有理数的乘法

合集下载

有理数乘法的运算律

有理数乘法的运算律
解: (1) (-10) × 1/3 ×0.1 ×6 = [(-10) × 0.1]×( 1/3 × 6) = ( -1 ) × 2 =-2
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74) = [ ( -6 ) × ( - 1/3)] × 37/10 ×( - 5/74) = 2 × [ 37/10 × ( - 5/74)]
回顾与思考
1.有理数乘法法则是什么? 2.如何进行有理数的乘法运算?
3.小学时候大家学过乘法的那些运算律? 学过: 乘法交换律 ,乘法结合律,乘法分配律
有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘。
任何数和零相乘,都得 0 .
根据有理数的乘法法则,我们得出计算两个 不为0的数相乘步骤为:
乘法交换律: 两数相乘,交换因数的位置,积不变.
用式子表示为: a b = b a
乘法结合律: 三个数相乘,先把前两个数相乘,或先把
后两个数相乘,积不变.
用式子表示为: (a b) c = a (b c)
例2 计算: (1) (-10) × 1/3 ×0.1 ×6
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74)
1. 7 × (- 5)= - 35 (-5)× 7 = - 35 2.(-8)× (-4)= 32 (-4)×(-8) = 32 3.(-2)× 4 × (-3) = 24 (-2)×[ 4 × (-3) ] = 24 4. (-4)× (-6) × (-2) = - 48 (-4)×[ (-6) × பைடு நூலகம்-2)] = - 48
1. 先确定积的符号。 2.计算积的绝对值。
2. 有理数乘法的运算律

有理数的乘法知识点总结

有理数的乘法知识点总结

有理数乘法法那么:
两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇
数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

〔ab〕c=a〔bc〕
一个数同两个数的'和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a〔b+c〕=ab+ac
数字与字母相乘的书写标准:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或—1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母某表示任意一个有理数,2与某的乘积记为2某,3与某的乘积记为3某,那么式子2某+3某是2某与3某的和,2某与3某叫做这个式子的项,2和
3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
a某+b某=〔a+b〕某
上式中某是字母因数,a与b分别是a某与b某这两项的系数。

去括号法那么:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。

括号前是“—”,把括号和括号前的“—”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

有理数的乘除乘方

有理数的乘除乘方

有理数的乘、除及乘方运算一、知识要点:1. 有理数的乘法法则:(1) 两数相乘,同号 ,异号 ,并把 .任何数同0相乘,都得 .(2) 不等于0的数相乘,积的正负号由 的个数决定,当负因数有奇数个时,积为 ;当负因数有偶数个时,积为 .几个数相乘,有一个因数为0,积就为 .2. 乘积是 的两个数互为倒数3. 有理数的除法法则:除以一个数等于乘上 .两数相除,同号 ,异号 ,并把绝对值相除.0除以任何一个不等于0的数,都得0.4. 有理数的乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.二、典型例题:例1、计算:(1)⎪⎭⎫ ⎝⎛-⨯÷-43875.3 (2)532121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(3)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412(4)()[]2432611--⨯--例2、如果0,0><+ab b a ,则a 0,b 0. 如果()03<-ab ,则ab 0. 如果02>-b a ,则b .例3、已知a 、b 为有理数,下列说法中,正确的是( )A.若a >b,则a 2>b 2B. 若︱a ︱>b,则a 2>b 2B. 若 a 3>b 3,则a 2>b 2 D. a >︱b ︱,则a 2>b 2例4、已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求5ab -(c+d)×2008 - n + m 的值。

