博弈论的原理与应用
博弈论朱·弗登博格摘抄

博弈论朱·弗登博格摘抄一、简介博弈论是一种研究决策问题的理论,广泛应用于经济、政治、军事等领域。
朱·弗登博格是博弈论的杰出代表人物之一,他的理论贡献和实际应用备受瞩目。
本文将摘抄朱·弗登博格的一些重要观点和理论,以便读者更好地理解和应用博弈论。
二、博弈论基本原理1.策略选择:在博弈论中,每个参与者都需要在给定其他参与者的策略选择情况下,选择自己的最优策略。
因此,策略选择是博弈论的核心。
2.收益分析:在博弈论中,收益分析是至关重要的。
每个参与者的收益取决于其他参与者的策略选择,以及当前环境等因素。
因此,收益分析需要综合考虑各种因素。
3.合作与竞争:在博弈论中,合作与竞争是两个相互关联的概念。
合作是指在博弈中,参与者可以达成协议,实现共同的利益。
竞争则是指参与者相互对立,追求自己的利益最大化。
三、博弈论在现实中的应用1.金融市场:朱·弗登博格指出,金融市场中的投资者经常处于博弈之中。
投资者需要综合考虑市场信息、风险和收益等因素,做出最优决策。
2.政治决策:政治决策往往涉及到多方利益,需要博弈论的原理和方法进行分析。
通过博弈论分析,可以更好地理解各方的利益诉求和决策过程,为政策制定提供科学依据。
3.企业管理:企业管理中也需要运用博弈论原理和方法。
例如,企业在进行人力资源管理、市场营销和供应链管理时,需要综合考虑各种因素,做出最优决策。
四、朱·弗登博格的其他观点1.动态博弈:朱·弗登博格强调动态博弈的重要性。
在动态博弈中,参与者之间的策略选择是相互影响的,需要综合考虑各种因素,做出灵活应对。
2.合作博弈和非合作博弈:合作博弈是指参与者为了实现共同利益而进行的博弈,而非合作博弈则是指参与者之间存在利益对立的情况。
朱·弗登博格认为,在实践中,需要关注非合作博弈中的利益冲突和协调问题。
3.信任和信誉:朱·弗登博格认为,信任和信誉是博弈论中的重要因素。
如何在工作中运用博弈论原理来达到更好的结果

如何在工作中运用博弈论原理来达到更好的结果博弈论是研究冲突和合作的数学模型,通过理性决策的方式来最大化自身利益。
在工作中,运用博弈论原理能够帮助我们更好地处理冲突、制定合作策略,并最终达到更好的结果。
下面将从以下几个方面介绍如何在工作中应用博弈论原理。
1.了解博弈的基本原理:首先,我们需要了解博弈论的基本原理,例如博弈的参与者、策略和收益等。
只有明确了这些基本概念,我们才能在实际情境中准确地分析和运用博弈论。
2.分析情境和对手:在工作中,我们需要分析情境和对手的利益、目标和行为,以确定自己与对手的关系以及可能的博弈策略。
例如,在与同事合作完成一个项目时,我们可以通过观察和了解对方的需求和利益,来推测对方可能会采取的策略。
3.选择合适的策略:在博弈情境中,我们需要选择一种策略来最大化自己的利益。
有时候,我们可以采取合作的策略,与对手合作以达到共赢的结果;而在另一些情况下,我们可能需要采取竞争的策略,以确保自己的利益不受损害。
选择合适的策略需要考虑对手的潜在行为和可能的反应。
4.考虑收益和风险:在决策过程中,我们需要考虑不同策略的收益和风险。
通过评估可能的结果和概率,我们可以选择最优策略来降低风险并最大化收益。
例如,在与竞争对手进行价格谈判时,我们需要评估自己的成本和市场需求,以选择最有利的价格策略。
5.寻找合作机会:博弈论不仅局限于对抗与竞争,还包括合作与集体行动。
在工作中,我们可以主动寻找与他人的合作机会,通过合作来达到更好的结果。
合作可以带来双赢的结果,增强团队的凝聚力和效率。
6.学会与对手协商:博弈论也强调协商的重要性。
在工作中,通过协商和讨论,我们可以寻求与对手的共同利益,找到双方满意的解决方案。
协商需要双方的信任、沟通和妥协,但最终可以达到更好的结果。
7.不断调整策略:在博弈情境中,对手的行为和利益可能随时发生变化。
因此,我们需要灵活地调整自己的策略,以应对新的情况和挑战。
通过不断观察和评估对手的行为,我们可以作出适时的反应,提高自己的竞争力。
纳什博弈论的原理与应用

纳什博弈论的原理与应用1. 纳什博弈论的概述纳什博弈论是一种对决策问题进行数学建模和分析的工具,它以数学方法来研究多方参与决策的情况下的决策策略选择。
纳什博弈论的核心概念是纳什均衡,即在一个博弈中,如果每名参与者按照自己的最佳策略行动,其他参与者不会改变自己的策略,那么这个状态被称为纳什均衡。
