补角和余角的定义

合集下载

6.3余角、补角和对顶角

6.3余角、补角和对顶角

A.2个B.3个C.4个D.6个
A.20°B.40°C.50°D.60°
A.B.C.D.
A.B.C.D.
2、相交线
(1)相交线的定义
两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).
【练习】
1(2006•河南)两条直线相交所成的四个角中,下列说法正确的是()A.一定有一个锐角B.一定有一个钝角
C.一定有一个直角D.一定有一个不是钝角
3(2011•柳州)如图,在所标识的角中,互为对顶角的两个角是()
A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠2
4(2009•南平)如图,某同学在课桌上随意将一块三角板的直角叠放在直尺上,则∠1+∠2的度数是()
A.45°B.60°C.90°D.180°。

余角补角的概念和性质

余角补角的概念和性质
些互为补角?找一找!
10o
o
30
o
60
100o
o
120
o
150
80o
o
170
2、一个角是70039’,求它的余角和补角。
3、同一个锐角的补角比它的余角大多少度?
∠1与∠2、∠3都互为 余角
补角 ,∠2和∠3的
大小有什么关系?∠1与∠2互为余角
补角 ,∠3
与∠4互为补角
余角 。若∠1=∠3,则∠2与∠4的
这个角是多少度?
2. 如图,点A、O、E在同一直线上,OB、OC、OD都是射线,
∠1=∠2,∠1与∠4互为余角。
(1)∠2与∠3的大小有何关系?请说明理由。
(2)∠3与∠4的大小有何关系?请说明理由。
(3)说明∠3的补角是∠AOD。
D
C
B
A
2
3
1
O
4
B
选做题
3、把一张长方形纸片按如图所示折叠,若∠AEM1=1200,求∠BCN1 的度数。
(1)∠ADC与∠BDC有什么关系?为什么?
(2)∠ADF与∠BDE有什么关系?为什么?
C
解:(1)∠ADC=∠BDC,理由如下:
因为点E、D、F在同一条直线上,
A
所以∠EDF=1800。
因为∠CDE=900,
E
B
1
所以∠CDF=∠EDF-∠CDE=1800-900=900。
所以∠2+∠BDC=∠CDF=900。
又因为∠1+∠ADC=∠CDE=900,∠1=∠2,
所以∠ADC
C
C
2
1
(2)∠ADF=∠BDE,理由如下:
因为∠1+∠ADF=1800,

4.3.3.1补角与余角的定义(教案)

4.3.3.1补角与余角的定义(教案)
3.重点难点解析:在讲授过程中,我会特别强调补角的和性质和余角的和性质这两个重点。对于难点部分,比如如何识别和应用补角与余角,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与补角与余角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器来实际测量补角与余角。
此外,今天的课堂总结环节,学生们反馈了一些疑问,这让我意识到在讲解重点难点时,可能需要更加细致、深入一些。对于学生们提出的问题,我会认真思考如何在下一次课中进行针对性的讲解和辅导。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“补角与余角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例解释:
-通过直观的图形展示,强调补角与余角的概念,如一个直角和一个钝角互为补角,两个锐角互为余角。
-通过例题,演示如何利用补角与余角的性质来计算未知角度,如已知一个角为60度,求其补角或余角。
2.教学难点
-补角与余角的识别:学生需要能够准确地识别出给定的角度是否为补角或余角,特别是当角度不以直观形式给出时。
-通过探索补角与余角之间的关系,锻炼学生逻辑思维和推理能力;
-结合实际情境,提高学生运用补角与余角知识解决问题的能力。
3.增强学生团队协作和交流表达能力,通过小组讨论和课堂分享,促进同伴学习;
-在小组合作中,培养学生团队协作精神和沟通能力;

余角和补角 课件

余角和补角 课件

例3. 一个角是70°39′,求它的余角和补角. 解:它的余角是90°-70°39′=19°21′;
它的补角是180°-70°39′=109°21′.
例4. ∠α的补角是它的3倍,∠α是多得∠α=45°.
例5 .如果一个角的补角是这个角的余角的3倍,求这个角.
定义中的“互为”是什么意思? 即每一个角都是另一个角的余角(补角).
探究余角和补角的性质 ∠1与∠2,∠3都互为补角,∠2和∠3的大小有什么关系?
因为∠1与∠2和∠3都互为补角, 所以∠2=180º-∠1,∠3=180º-∠1. 所以∠2=∠3.
已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和∠4

西

O 60 °
A

射线OA的方向就是南偏东60°,即灯
塔A所在的方向.
D

射线OB的方向就是北偏东40°,
B
即客轮B所在的方向.
45° 40°
西
O

射线OC的方向就是南偏西10°,
60°
即货轮C所在的方向.
10°
C
A

射线OD的方向就是北偏西45°,即海岛D所在的方向.
用方位角确定物体的画法步骤: ①先找出中心点,然后画出方向指标; ②把中心点和目的地用线连接起来; ③度量向北的射线和视线(中心点和目的地的连线)夹角.
方位角是表示方向的角,以正北、正南方向为基准来描述物体所处的 方向,如北偏西30°,南偏东25°.
海上缉私艇发现离它500海里处停着一艘可疑船只,你能确定缉私艇 的航线吗?
画出示意图.