例5、计算:(-2)100+(-2)101的是( )A. 2100 B.-1 C.-2 D.-2100三、练习:1. 用四舍五入法把3.1415926精确到千分位是 .2. 用科学记数法表示302400,应记为 .3. 若m,n 互为相反数,xy 互为倒数,则(m +n )+5xy = ;4. 若 3-x 与9+y 互为相反数,求y x -的值5. 一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和06. 如果10<<a ,那么aa a 1,,2之间的大小关系是( ) A .a a a 12<< B .a a a 12<< C . 21a a a << D . a a a<<21 7. 下列计算错误的个数是 ( ) ①221⎪⎭⎫ ⎝⎛=4 ②-52=25 ③2516542= ④811912=⎪⎭⎫ ⎝⎛-- ⑤-(-14 ) =1 ⑥()001.01.03=-- ⑦ 55=-=a ,a 则 ⑧ -a=-2则a = 2 8. A 、5个 B 、4个 C 、3个 D 、2个9. 平方等于4的数是 ,立方等于—8的数是 。

有理数的乘法与除法

有理数的乘法与除法

有理数的乘法与除法有理数是数学中的一个重要概念,指的是可以用两个整数的比表示的数,包括正整数、负整数和零。

有理数的乘法和除法是数学中的基本运算,本文将对有理数的乘法和除法进行详细讨论。

一、有理数的乘法有理数的乘法遵循以下几个基本原则:1. 正数相乘,结果为正数;负数相乘,结果为负数。

例如,2乘以3的结果是6,而-2乘以-3的结果也是6。

2. 正数与负数相乘,结果为负数。

例如,2乘以-3的结果是-6,而-2乘以3的结果也是-6。

3. 0与任何数相乘,结果为0。

无论是正数、负数还是0,与0相乘的结果都是0。

在进行有理数的乘法运算时,我们可以将分数用分子和分母表示,并将乘法运算转化为分子和分母的乘法运算。

比如,2/3乘以4/5可以转化为2乘以4除以3乘以5,最后得到的结果是8/15。

二、有理数的除法有理数的除法同样遵循一些基本原则:1. 正数除以正数,结果为正数;负数除以负数,结果为正数。

例如,6除以2的结果是3,而-6除以-2的结果也是3。

2. 正数除以负数,结果为负数;负数除以正数,结果为负数。

例如,6除以-2的结果是-3,而-6除以2的结果也是-3。

3. 任何数除以0都是没有定义的。

在数学中,0不能作为除数。

在进行有理数的除法运算时,我们可以将除法转化为乘法的逆运算。

例如,我们要计算2/3除以4/5,可以将其转化为2/3乘以5/4,最终得到的结果是10/12,可以约分为5/6。

三、有理数的乘法与除法综合运算当有理数的乘法和除法同时存在时,我们需要按照运算的优先级进行计算。

一般来说,先进行乘法运算,然后再进行除法运算。

如果存在多个乘法和除法,需要按照从左到右的顺序依次进行计算。

例如,计算2/3乘以4/5再除以6/7,我们可以先计算2/3乘以4/5得到8/15,然后再将8/15除以6/7,最终得到的结果是56/90。

四、有理数的乘法与除法的应用有理数的乘法和除法在实际生活中有着广泛的应用。

例如,在购物中,我们可以使用有理数的乘法来计算折扣和打折后的价格;在分配任务时,我们可以使用有理数的除法来确定每个人的工作量;在计算速度和距离时,我们可以使用有理数的乘法和除法来计算平均速度和总的距离。

有理数的乘法

有理数的乘法

有理数的乘法有理数的乘法规则对于两个有理数a和b,它们的乘法运算可以表示为a × b。

有理数的乘法遵循以下规则:1. 两个正数相乘得到正数:正数乘以正数的结果仍为正数,如2 ×3 = 6。

2. 两个负数相乘得到正数:负数乘以负数的结果为正数,如-2 × -3 = 6。

3. 正数乘以负数得到负数:正数乘以负数的结果为负数,如2× -3 = -6。

4. 零乘以任何数都等于零:无论乘以任何数,零的乘积都为零,如0 × 5 = 0。

5. 分数的乘法:对于两个分数a/b和c/d相乘,可以先将它们的分子相乘得到新的分子,再将它们的分母相乘得到新的分母,最后求得新的分数,如(2/3) × (4/5) = (8/15)。