2. 纳什均衡的原理纳什均衡是纳什博弈论的核心概念,它指的是在一个博弈中,每个决策者按照自己的最佳策略进行决策时,其他决策者都不会改变自己的策略的状态。
纳什均衡并不一定就是最优解,只是在当前情况下每个决策者都做出了最优的选择。
•纳什均衡是一个策略组合,每个参与者都有自己的策略,使得每个参与者都无法通过改变策略来获得更好的结果。
•纳什均衡不一定是独一无二的,可能存在多个纳什均衡点。
•纳什均衡可以通过数学方法进行计算,比如通过求解方程组、博弈树等。
3. 纳什博弈论的应用领域纳什博弈论在许多领域都有广泛的应用,下面列举了一些主要应用领域:3.1 经济学•市场竞争:纳什博弈论可以帮助分析市场中的竞争策略,比如价格竞争、广告竞争等。
•博弈理论经济学:纳什博弈论提供了一种独特的分析方法,可以应用于经济学领域的决策问题。
3.2 政治学•政治选举:纳什博弈论可以应用于分析政治选举过程中的候选人策略选择。
•国际关系:纳什博弈论可以用于分析国家之间的博弈与合作行为,如军备竞赛、贸易谈判等。
3.3 生物学•进化博弈论:纳什博弈论可以应用于分析生物种群中的进化策略,如食肉动物和食草动物之间的竞争策略。
•动物行为学:纳什博弈论可以提供一种解释动物行为的数学模型,比如鸟类对食物的争夺、昆虫的捕食行为等。
4. 纳什博弈论的局限性虽然纳什博弈论在许多领域有广泛的应用,但也存在一些局限性:•假设限制:纳什博弈论建立在一系列假设的基础上,比如玩家有完全信息、选择集合是连续的等,这些假设在现实生活中并不总是成立。
•理性假设:纳什博弈论假设每个参与者都是理性的,总是追求自己的利益最大化。
博弈论的基本原理和策略分析

博弈论的基本原理和策略分析博弈论,是一门研究决策和策略选择的学科,它以不同参与者之间的相互作用为研究对象,通过模型建立和分析,来帮助人们在冲突和合作的情境中做出最优化的决策。
博弈论发展至今已广泛应用于经济学、政治学、社会学等领域,成为解决现实问题的重要工具。
博弈论的基本原理包括参与者、策略和收益。
参与者是参与博弈的个体或组织,他们在博弈中通过选择不同的策略来争取最大的收益。
策略是参与者可选择的行动方式,通过策略选择可以实现不同的收益结果。
收益是参与者从博弈中获得的结果,包括直接的经济利益、社会声誉等。
在博弈论中,有两种基本的博弈形式:合作博弈和非合作博弈。
合作博弈是指博弈参与者之间存在着一定程度的合作和沟通,他们可以通过协商、合作达成一致,并分享协作带来的收益。
非合作博弈则是指博弈参与者之间不存在合作和沟通的限制,他们通过自利行动来争取最大的收益。
针对不同的博弈形式,博弈论提供了一系列的策略分析方法。
在合作博弈中,常见的策略分析方法有纳什均衡理论、核心和分配规则等。
纳什均衡理论是指在博弈中,当参与者都选择了自己最优策略时,整体状态将达到一种均衡状态,没有参与者能够通过改变策略来获得更多的收益。
核心是指合作博弈中一组合理的分配方案,对于该方案,没有参与者能够通过组成联盟来获得更多的收益。
分配规则则是用于确定合作博弈中收益的分配方式,常见的规则包括沙普利分配规则和核心分配等。
在非合作博弈中,常见的策略分析方法有占优策略、均衡与稳定策略等。
占优策略是指参与者在博弈中通过选择最优策略来争取最大的收益。
均衡则是指在博弈中参与者的策略选择相互映衬,没有参与者能够通过改变策略来获得更多的收益。
稳定策略是指参与者在博弈中的策略选择对于其他参与者的策略选择是一个稳定的反应。
博弈论的应用领域广泛,其中最为典型的应用是经济学中的市场竞争分析。
在市场竞争中,供求双方为了追求最大的利润,会通过定价、广告等手段展开博弈。
博弈论提供了一种分析框架,可以帮助理解市场竞争中的策略选择与结果,并为决策者提供指导。
纳什博弈论的原理与应用pdf

纳什博弈论的原理与应用PDF1. 引言纳什博弈论是现代博弈论的重要分支,是由约翰·纳什提出的一种博弈理论。
其原理从博弈参与者的个体理性行为出发,研究在相互交互中如何做出最优的决策。
本文将介绍纳什博弈论的基本原理,并探讨其在实际应用中的价值。
2. 纳什均衡理论纳什均衡是纳什博弈论的核心概念,指在一个博弈中,各参与者通过做出最优的个体决策,形成了一个状态,使得任何参与者无法通过改变自身策略来获得更好的收益。
在纳什均衡下,每个参与者都做出了最优的选择,而且无人愿意改变策略。
3. 纳什博弈模型纳什博弈论通过建立博弈模型来研究博弈参与者的策略选择和收益情况。
通常,博弈模型可以用一个矩阵来表示。
