七年级数学上册5.5函数的初步认识版
青岛版七年级上册数学第5章 代数式与函数的初步认识含答案(完美版)

青岛版七年级上册数学第5章代数式与函数的初步认识含答案一、单选题(共15题,共计45分)1、函数中自变量x的取值范围是()A.x>2B.x≥2C.x≤2D.x<22、xg盐溶解在ag水中,取这种盐水mg,其中含盐()A. gB. gC. gD. g3、如图,长方形ABCD是由6个正方形组成,其中有两个一样大的正方形,且最小正方形边长为1,则长方形ABCD的边长DC为()A.10B.13C.16D.194、一项工作,甲独做需a天完成,乙独做需b天完成,则两人合作完成这项工作需()天.A.(a+b)B.()C.( )D.5、若2x2m y3与-5xy2n是同类项,则|m-n|的值是()A.0B.1C.7D.-16、已知a=﹣2,则代数式a+1的值为()A.﹣3B.﹣2C.﹣1D.17、下列说法错误的是().A.3a+7b表示3a与7b的和B.7x 2-5表示x 2的7倍与5的差C. - 表示a与b的倒数差D.x 2-y 2表示x,y两数的平方差8、已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.﹣1B.1C.﹣5D.59、如图,若用两种方法表示图中阴影部分的面积,则可以得到的代数恒等式是()A. B.C.D.10、下列表达形式中,能表示y是x的函数的是( )A.|y|=xB.y=±C.D.11、已知代数式-x+3y的值是9 ,则代数式2x-6y+19 的值是()A.37B.-37C.1D.-112、下列函数中的自变量x的取值范围是x>1的是()A.y=x﹣1B.y=C.y=D.y=13、某城市计划用两年时间增加全市绿化面积,若平均每年绿化面积比上一年增长20%,则两年后城市绿化面积是原来的()A.1.2倍B.1.4倍C.1.44倍D.1.8倍14、一个三位数数字是a,十位数字是b,百位数字是c,这个三位数是()A.a+b+cB.abcC.100a+10b+cD.100c+10b+a15、如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在哪条边上()A.ABB.BCC.CDD.DA二、填空题(共10题,共计30分)16、两船从同一港口同时出发,甲船顺水,乙船逆水,两船在静水中的速度都是30千米/时,水流速度是a千米/时,2小时后两船相距________千米.17、已知|3x-6|+(2y-4)2=0,则2x-y的值是________。
七年级数学上册《函数的初步认识》教案、教学设计

1.通过实际问题导入,引导学生自主探究函数的定义,培养独立思考和合作交流的方法,提高学生的动手能力。
3.利用信息技术手段,如几何画板等,让学生观察函数图像的变化,培养学生直观想象和空间思维能力。
4.通过分析典型例题,引导学生运用函数知识解决实际问题,提高学生的问题解决能力。
-设想活动:课堂小结时,让学生分享学习体会,同伴之间相互评价对方的学习成果。
四、教学内容与过程
(一)导入新课
在新课导入阶段,我们将通过一个贴近学生生活的实例来激发学生的学习兴趣,并引导学生思考背后的数学原理。
1.情境创设:以学校附近的公交站点的公交车发车时间为例,提出问题:“同学们,你们是否注意过公交车发车的时间间隔?这些时间间隔是否有什么规律?”通过这个问题,让学生意识到现实生活中存在一定的规律性。
(二)教学设想
1.引入生活实例:通过引入与学生生活密切相关的实例,如气温变化、物体运动等,让学生感知函数的存在和意义,激发学生的学习兴趣。
-设想活动:让学生记录一周的气温变化,并将其转化为函数模型,分析气温的日变化规律。
2.概念建构:采用探究式教学法,引导学生从具体实例中发现函数的普遍特征,逐步建构起函数的概念。
(四)课堂练习
在此环节,我们将进行课堂练习,以检验学生对函数知识点的掌握情况。
1.练习设计:设计具有代表性的练习题,包括选择题、填空题、解答题等,涵盖函数的定义、表示方法和性质等方面。
2.学生练习:让学生独立完成练习题,教师巡回指导,关注学生的解答过程和答案。
3.评价反馈:对学生的练习结果进行评价,及时反馈,纠正错误,巩固知识。
(三)学生小组讨论
在此环节,我们将组织学生进行小组讨论,以增强他们的合作能力和思维能力。