有理数乘法的计算方法有理数的乘法运算可以通过多种方法进行计算,包括手算和使用计算器等工具。

以下是一种简单的手算方法:1. 将两个有理数的数值相乘:将它们的数值相乘得到一个新的数值,符号保持不变。

2. 将两个有理数的符号确定:根据规则1~3确定两个有理数的符号。

3. 若其中一个有理数是分数,可以先化简分数,再进行乘法计算。

化简分数是将分子和分母同时除以它们的最大公因数,得到最简形式的分数。

4. 如果需要,可以将最简形式的分数转化为带分数或小数形式。

有理数的乘法运算也可以通过计算器进行快速计算,但仍需了解乘法规则和转换方法。

通过研究有理数的乘法规则和计算方法,我们可以更好地理解有理数的乘法运算,提高数学计算能力并应用于实际问题中。

总结有理数的乘法是对两个有理数进行乘法运算,根据规则可以得到新的有理数作为结果。

有理数的乘法规则简单明确,计算方法也有多种选择。

通过学习和掌握有理数的乘法规则和计算方法,我们能够更好地应用数学知识解决问题,并提高数学水平。

有理数的乘法数学教案(优秀9篇)

有理数的乘法数学教案(优秀9篇)

有理数的乘法数学教案(优秀9篇)七年级数学有理数的乘法教案及教学设计篇一一、教材分析有理数的乘法是继有理数的加减法之后的又一种基本运算。

它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。

对后续知识的学习也是至关重要的。

二、学情分析对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。

三、教学目标(核心素养立意)1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

2.初步培养学生发现问题、分析问题、和解决问题的能力。

3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。

四、教学重、难点重点:有理数的乘法法则。

难点:有理数乘法的符号法则五、教学策略我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。

六、教学过程(设计为七个环节)(一)复习导入创设情境我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。

进而引入本节课题,以问题引领来激发学生求知欲。

(二)师生互动探究新知要求学生自主学习课本内容,完成课文中的填空。

我给与学生充足的时间和空间。

通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。

有理数乘除法法则

有理数乘除法法则

有理数乘除法法则有理数乘除法法则是数学中的基本概念和规则,用于解决有理数的乘法和除法运算。

掌握了有理数乘除法法则,可以更加灵活地进行数学运算,解决实际问题。

一、有理数的乘法法则有理数的乘法法则是指在进行有理数的乘法运算时,要遵守以下规则:1. 正数乘以正数等于正数,负数乘以负数等于正数;2. 正数乘以负数等于负数,负数乘以正数等于负数;3. 任何数乘以0等于0。

例如,2乘以3等于6,-2乘以-3等于6,2乘以-3等于-6,-2乘以3等于-6,任何数乘以0都等于0。

二、有理数的除法法则有理数的除法法则是指在进行有理数的除法运算时,要遵守以下规则:1. 两个正数相除,商为正数;两个负数相除,商为正数;一个正数除以一个负数,商为负数;一个负数除以一个正数,商为负数;2. 任何数除以0是无意义的,即不存在结果;3. 一个数除以1等于它本身。

例如,8除以2等于4,-8除以-2等于4,8除以-2等于-4,-8除以2等于-4,任何数除以1都等于它本身。

三、应用举例1. 乘法法则的应用假设小明有3个苹果,小红有4个苹果,那么他们手中共有多少个苹果呢?根据乘法法则,3乘以4等于12,所以小明和小红手中共有12个苹果。

2. 除法法则的应用假设一个车队需要用20升汽油,已经装满了4个汽油罐,每个罐子装有相同的汽油量,那么每个罐子里装有多少升汽油呢?根据除法法则,20除以4等于5,所以每个罐子里装有5升汽油。

四、乘除法法则的综合应用乘除法法则在实际问题中常常需要综合应用。

例如:小明和小红一起做数学作业,他们共用了一本书,小明用了这本书的1/3时间,小红用了这本书的1/4时间,那么小明和小红一共用了这本书的几分之几时间呢?根据除法法则,1除以3等于1/3,1除以4等于1/4。

