由分子可得:x+1≥0,则x≥-1;由分母可得:x -3≠0,则x≠3,综上所述,可知x≥-1且x≠3.例2.如图,图象(折线0EFPMN)描述了某汽车在行到过程中速度与时间的函数关系,下列说法中错误的是( )A .第3分时汽车的速度是40千米/时B .第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D .从第9分到第12分,汽车的速度从60千米/时减少到O 千米/时分析:由函数图象总结规律要注意以下几个问题:(1)首先一定要观察好此函数图象的横、纵坐标分别表示什么意义;(2)横、纵坐标的单位分别是什么;(3)由图象中你能得出哪些结论,如何应用到所求的结果中去;(4)让你做什么.注意了以上的问题,解决此类问题应该比较拿手了.解:因横坐标表示时间,纵坐标表示速度,所以由图可看出A 中第3分时汽车的速度是40千米/时,是对的.B 中第12分时汽车的速度是O 千米/时也是对的.C 中,从第3分到第6分,时间为3分钟,又这一段速度为40千米/时,所以路程为:40×O.05=2千米.而不是120千米.D 中从第9分到第12分,汽车的速度从60千米/小时减少到0千米/小时,也是正确的,错误的只有C.所以选择C .例3.(09滨州)已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x <<分析:本题属于利用函数图像求自变量的取值范围.如果一个函数图像被几个点分成几部分的话,一定要注意各个部分所对应的自变量取值范围.本题易错的地方是当x>2时,y<0容易被同学们所忽视.1Oy1-2解:通过图像观察,该函数图像被点(-1,0)、(1,0),(2,0)分成四部分,其中两部分在x 轴上方,两部分在x 轴下方.其中在x 轴上方的部分函数图像纵坐标大于0(即y>0);在x 轴下方的部分函数图像纵坐标小于0(即y<0).因此在x 轴下方的部分函数图像对应的自变量取值范围是11x -<<或2x >.故选B.例 4.小亮家最近购买了一套住房,准备在装修时用木质地板铺设居室,用瓷砖铺设客厅。