热工与流体力学基础第二版知识点

合集下载

流体力学第二版 闻德荪名词解释 简答题

流体力学第二版 闻德荪名词解释 简答题

一、名词解释1.流体:是液体和气体的总称(可以承受一定压力,几乎不能承受拉力)。

2.绝对压强:以绝对真空为零点起算的压强。

3.流线:表示某一瞬时流体各质点运动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

(对欧拉法的描绘)4.迹线:某一质点在某一时段内的运动轨迹。

(对拉格朗日法的描绘)5.自由出流:容器中的液体自孔口出流到大气中,称为孔口自由出流6.淹没出流:容器中的液体经孔口流入另一个充满液体的空间,称为孔口淹没出流7.质量力:质量力是作用在流体的每个质点上的力。

8.等压面:同种,静止,连续的液体的水平面为等压面。

9.恒定流:各空间点上的运动要素(速度、压强、密度等)皆不随时间变化的流动10.非恒定流:各空间点上的运动要素(速度、压强、密度等) 存在一个或一个以上随时间变化的流动11.压缩性:流体受压,体积缩小,密度增大的性质12.热胀性:流体受热,体积膨胀,密度减小的性质13.粘滞性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质,此内摩擦力称为流体的粘滞力.(流体微团发生相对运动时所产生的抵抗变形、阻碍流动的性质。

温度是影响粘度的主要因素。

当温度升高时,液体的粘度减小,气体的粘度增加。

)14.理想流体:没有粘性的流体。

15.过流断面:流束上与流线正交的横断面称为过流断面。

16.相对粗糙度:是专指管壁粗糙凸起高度(绝对粗糙度)Δ与管内径d的比值17.密度:单位体积流体所具有的质量。

18.有旋流动:流场中流体微团的旋转角速度不完全为零19.牛顿流体:符合牛顿内摩擦定律的流体20.非牛顿流体:不符合牛顿内摩擦定律的流体21.临界雷诺数:转变点处的雷诺数。

22.层流:液体质点在流动时互不掺混而分层有序的流动23.紊流:流速增大,流层逐渐不稳定,质点互相掺混,流体质点运动轨迹极不规则的流动24.有势流动:流场中流体微团旋转角速度为零25.粘(滞)性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质,此内摩擦力称为流体的粘滞力.(流体微团发生相对运动时所产生的抵抗变形、阻碍流动的性质。

流体力学第3章(第二版)知识点总结经典例题讲解

流体力学第3章(第二版)知识点总结经典例题讲解

相应的流线方程是:
dy dx y x z z0 ( xdx ydy) 0 z z0 x2 y2 C z z0

y
x
习题1:已知空间流场的速度分布(欧拉法)
u( x , y , z , t ) y v ( x , y , z , t ) x w( x , y , z , t ) 0
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
作业3:已知流速场为: 试求: t=0时通过(1,1,0)点的迹线方程
§3.2 流体的加速度
一.流体的加速度
加速度是流体质点运动的速度变化(拉格朗日意义上). 流体质点速度: u
dx u( t ) dt v dy v(t ) dt w dz w( t ) dt
d2x d2y d 2z a a 流体质点加速度: a x 2 , y 2 , z 2 dt dt dt
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.

热工与流体力学基础_热工篇 第7章

热工与流体力学基础_热工篇 第7章
第七章
气体和蒸汽的流动
2020/4/2
学习导引
本章介绍了描述气体和蒸汽流动的三个基本 方程,并以此为依据分析了气体和蒸汽在喷管和 扩压管中流动的特性变化、能量转换规律及影响 流动的外部条件,同时对热力工程中常用的绝热 节流也做了简要介绍。
2020/4/2
学习要求
1.理解绝热稳定流动的含义,及其稳定流动的基本方程 式。掌握声速、马赫数的定义式。 2.了解气体在喷管、扩压管中的流动情况,如流量的变 化与压力变化的关系,管道截面变化的规律。 3.了解临界状态、临界压力比的概念,会运用这些概念 分析简单的工程问题。 4.掌握喷管中流量、流速的计算公式,会进行相关的工 程计算。了解喷管中有摩阻时应考虑的内容。 5.了解绝热节流的概念及其特点。
cf22
1 2
c2 f 2
1 2
cf22
12
1—2:可逆绝热过程(定熵); 1—2:有摩阻的绝热过程(熵增)。
第四节 绝热节流
一、绝热节流
• 节流
流体在管道内流动时,当流经阀门、孔板等截面 突然缩小的设备时,由于截面突变,流体局部受阻, 使流体的压力明显降低的现象。
• 绝热节流
如果节流时流体与外界没有热量交换,就称为绝 热节流,也简称为节流。
1
2 1
p1v11
p2 p1
二、临界压力比与临界流速
1.临界压力比与临界流速的计算
在渐缩渐扩喷管的喉部(最小截面处),Ma1,有
• 临界截面
• 临界压力pc • 临界流速cfc
等于当地声速
• 临界压力比c
pccp1
cfc cc
1
2
1
p1v1 1
pc p1
pcvc