然后,根据乘法法则,1/3乘以1/4等于1/12。

所以,小明和小红一共用了这本书的1/12时间。

五、结语有理数乘除法法则是数学中的基本概念和规则,通过掌握乘除法法则,可以更加灵活地进行数学运算,解决实际问题。

《有理数的乘法》知识点解读

《有理数的乘法》知识点解读

《有理数的乘法》知识点解读知识点1 有理数的乘法法则两数相乘,同号得正,异号得负,绝对值相乘.任何数与0相乘,积仍为0.几个有理数相乘,因数都不为0时,积的符号由负因数的个数而定,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正;有一个因数为0,积为0.【例1】计算,并说明理由.5(1)(6)(9);(2)1(0.8);125(3)(7.5)0;(4)()(0.4).6-⨯-⨯--⨯-⨯+ 解析:理由有理数的乘法法则解题.答案:(1)(6)(9)(69)54.-⨯-=+⨯=(两数相乘,同号得正,绝对值相乘)5517417(2)1(0.8)(10.8)().121212515⨯-=-⨯=-⨯=-(两数相乘,异号得负,并把绝对值相乘)(3)(7.5)00.(0-⨯=任何数与相乘,积仍为0) 55521(4)()(0.4)(0.4)().66653-⨯+=-⨯=-⨯=-(两数相乘,异号得负,绝对值相乘) 方法提示:根据法则,先确定积的符号,再把绝对值相乘.【类题突破】计算: (1)(8)(25)(0.02);13(2)(2)( 1.5)()3717(3)1.25(1)( 3.2)();782014(4)(1) 3.14159(29300)0(0.03).2015-⨯-⨯--⨯-⨯+⨯-⨯-⨯--⨯⨯-⨯⨯-; 答案:(1)(8)(25)(0.02)(2000.02)4;13(2)(2)( 1.5)()377333;327217(3)1.25(1)( 3.2)()7858167()4;47582014(4)(1) 3.14159(29300)0(0.03)0.2015-⨯-⨯-=-⨯=--⨯-⨯+=⨯⨯=⨯-⨯-⨯-=-⨯⨯⨯=--⨯⨯-⨯⨯-=知识点2 有理数乘法法则的推广1.几个不等于0的有理数相乘的乘法法则几个不等于0的数相乘,积的正负号由负因数的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.积的绝对值等于各因数的绝对值的积.2.因数中有0的有理数相乘的乘法法则几个数相乘,有一个因数为0,则积为0.【例2】计算650)734()318()113)(2()145(712)2.4()6.5)(1(⨯⨯-⨯-⨯--⨯⨯-⨯- 分析:先看算式中是否有因数0,若有0,则积为0;若没有0,则先确定积的符号,再确定积的绝对值.在绝对值相乘时,一般将小数化成分数,目的是便于约分.答案: 0650)734()318()113)(2(181457155215281457122.46.5)145(712)2.4()6.5)(1(=⨯⨯-⨯-⨯--=⨯⨯⨯-=⨯⨯⨯-=-⨯⨯-⨯-【类型突破】下列各式的计算结果为正数的是( ))1(2)5()4()3.()5()4()3()2()1.(1)2(3)4()5.()1()5(43)2.(-⨯⨯-⨯-⨯--⨯-⨯-⨯-⨯-⨯-⨯⨯-⨯--⨯-⨯⨯⨯-D C B A 答案:D知识点3 乘法运算律乘法运算律(1)乘法的交换律:两个有理数相乘,交换因数的位置,积不变.即.ab ba =(2)乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即()().ab c a bc =(3)乘法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘再把积相加.即().a b c ab ac +=+根据乘法的运算律,在进行乘法运算时,可以任意交换因数的位置,也可以将几个因数结合在一起先相乘,所得积不变.一个数同两个数的和相乘,可以把这个数分别同两个加数相乘,再把所得的积相加.【例3】计算:1(1)(2)(7)(5)();7(2)6.868(5) 6.868(12) 6.868(17);(3)2936(27)36(21)36;25(4)10(23).52-⨯-⨯-⨯-⨯-+⨯-+⨯+⨯+-⨯+-⨯-⨯-+-+ 解析:在进行有理数计算时,应先观察数字特征,尽量使用运算律简化计算过程. 答案:1(1)(2)(7)(5)()71[(2)(5)][(7)()]10110;7(2)6.868(5) 6.868(12) 6.868(17)6.868[(5)(12)(17)]6.86800;(3)2936(27)36(21)3636[29(27)(21)]36(19)684;(4)10(-⨯-⨯-⨯-=-⨯-⨯-⨯-=⨯=⨯-+⨯-+⨯+=⨯-+-++=⨯=⨯+-⨯+-⨯=⨯+-+-=⨯-=--⨯-2523)522510(2)(10)3(10)()(10)52203042531.+-+=-⨯-+-⨯+-⨯-+-⨯=-+-=-点拨:在运用分配律时应注意其逆向应用:().ab ac a b c +=+【变式练习】计算:(84)30263302(20)302.-⨯+⨯--⨯ 答案:原式=302[(84)63(20)]302(1)302.⨯-+--=⨯-=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的乘法
1. 什么是有理数?
在数学中,有理数是指可以表示成两个整数的比值的数。