A A 可疑船
缉私艇 西
67°
B

数学课件余角和补角

数学课件余角和补角
详细描述
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。

余角、补角、对顶角的概念和习题答案

余角、补角、对顶角的概念和习题答案

余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。

两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。

补角的性质:同角的补角相等。

比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。

等角的补角相等。

比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角的性质:同角的余角相等。

比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。

等角的余角相等。

比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。

如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。

只要它们的度数之和等于90°或180°,就一定互为余角或补角。

余角与补角概念认识提示:(1)定义中的“互为”一词如何理解如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。

余角和补角

余角和补角
生命的含义
一个浪打上礁石,海鸟惊逃,以为 是一次谋杀;一个浪扑上海滩,孩 子欢喜,以为是大海开出了鲜花。
同样的事物,有不同的感受。所以 世界是什么样子并不重要,重要的 是你的心灵是什么样子。
知识目标:
1.什么是互为余角 2.余角的性质 3.什么是互为补角 4.补角的性质
一、互为余角定义
拓展训练
已知∠ ACB 和∠ CDB是直角
那么图中有几对余角?
C
1 2
A D
B
如图:在田字格中,求 ∠ 1+ ∠ 2+ ∠ 3的和
A 1 2 D 3 B F C
走进中考
如图,已知AOB是一直线,OC是 ∠ AOB的平分线, ∠ DOE是直 角,图中相等角有几对?互余的 角有几对?互补的角有几对?
180°-X
归纳:一个角的补角比它的余角 大 90°。
必会题 范例讲解 已知一个角的补角是它的余角 的4倍,求这个角的度数。
下图是一副三角板
图(1)中有几对互余的角?

能力提升
图(2)中有几对互补的角?
(1)
(2)
今天我们学了什么?
余角、补角的定义: (1) 和为90°的两个角称互为余角; (2) 和为180°的两个角称互为补角; 余角、补角的性质: (1) 同角或等角的余角相等; (2) 同角或等角的补角相等;
图中给出的各角,那些互为补角?
10o
30
o
60
o
80o
(1)
(2)
(3)
(4)
100o 120
o
150
o
170o
(5)
同角或等角的补角相等
知识的运用

15° 62°20 ′

余角和补角(57张PPT)数学

余角和补角(57张PPT)数学
13
14
15
16
17
9.一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是________.
24°28′
解析 设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得180°-x°+10°=3×(90°-x°),解得x=40,40°-15°32′=24°28′.
14
15
16
17
解析 ∵OM平分∠AOC,ON平分∠BOC,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余,故选A.
14.如图,∠AOB与∠COD都是直角,∠AOD=140°21′,则∠COB=________°.若∠AOD=α,则∠COB=__________.
解 如图所示,∠BOC与∠BOC′即为所求;
(2)在(1)的条件下,若OP是∠AOC的角平分线,直接写出∠AOP的度数(不需要计算过程).
解 ∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=15°,∴∠AOC=90°或60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.
解 当∠AOD=α时,∠DOE=90°.

归纳总结 本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.
例2 (教材例2变式训练)一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

补角和余角的定义
在数学中,设两个角α、β,此时若α,β均属于集合{k∈Z|α+2kπ,β+2kπ}且满足α+β=π(rad),则称α,β互为补角,简称α,β互补。

同角或等角的补角相等。

如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角。

补角与余角的区别:
1、定义不同
如果两个角的和是一个平角,那么这两个角互为补角.其中一个角叫做另一个角的补角。

∠A +∠C=180°即:∠C的补角=180°-∠C;∠A的补角=180°-∠A 如果两个角的和是一个直角,那么称这两个角互为余角,简称互余。

其中一个角是另一个角的余角。

∠A +∠C=90°即:∠C的余角=90°-∠C ;∠A的余角=90°-∠A
2、计算方法不同
补角:180度减去这个角的度数。

余角:90度减去这个角的度数。

余角必由两个锐角组成,互补的两角,必有其一为钝角或直角。

相关文档
最新文档