例如,在一个二人零和博弈中,可以使用2x2的矩阵表示两个参与者的策略和收益。
下面是一个简单的纳什博弈模型示例:策略A 策略B策略A 2, 2 0, 3策略B 3, 0 1, 1在这个模型中,第一个数字代表玩家1的收益,第二个数字代表玩家2的收益。
例如,当两位玩家选择策略A时,玩家1会获得2的收益,玩家2也会获得2的收益。
4. 纳什均衡的寻找方式为了找到纳什均衡,需要确定博弈模型中的纳什均衡点。
常见的寻找方式有以下几种: - 支配策略法:通过比较每个参与者某个策略与其他策略的收益情况,找出支配策略,然后排除其他支配策略,最终确定均衡点。
- 线性规划法:将纳什博弈转化为线性规划问题,通过求解最优解来确定均衡点。
- 最大最小法:计算每个参与者的最大最小收益,并找出最大最小收益的策略组合。
5. 纳什博弈论的应用纳什博弈论在经济学、政治学、计算机科学等领域具有广泛的应用。
以下是一些纳什博弈论的应用实例:5.1 经济学•市场竞争:纳什博弈论可以用于研究市场竞争中不同参与者的策略选择和收益情况,从而预测市场行为和市场均衡。
•价格比较:纳什博弈论可以用于分析价格比较网站上不同卖家的策略选择,帮助消费者和卖家做出最优的决策。
博弈论的数学原理

博弈论的数学原理博弈论是一门研究决策制定和策略选择的学科,它运用数学模型和分析方法来研究各种冲突和合作情境下的决策问题。
博弈论的数学原理是博弈论研究的基础,它包括博弈的定义、博弈的分类、博弈的解和博弈的应用等方面。
一、博弈的定义博弈是指在一定的规则下,两个或多个决策者通过制定策略来达到自己的目标的冲突或合作过程。
在博弈中,每个决策者都会根据自己的利益和对其他决策者行为的预期来选择策略。
博弈的目标是通过制定最优策略来获得最大的利益。
二、博弈的分类根据博弈参与者的数量和决策者的信息情况,博弈可以分为以下几类:1. 零和博弈:零和博弈是指博弈参与者的利益完全相反,一方的利益的增加必然导致另一方的利益的减少。
在零和博弈中,参与者的利益总和为零,即一方的利益的增加必然导致另一方的利益的减少。
2. 非零和博弈:非零和博弈是指博弈参与者的利益不完全相反,一方的利益的增加不一定导致另一方的利益的减少。
在非零和博弈中,参与者的利益总和不为零,即一方的利益的增加不一定导致另一方的利益的减少。
3. 完全信息博弈:完全信息博弈是指每个决策者都完全了解其他决策者的策略和利益情况。
在完全信息博弈中,每个决策者都能够准确地预测其他决策者的行为和利益变化。
4. 不完全信息博弈:不完全信息博弈是指每个决策者只能了解部分其他决策者的策略和利益情况。
在不完全信息博弈中,每个决策者只能根据自己的信息和对其他决策者行为的预期来选择策略。
三、博弈的解博弈的解是指通过数学模型和分析方法来确定最优策略和最终结果的过程。
博弈的解可以分为以下几种方法:1. 纳什均衡:纳什均衡是指在博弈中,每个决策者都选择了最优策略,而且没有动机再改变自己的策略。
在纳什均衡下,每个决策者的策略是最优的,没有其他策略可以使其获得更大的利益。
2. 极小化最大值:极小化最大值是指在博弈中,每个决策者都试图最小化其他决策者可能获得的最大利益。
在极小化最大值下,每个决策者的策略是最优的,其他决策者无法通过改变自己的策略来获得更大的利益。
博弈论计算机

博弈论计算机博弈论计算机是一种结合了博弈论和计算机技术的综合性工具,可以用来分析和解决各种决策问题。
下面将分步骤阐述博弈论计算机的原理和应用:1、博弈论的基本概念博弈论是一种研究决策者在决策过程中如何制定策略,以及对手如何制定反策略的数学模型。
在一个博弈模型中,有两个或以上的决策者,他们互相影响,并在一定的条件下进行决策。
博弈论主要研究博弈的规则、策略、解决方法及其应用。
2、博弈论计算机的原理博弈论计算机是基于博弈论模型的计算机程序,通过模拟博弈决策过程,分析各种策略和反策略,并求得最优解。
在博弈论计算机中,需要提供博弈模型的必要信息,包括博弈的双方、博弈的规则、博弈的目的等。
博弈论计算机的核心算法是博弈树搜索算法。
博弈树搜索是一种递归算法,即从根节点出发,依次扩展所有子节点,并计算每个节点的值,最终找到目标节点。
在博弈论计算机中,博弈树搜索算法能够对所有可能的决策场景进行搜索,并求得最优解。
3、博弈论计算机的应用博弈论计算机有广泛的应用领域,包括经济学、管理学、政治学、战略学等。
以经济学为例,博弈论计算机可以用来分析市场竞争、拍卖、竞标等经济决策场景,并提供最优的决策策略。