七年级数学上册 第5章 代数式与函数的初步认识 5.5 函数的初步认识教学课件

例如(lìrú),在上面的问题中,86.36是关于x的代数式
2.54x当x=34时的值,也叫做函数y=2.54x当x=34时的
函数值。 2021/12/11
第七页,共十六页。
如果一个变量与另一个变量之间的函数关系可以用一个
数学式子表示出来(chū lái),我们就把这个数学式子叫做该函 数的表达式。
的定义,能列出实例中的两个变量之间的等量关系,从而写出 简单的函数(hánshù)关系式。
2.经历从具体实例中抽象出函数的过程,发展观察分析 抽象概括等思维能力。
3.使学生认识到数学知识来源于生活,从而体会到学习函数 的必要性,提高学习数学的兴趣。
2021/12/11
第四页,共十六页。
交流(jiāoliú)与发现
第十页,共十六页。
随堂检测(jiǎn cè)
1.下列(xiàliè)变量之间的关系不是函数关系的是( D) A.矩形的一条边长是6 cm,它的面积S cm与 另一边长x cm的关系 B.正方形的面积与周长的关系 C.圆的面积与周长的关系 D.某图形的面积与它所在的平面的位置关系
2.函数(hánshù)y=-3x+7中,当x=2时,函数值为 ( C ) A.3 B.2 C.1 D.0
2021/12/11
第十四页,共十六页。
12/11/2021
第十五页,共十六页。
青岛版(新)数学七年级上册 5.5函数的初步认识

青岛版(新)数学七年级上册 5.5函数的初步认识1. 什么是函数在数学上,函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
简单来说,函数就是输入一个值,通过某种规则运算后输出一个值。
数学中常用的表示函数的方式是用一个小写的字母表示函数,例如 f(x),其中 f 就是函数的名称,x 表示输入的值。
在数学中,我们通常将输入的值称为自变量,输出的值称为因变量。
2. 函数的形式描述函数可以通过不同的形式来进行描述,常见的有以下几种:2.1. 函数的图像描述函数的图像描述是通过绘制函数的图像来表示函数的关系。
在二维坐标系中,自变量通常用 x 表示,因变量用 y 表示。
我们将所有的自变量与因变量的对应关系用线段连接起来,就得到了函数的图像。
例如,我们有一个函数 f(x) = x^2,可以通过绘制图像来表示这个函数的关系。
图像是一个开口向上的抛物线。
2.2. 函数的公式描述函数也可以用公式来表示,通过给出函数的计算规则,我们可以根据自变量的值来计算出因变量的值。
例如,函数 f(x) = 2x + 1 就是一个通过公式进行描述的函数。
我们可以根据给定的 x 值,通过计算 2x + 1 的结果来获取函数的值。
2.3. 函数的表格描述除了图像和公式,函数还可以通过表格来进行描述。
我们将自变量的取值和相应的函数值放在一张表格中,以展示函数的关系。
例如,下表展示了函数 f(x) = x^2 在自变量 x 取不同值时的函数值:x f(x)-24-11001124表格的每一行表示一个点,两列分别是自变量和因变量的取值。
3. 函数的性质函数有一些重要的性质,包括定义域、值域、单调性、奇偶性等。
3.1. 定义域和值域定义域是自变量的取值范围,值域是因变量的取值范围。
对于函数 f(x) = x^2,其定义域是所有实数,因为任何实数都可以作为自变量。
而值域是所有大于等于 0 的实数,因为平方得到的结果总是大于等于 0。
青岛版七年级上册数学第5章 代数式与函数的初步认识含答案

青岛版七年级上册数学第5章代数式与函数的初步认识含答案一、单选题(共15题,共计45分)1、已知,当时,的值是,当时,的值是().A. B. C. D.无法确定2、已知a=﹣2,则代数式a+1的值为()A.﹣3B.﹣2C.﹣1D.13、函数y=中自变量x的取值范围为()A.x≥0B.x≥﹣1C.x>﹣1D.x≥14、如果有理数x、y满足条件:|x|=5,|y|=2,|x-y|=y-x,那么x+2y的值是( )A.7或3B.-9或-1C.-9D.-15、在下列式子:x=y,a,ax+1,3x﹣2=0中,是代数式的有()A.1个B.2个C.3个D.4个6、已知代数式的值是-5,则代数式的值是()A.18B.7C.-7D.-157、若的值为7,则的值为()A.2B.24C.34D.448、若a与b互为相反数,c与d互为倒数,则代数式的结果是()A.0B.1C.