有理数包括整数、分数以及整数的负数。

有理数记作Q。

有理数有以下几个重要特点: - 可以用分数形式表示,分子是整数,分母是非
零整数。

- 可以用有限小数形式表示,比如1/4可以写成0.25。

- 可以用无限循环
小数形式表示,比如1/3可以写成0.3333…。

2. 有理数的乘法规则
有理数的乘法遵循以下几个规则:
规则1:两个正数相乘得到正数
当两个正数相乘时,乘积的符号为正。

例如,1乘以2等于2,乘积为正数。

规则2:两个负数相乘得到正数
当两个负数相乘时,乘积的符号为正。

例如,-2乘以-3等于6,乘积为正数。

规则3:正数和负数相乘得到负数
当一个正数和一个负数相乘时,乘积的符号为负。

例如,2乘以-3等于-6,乘积为负数。

规则4:任意数乘以0等于0
任何数与0相乘的结果都为0。

例如,2乘以0等于0,-5乘以0等于0,乘
积都为0。

3. 有理数乘法的计算示例
下面通过计算示例来进一步理解有理数的乘法。

示例1:正数相乘
计算:3乘以5。

根据规则1,两个正数相乘得到正数,所以3乘以5得到15。

示例2:正数和负数相乘
计算:4乘以-2。

根据规则3,正数和负数相乘得到负数,所以4乘以-2得到-8。

示例3:负数相乘
计算:-3乘以-4。

根据规则2,两个负数相乘得到正数,所以-3乘以-4得到12。

示例4:任意数与0相乘
计算:7乘以0。

根据规则4,任意数与0相乘的结果都是0,所以7乘以0得到0。

4. 有理数乘法的性质
有理数的乘法具有以下几个性质:
性质1:乘法的交换性质
乘法具有交换性质,即a乘以b等于b乘以a。

例如,2乘以3等于3乘以2,结果都是6。

性质2:乘法的结合性质
乘法具有结合性质,即(a乘以b)乘以c等于a乘以(b乘以c)。

例如,(2乘以3)乘以4等于2乘以(3乘以4),结果都是24。

性质3:乘法对加法的分配性质
乘法对加法具有分配性质,即a乘以(b加上c)等于a乘以b加上a乘以c。

例如,2乘以(3加上4)等于2乘以3加上2乘以4,结果都是14。

5. 总结
有理数的乘法是基本的数学运算之一,通过乘法可以计算出两个有理数的乘积。

有理数的乘法遵循正数相乘得正数、负数相乘得正数、正数和负数相乘得负数、任
意数乘以0等于0等规则。

有理数乘法具有交换性、结合性和分配性等性质,可以灵活运用。

对于学习有理数的同学来说,掌握有理数的乘法是非常重要的。

希望本文对你理解有理数的乘法有所帮助,也希望本文的内容能够对你的数学学习有所启发!。

相关文档
最新文档