在管理学领域,博弈论计算机可以用来优化企业决策、战略制定等,并提高企业的竞争力。
在政治学和战略学领域,博弈论计算机则可以用来分析国际决策、战术操纵等,并预测各种可能的结果。
总的来说,博弈论计算机是一种非常重要的工具,它可以很好地模拟决策场景,并提供最优的决策策略。
在未来,随着计算机技术的不断进步,博弈论计算机的应用领域将越来越广泛。
博弈论原理与方法分析

博弈论原理与方法分析博弈论(Game Theory)是研究冲突和合作关系的一门学科,它研究的是在一个决策者面临多个决策选项时,如何选择最优策略。
博弈论的应用范围非常广泛,涉及经济学、政治学、社会学等多个领域。
本文将详细分析博弈论的原理与方法。
博弈论的基本假设是每个决策者都是理性的,他们会通过比较选项的收益和成本来做出决策。
博弈论分析决策者之间的策略选择和相互作用,通过模型化和数学方法来解决问题。
博弈论的基本概念包括博弈、策略、收益等。
1.博弈:博弈是指多个决策者在特定的环境中相互作用的过程。
每个决策者面临多个选项,每个选项有不同的收益和成本。
决策者通过选择最优的策略来追求自己的利益。
2.策略:策略是指决策者在博弈过程中选择的行动方式。
决策者可以选择单一的策略,也可以选择混合策略。
混合策略是指以一定概率选择不同的策略,通过随机性来达到最优解。
3.收益:收益是指每个决策者在不同策略下获得的结果。
收益可以是经济利益、政治地位或者其他形式的利益。
决策者的目标是通过选择最优策略来最大化自己的收益。
博弈论的方法主要包括博弈模型、均衡解的求解和策略优化等。
1.博弈模型:博弈模型是对博弈过程进行数学建模。
常用的博弈模型包括零和博弈、非零和博弈、博弈树等。
零和博弈是指博弈双方的收益之和为零,一方的收益即为另一方的亏损。
非零和博弈是指博弈双方的收益之和可以不为零,双方可以通过合作来实现共同利益。
2.均衡解的求解:均衡解是指博弈过程中双方达到的稳定状态。
常见的均衡解包括纳什均衡、完全信息均衡和部分信息均衡等。
纳什均衡是指当每个决策者都选择了最优策略后,没有动机改变自己的策略。
完全信息均衡是指每个决策者都知道其他决策者的策略和收益。
部分信息均衡是指决策者只知道一部分其他决策者的策略和收益。
3.策略优化:策略优化是指通过博弈论的方法来寻找最优策略。
常用的策略优化方法包括线性规划、动态规划、随机等。
策略优化的目标是最大化自己的收益或者最小化亏损。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论game theory纳什博弈论的原理与应用1950年和1951年纳什John Nash的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。
他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。
从而揭示了博弈均衡与经济均衡的内在联系。
纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。
然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。
但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。
要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。
纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。
然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。
那一年他还不到20岁。
当时普林斯顿可谓人杰地灵,大师如云。
爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。
博弈论主要是由冯·诺依曼(1903—1957)创所立的。
他是一位出生于匈牙利的天才的数学家。
他不仅创立了经济博弈论,而且发明了计算机。
早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。
1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。
尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。