-1D.无法确定9、一个三位数,百位数字为,十位数字比百位数字大2,个位数字比百位数字的2倍小3,若交换十位数字和个位数字,其余不变,则新得到的三位数与原来的三位数之和为()A. B. C. D.10、用代数式表示“x减去y的平方的差”正确的是()A. B. C. D.11、当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是()A.4B.0C.-2D.-412、已知,则代数式的值为()A.-1B.10C.6D.-413、某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元 D.(1+10%)x万元14、若2y2+3y+7的值为8,则4y2+6y﹣9的值是()A.﹣7B.﹣17C.2D.715、如图是一个数值运算程序,若输入x的值为2,则输出的数值为()A.5B.6C.11D.12二、填空题(共10题,共计30分)16、若多项式的值为2,则多项式的值为________.17、已知a+b=3,ab=-1,则2a+2b-3ab=________.18、若、为实数,且,则 a+b=________.19、3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为________元.(用含a的式子表示)20、函数y= 中的自变量的取值范围是________.21、己知m2-m=6.则1+2m2-2m=________22、如图是一个数值转换机的示意图,若输入的值为,的值为,则输出结果为________.23、Rt△ABC中,斜边BC=3,则AB2+BC2+CA2的值为________.24、若当x=﹣2018时,式子ax3﹣bx﹣3的值为5,则当x=2018时,式子ax3﹣bx﹣3的值为________.25、某市出租车收费标准是:起步价7元,当路程超过4km时,每千米收费1.5元,如果某出租车行驶x(x>4km),则司机应收费________元。
七年级数学上册第五章代数式与函数的初步认识5

运算顺序的符号表达数量关系的语言称符号语言。通过 数 时
例1我们把文字语言转化成符号语言。可以看出在描述 学 ,
问题时数学语言比自然语言更简单明确。
数学应用
1.选择题:
(1)下列结论中正确的是( D )
A.a是代数式,1不是代数式 B.1是代数式,a不是代数式
C.1与a都不是代数式
D.1与a都是代数式
则剩下的钱为(166-5n)元,他最多能买这种钢笔33支.
像5n+2 、4n、ab+ c、2 s、166-5n 、33的这样式子叫
t
代数式.
一般地,用运算符号加、减、乘、除、乘方、开方把数或者 表示数的字母连接起来,所得到的式子叫做代数式。
注意:
重探要索结发现论
1. 单独一个数或一个字母也是代数式。
⑵ 如何用代数式表示一个三位数?
4.(1) a、b两数的平方和减去他们乘积的2倍; (2) a、b两数的和的平方减去他们的差的平方; (3) a、b两数的和与他们的差的乘积
课堂小结
今
天 这
1、什么是代数式?怎么书写?
节 2.怎样列代数式?
课 ,
3.列代数式的关键是什么?我 于较复杂的数量关系,应按下述规律列代数式:
s
(2) t (4) x=2
(5) 3×4 -5
(6) 3×4 -5 =7
(7) x-1≤0
(8) x+2>3
(9) 10x+5y=15
(10) a +c
b
答: (1)、(2)、(3)、(5)、(10)是代数式;
(4)、(6)、(7)、(8)、(9)不是。
典型例题
语只解
言要答
例1 用代数式表示:
七年级数学上册第五章代数式与函数的初步认识5.5《函数的初步认识》课件(新版)青岛版

[问题一]:一台彩色电视机屏幕的对角线长度是34英寸, 它合多少厘米?(提示:1英寸═2.54厘米)
[问题二]:如果某种电视机屏幕的对角线长是x英尺, 换算为公制是y厘米,试写出y与x之间的关系式;
[问题三]:在y与x的关系式中,哪些是常量?哪些是 变量?
[问题四]:说一说,你家的电视机是多少英 寸的,合多少厘米? [问题五]: 通过研究,你会发现变量y与x之 间有什么关系?
学习小结
半径(cm) 面积(cm2)
1
1.5
2
2.6
Байду номын сангаас
3.2
由此可以看出,圆的半径越大,面积就 ____.