热工基础第二版课后复习资料全张学学

热工基础第二版课后复习资料全张学学

第二章思考题绝热刚性容器,中间用隔板分为两部分,左边盛有空气,右边为真空,抽掉隔板,空气将充满整个容器。

问:⑴空气的热力学能如何变化?⑵空气是否作出了功?⑶能否在坐标图上表示此过程?为什么?答:(1 )空气向真空的绝热自由膨胀过程的热力学能不变。

(2)空气对外不做功。

(3)不能在坐标图上表示此过程,因为不是准静态过程。

2.下列说法是否正确?⑴气体膨胀时一定对外作功。

错,比如气体向真空中的绝热自由膨胀,对外不作功。

⑵气体被压缩时一定消耗外功。

对,因为根据热力学第二定律,气体是不可能自压缩的,要想压缩体积,必须借助于外功。

⑶气体膨胀时必须对其加热。

错,比如气体向真空中的绝热自由膨胀,不用对其加热。

⑷气体边膨胀边放热是可能的。

对,比如多变过程,当n大于k时,可以实现边膨胀边放热。

⑸气体边被压缩边吸入热量是不可能的。

错,比如多变过程,当n大于k时,可以实现边压缩边吸热。

⑹对工质加热,其温度反而降低,这种情况不可能。

错,比如多变过程,当n大于1,小于k时,可实现对工质加热,其温度反而降低。

4. “任何没有体积变化的过程就一定不对外作功”的说法是否正确?答:不正确,因为外功的含义很广,比如电磁功、表面张力功等等,如果只考虑体积功的话,那么没有体积变化的过程就一定不对外作功。

5. 试比较图2-6所示的过程1-2与过程1-a-2中下列各量的大小:⑴ W i2与W la2;(2) U12与U 1a2;⑶图2-6思考题4附图Q12 与Q1a2答:(1 )Wg2大。

(2)一样大。

( 3) Q1a2 大。

6. 说明下列各式的应用条件:⑴ q u w闭口系的一切过程⑵q u pdv闭口系统的准静态过程⑶q u (p2v2 p1v1)开口系统的稳定流动过程,并且轴功为零⑷q u p(v2 v1)开口系统的稳定定压流动过程,并且轴功为零;或者闭口系统的定压过程。

7. 膨胀功、轴功、技术功、流动功之间有何区别与联系?流动功的大小与过程特性有无关系?答:膨胀功是系统由于体积变化对外所作的功;轴功是指工质流经热力设备开口系统) 时,热力设备与外界交换的机械功,由于这个机械功通常是通过转动的轴输入、输出,所以工程上习惯成为轴功;而技术功不仅包括轴功,还包括工质在流动过程中机械能宏观动能和势能)的变化;流动功又称为推进功,1kg 工质的流动功等于其压力和比容的乘积,它是工质在流动中向前方传递的功,只有在工质的流动过程中才出现。

流体力学II教材讲解

流体力学II教材讲解

流体力学II(Viscous Fluid and Gas Dynamics)讲义第一章、粘性不可压缩流体运动基本方程组(学时数:6)1-1.绪论流体力学是力学的一个重要分支,主要研究流体介质(液体、气体、等离子体)的特性、状态,在各种力的作用下发生的对流、扩散、旋涡、波动现象和质量、动量、能量传输,以及同化学、生物等其他运动形式之间的相互作用。

它既是一门经典学科,又是一门现代学科,对自然科学和工程技术具有先导作用。

历史上,力学包括流体力学,曾经经历基于直观实践经验的古代力学、基于严密数学理论的经典力学、基于物理洞察能力的近代力学三个阶段。

在人类早期的生产活动过程中,力学即与数学、天文学一起发展。

17世纪,Newton基于前人的天文观测和力学实验,发明了微积分,并总结出机械运动三大定律和万有引力定律,发表了著名的《自然哲学的数学原理》一书。

由于原理是普适自然与工程领域的规律,从而使力学成为自然科学的先导。

从17世纪开始,人们逐步建立了流体力学的基本理论体系,从Pascal定律、Newton粘性定律、Pitot 管测速,到Euler方程和Bernoulli方程,标志着流体动力学正式成为力学的一个分支学科。

18世纪,人们着重发展无粘流体的位势理论。

到了19世纪,为了解决工程实际问题,开始注重粘性的影响,Navier-Stokes方程的建立为流体力学的进一步发展奠定了完整的理论基础,但该方程解的存在性与光滑性的证明至今仍是一大难题。