例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。
冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。
合作型博弈在20世纪50年代达到了巅峰期。
然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。
正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。
据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。
斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。
于是,又走人了。
然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。
纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。
1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。
殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。
其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。
纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。
1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。
说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。
盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。
盖尔建议他马上整理出来发表,以免被别人捷足先登。
纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。
结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。
纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。
这一点也是值得我们深思的。
国内提一个教授,要求在“核心的刊物”上发表多少篇文章。
按照这个标准可能纳什还不一定够资格。
1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。
纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。
20岁出头已成为闻名世界的数学家。
特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。
他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。
后续的研究者对博弈论的贡献,都是建立在这一概念之上的。
由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
囚犯的两难处境大理论中的小故事要了解纳什的贡献,首先要知道什么是非合作博弈问题。
现在几乎所有的博弈论教科书上都会讲“囚犯的两难处境”的例子,每本书上的例子都大同小异。
博弈论毕竟是数学,更确切地说是运筹学的一个分支,谈经论道自然少不了数学语言,外行人看来只是一大堆数学公式。
好在博弈论关心的是日常经济生活问题,所以不能不食人间烟火。
其实这一理论是从棋弈、扑克和战争等带有竞赛、对抗和决策性质的问题中借用的术语,听上去有点玄奥,实际上却具有重要现实意义。
博弈论大师看经济社会问题犹如棋局,常常寓深刻道理于游戏之中。
所以,多从我们的日常生活中的凡人小事入手,以我们身边的故事做例子,娓娓道来,并不乏味。
话说有一天,一位富翁在家中被杀,财物被盗。
警方在此案的侦破过程中,抓到两个犯罪嫌疑人,斯卡尔菲丝和那库尔斯,并从他们的住处搜出被害人家中丢失的财物。
但是,他们矢口否认曾杀过人,辩称是先发现富翁被杀,然后只是顺手牵羊偷了点儿东西。