学习目标:
1.通过实例进一步认识常量与变量,理解自 变量与函数的定义,能列出实例中的两个变量 之间的等量关系,从而写出简单的函数关系式。 2.经历从具体实例中抽象出函数的过程,发 展观察分析抽象概括等思维能力。 3.使学生认识到数学知识来源于生活,从而 体会到学习函数的必要性,提高学习数学的兴 趣。
(2)如果用n表示上述图形中的序号,s表示相应图 形中小正方形水泥地砖的块数,写出s与n之间的关 系式。指出在这个问题中哪些是常量,哪些是变量, 哪个量是哪个量的函数。
(2)根据(1)中发现的规律,第n个图形中地
砖的块数应当是5(2n+1),即s═5(2n+1).
(3)铺设序号为100的图形中,一共有多少块小正方 形水泥地砖? 当n=100时,S=5×(2×100+1)=1005(块)。
飞行时间t(秒) 1
路程m(公里)
5
10 15 20 …
117 156 …
7.8
39 78
变式题:观察下图,根据表格中的问题回答下列问题:
青岛版七年级数学上册函数的初步认识练习题

5.5 函数的初步认识一.选择题1.已知函数y = 2x+1,当x = a 时的函数值为1,则a 的值为( ) A. 1 B.3 C.-3 D.-12.下列解析式中,不是函数关系式的是( ) A. y= x (x≥0) B. y=-x (x≥0) C. y= ±x (x≥0) D. y= -x (x≤0) 二.填空题3.生活用电为0.53元/度,某用户某月份所交电费y 元与这个月用电量x 度之间的关系式是_________.通过查电表,知道小华家上个月用电80度,那么小华家应付电费为_____元.4.周长为12cm 的长方形的一条边长是acm ,则这个长方形的面积Scm 2与边长acm 之间的函数关系式为 ,其中 是常量, 是变量。
5.张强带3元钱去购买单价为0.6元的铅笔,则剩余的钱y (元)与买铅笔数n (支)的关系式为 ,自变量的取值范围是 .6.函数2y x =- 中自变量x 的取值范围是 .7.函数y =x-2x+2中自变量x 的取值范围是 .8.函数y =x -2+3-x 中自变量x 的取值范围是 .9.已知等腰三角形的周长为10cm ,将底边长y(cm)表示成腰长x(cm)的函数关系式是 ,其自变量x 的取值范围是 . 三.解答题10.为加强公民的节水意识,我市制定了以下用水收费标准:每户每月用水未超过7m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m 3),应交水费为y (元).分别写出用水未超过7m 3和超过7m 3时,y 与x 之间的函数关系式.5.5 函数的初步认识一、精心选一选(每小题5分,共30分)1.一本笔记本每本4.5元,买x 本共付y 元,则4.5和y 分别是( ) A.常量、常量 B.变量、变量 C.常量、变量 D.变量、常量2.若一辆汽车以50千米/时的速度匀速行驶,则行驶的路程s (千米)与行驶的时间t (时)之间的函数关系式是( )A.S=50+50tB.s=50tC.s=50-50tD.以上都不对 3.下列函数中,自变量的取值范围为x≥2的是( )A.y=2+x B.y=2-x C.y=21+x D.y=21-x 4.下列说法正确的是( )A.变量x 、y 满足x+2y=-3,则y 是x 的函数B.变量x 、y 满足|y|=x ,则y 是x 的函数C.变量x 、y 满足y 2=x ,则y 是x 的函数D.变量x 、y 满足y 2=x 2,则y 是x 的函数5.(2008年巴中市)在常温下向一定量的水中加入食盐Nacl ,则能表示盐水溶液的浓度与加入的Nacl 的量之间的变化关系的图象大致是( )A. B. C. D.6.清晨一农家将一筐新鲜草莓拿到市场上去销售,下午为了尽快售完,进行了一次降价,下面的函数图象是反映果农身上的钱数(M )随时间(T )变化的状况,其中最合理的是图2中的( )二、细心填一填(每小题6分,共24分)7.若每千克散装色拉油售价6.25元,则货款金额y (元)与购买数量x (千克)之间的函数关系式为_______,其中_______是自变量,_______是______的函数.8.函数y=3x-5中,自变量x 的取值范围是________,函数y=xx --32中,自变量x 的取值范围是________. 9.如图12的图象,结果两个人画的不太一样.图中甲是小强画的的,乙是小华画的..图2图110.如图2,图象反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家.其中t 表示时间,s 表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是________min.三、用心做一做(共46分)11.(14分)某校师生为四川汶川地震灾民捐款,平均每人捐50元.(1)写出捐款总额y (元)与捐款人数x (人)之间的关系式,指出式子中的变量与常量,并指出在这个变化过程中,哪一个量是自变量?哪一个量是因变量?(2)如果该校有师生3000人,那么此次该校师生共为汶川灾区捐款多少元?12.(16分)图3是某水库的水位高度h (米)随月份t (月)变化的图象,请根据图象回答下列问题: (1)5月、10月的水位各是多少米?(2)最高水位和最低水位各是多少米?在几月? (3)水位是100米时,是几月?图313.(16分)某公司决定投资新项目,通过考察确定有6个项目可供选择,各项目所需要资金及预计年利ABD图2预计利润(千万元) 0.2 0.35 0.55 0.70.9 1 (2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果预计获得0.9千万元的年利润,投资一个项目需要多少资金?(4)如果该公司可以拿出10亿元进行多少个项目的投资,预计最大利润是多少?5.5 函数的初步认识一、选择题1.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径 ④y=12-x 中的y 与x A.1个 B.2个 C.3个 D.4个2.对于圆的面积公式S=πR 2,下列说法中,正确的为( )A.π是自变量B.R 2是自变量C.R 是自变量D.πR 2是自变量 3.下列函数中,自变量x 的取值范围是x ≥2的是( )A.y=x -2B.y=21-x C.y=24xD.y=2+x ·2-x4.已知函数y=212+-x x ,当x=a 时的函数值为1,则a 的值为( ) A.3 B.-1 C.-3 D.15.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是( )二、填空题6.轮子每分钟旋转60转,则轮子的转数n 与时间t (分)之间的关系是__________.其中______是自变量,______是因变量.7.计划花500元购买篮球,所能购买的总数n (个)与单价a (元)的函数关系式为______,其中______是自变量,______是因变量.8.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为______. 9.已知矩形的周长为24,设它的一边长为x,那么它的面积y 与x 之间的函数关系式为______.10.已知等腰三角形的周长为20 cm,则腰长y (cm )与底边x (cm )的函数关系式为______,其中自变量x 的取值范围是______. 三、解答题11.如图所示堆放钢管.(1层数 1 2 3 (x)钢管总数(212.如图,这是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)____时气温最高,______时气温最低,最高气温是______,最低气温是_____;(2)20时的气温是______;(3)______时的气温是6 ℃;(4)______时间内,气温不断下降;(5)______时间内,气温持续不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5 函数的初步认识
学习目标
1.结合实例,知道自变量与函数的意义,能够区分自变量与函数.
2.对于给定的函数,能根据自变量的值求出函数的值.
自主学习
自主学习课本,完成下列问题:
1.什么是函数?什么是自变量?
什么是一个函数的函数值?怎样求?
①下列变量之间的关系不是函数关系的是()
A.矩形的一条边长是6cm,它的面积S(cm2)与另一边长x(cm)的关系
B.正方形的面积与周长的关系
C.圆的面积与周长的关系
D.某图形的面积与它所在的平面的位置关系
②一般地,如果在一个______________中,有两个____________,例如x和y,对于x的每—个值,y都有______________与之对应,我们就说x是________________,y是________________,此时也称y是x的________________.
③当x=-3时,分别求出下列函数的函数值.
(1)y=(x-1)(x+2) (2)
2
3
22+
-
=x
x
y
课堂突破
通过以上的练习,你一定知道函数和自变量了?和同桌交流一下吧,找出它们之间的联系与区别. 反思巩固
一、回顾反思
1.你的收获:知识点:
数学思想或方法:
2.你觉得最难以理解的方面:
巩固练习
1.函数
1
-
+
=x
x
y
,当x=2时,函数值为 ( )
A.3 B.2 C.1 D.0
2.写出下列函数关系式,指出自变量与函数.
一辆汽车从南京开出,行驶在去上海的高速公路上,速度为120km/h,南京至上海约270km,则该汽车离上海的路程s与行驶时间t之间的函数关系;
3.判断下列式子中y是否是x的函数,并说明理由:
(1)
()2
21
2-
=x
y
;(2)
x
y2-
=
;(3)
x
y3
-
=
.。