于是警方将两人隔离,分别关在不同的房间进行审讯。
由地方检察官分别和每个人单独谈话。
检察官说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们一年刑期。
但是,我可以和你做个交易。
如果你单独坦白杀人的罪行,我只判你三个月的监禁,但你的同伙要被判十年刑。
如果你拒不坦白,而被同伙检举,那么你就将被判十年刑,他只判三个月的监禁。
但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。
”斯卡尔菲丝和那库尔斯该怎么办呢?他们面临着两难的选择——坦白或抵赖。
显然最好的策略是双方都抵赖,结果是大家都只被判一年。
但是由于两人处于隔离的情况下无法串供。
所以,按照亚当·斯密的理论,每一个人都是从利己的目的出发,他们选择坦白交代是最佳策略。
因为坦白交代可以期望得到很短的监禁———3个月,但前提是同伙抵赖,显然要比自己抵赖要坐10年牢好。
这种策略是损人利己的策略。
不仅如此,坦白还有更多的好处。
如果对方坦白了而自己抵赖了,那自己就得坐10年牢。
太不划算了!因此,在这种情况下还是应该选择坦白交代,即使两人同时坦白,至多也只判5年,总比被判10年好吧。
所以,两人合理的选择是坦白,原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。
这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。
因为,每一方在选择策略时都没有“共谋”(串供),他们只是选择对自己最有利的策略,而不考虑社会福利或任何其他对手的利益。
也就是说,这种策略组合由所有局中人(也称当事人、参与者)的最佳策略组合构成。
没有人会主动改变自己的策略以便使自己获得更大利益。
“囚徒的两难选择”有着广泛而深刻的意义。
个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。
他们两人都是在坦白与抵赖策略上首先想到自己,这样他们必然要服长的刑期。
只有当他们都首先替对方着想时,或者相互合谋(串供)时,才可以得到最短时间的监禁的结果。
“纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战。
按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。
不妨让我们重温一下这位经济学圣人在《国富论》中的名言:“通过追求(个人的)自身利益,他常常会比其实际上想做的那样更有效地促进社会利益。
”从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。
两个囚徒的命运就是如此。
从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。
因此,从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。
但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。
也就是中国人说的“己所不欲勿施于人”。
但前提是人所不欲勿施于我。
其次,“纳什均衡”是一种非合作博弈均衡,在现实中非合作的情况要比合作情况普遍。
所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博弈理论的重大发展,甚至可以说是一场革命。
从“纳什均衡”的普遍意义中我们可以深刻领悟司空见惯的经济、社会、政治、国防、管理和日常生活中的博弈现象。
我们将例举出许多类似于“囚徒的两难处境”这样的例子。
如价格战、军奋竞赛、污染等等。
一般的博弈问题由三个要素所构成:即局中人(players)又称当事人、参与者、策略等等的集合,策略(strategies)集合以及每一对局中人所做的选择和赢得(payoffs)集合。
其中所谓赢得是指如果一个特定的策略关系被选择,每一局中人所得到的效用。
所有的博弈问题都会遇到这三个要素。
价格战博弈:现在我们经常会遇到各种各样的家电价格大战,彩电大战、冰箱大战、空调大战、微波炉大战……这些大战的受益者首先是消费者。
每当看到一种家电产品的价格大战,百姓都会“没事儿偷着乐”。
在这里,我们可以解释厂家价格大战的结局也是一个“纳什均衡”,而且价格战的结果是谁都没钱赚。