20世纪初,Prandtl凭借出色的物理洞察能力,提出边界层理论,从而开创了流体力学的近代发展阶段,使力学成为人类实现“飞天”梦想的重要理论先导。

60年代以来,由于超级计算机、先进测试技术的发展和应用,力学进一步凸显宏微观结合和学科交叉的特征,进入现代力学发展新阶段。

刚刚过去的2011年,人类遭遇了一系列极端事件:日本海底地震导致海啸和福岛核电站泄露事故;澳大利亚飓风;我国干旱洪水灾害等异常气候问题。

热工与流体力学基础 热工篇_第4章

热工与流体力学基础 热工篇_第4章
过程b-c、d-a为定熵过程,故
q2 t 1 q1
sb sa sc sd
T2 c 1 T1
卡诺循环热效率
结论:
T2 c 1 T1
(1)卡诺循环的热效率只取决于高温热源的温度T1
与低温热源的温度T2,而与工质的性质无关。提高高温热 源的温度T1,或降低低温热源的温度T2,都可以提高热效 率。 (2)因为T2>0,所以热效率总小于1。 (3)若T1T2,则,c
此外,即使同为热能,当它们储存的热源温度 不同时,它们的品质也是不同的。储存于高温水
平热源的热能品质较高。当热由高温物体自动的
传向低温物体时,同样也使能的品质下降了。 热力学第二定律的实质是能量贬值原理,即在 能量的传递和转换过程中,能量的品质只能降低 卡诺循环与卡诺定律
1. 克劳修斯(Clausius)表述
不可能把热量从低温物体传向高温物体而不引起其他 变化。
如制冷机或热泵装置的工 作需消耗能量进行补偿
它是从热量传递过程来表达热力学第二定律的。
热力学第二定律
2.开尔文-普朗克(Kelvin-Plank)表述
不可能从单一热源取热,并使之完全转变为功而不产
生其他影响。
• 正向循环在p-v图上按顺时针方向进行。
设1kg工质在热机中进行一个正向循环1234l 1-2-3: 膨胀过程,作膨胀功123v3v11 3-4-1: 压缩过程,作压缩功341v1v33 工质从高温热源T1吸热q1,向T2放热q2

q u w
u 0
∴ 循环净功w0
w0 q1 q2
1. 了解热力循环、正向循环、逆向循环的概念,掌握评 价循环经济性的指标:热效率t、制冷系数、制热系数。

热工与流体力学基础第3章

热工与流体力学基础第3章

强化传热技术在换热器中应用前景展望
表面处理技术
通过改变换热器表面形貌、 增加表面粗糙度等方法, 提高表面传热系数,增强 传热效果。
添加物技术
在流体中添加适量纳米颗 粒、表面活性剂等物质, 改变流体物性,提高传热 系数和换热效率。
新型换热器开发
研发具有高效传热、低能 耗、环保等特点的新型换 热器,满足不断升级的能 源利用和环保要求。
与外界只有能量交换而无物质交换的 系统。
热力学基本定律及性质
热力学第零定律
如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则它们彼此也必定处 于热平衡。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转 换过程中,能量的总值保持不变。
热力学第二定律
对流传热机制
01
流体流过固体表面时,由于流体质点的移动和混合引起的热量
传递。
影响因素
02
流体的物理性质(如密度、粘度、导热系数等)、流动状态
(层流或湍流)、流动速度、固体表面的形状和粗糙度等。
强化与削弱对流传热的措施
03
改变流动状态、增加流体速度、改变固体表面形状和粗糙度等。
辐射传热原理及特点阐述
流体静力学原理及应用
流体静力学原理
流体静力学是研究流体在静止状态下的力学规律,包括压力、密度和重力等基 本概念。静止流体中任一点的压力由该点上方流体的重量决定,且在同一水平 面上各点的压力相等。
应用举例
流体静力学原理在工程中有广泛应用,如液压传动、水利工程中的水压计算、 气象学中的大气压力分布等。
通过实验手段对优化设计方案进行验证和性能评 估,确保优化效果的可靠性和实用性。

热工基础及流体力学(第二版)

热工基础及流体力学(第二版)

第一节蒸汽动力循环 第二节制冷循环 思考题 习题
第七章流体及其物理 性质
第八章流体静力学
第九章流体动力学基 础
第十章黏性流体的管 内流动
第一节流体的定义和连续介质模型 第二节流体的主要物理性质 第三节作用在流体上的力 思考题 习题
第一节流体的平衡方程式 第二节重力作用下的流体平衡 第三节液柱式测压计 第四节平面上和曲面上的流体压力 思考题 习题
第一节热力学第一定律 第二节热力学第二定律 思考题 习题
第一节理想气体 第二节水蒸气 第三节混合气体 思考题 习题
第一节分析热力过程的目标和一般方法 第二节理想气体典型热力过程 思考题 习题
第一节稳定流动基本方程 第二节喷管和扩压管中的流动特性 第三节喷管的计算 第四节绝热节流 思考题 习题
第一节描述流体运动的几个基本概念 第二节连续性方程 第三节理想流体的伯努利方程 第四节定常流动的动量方程 思考题 习题
第一节黏性流体的伯努利方程 第二节管内流动的能量损失 第三节黏性流体的两种流动状态 第四节圆管层流和紊流的流动规律 第五节管内流动的阻力系数 第六节管道水力计算 第七节水击现象 思考题 习题
热工基础及流体力学(第二版)
读书笔记模板
01 思维导图
03 目录分析 05 精彩摘录
目录
02 内容摘要 04 读书笔记 06 作者介绍
思维导图
本书关键字分析思维导图
热工
传热
流体力学
计算
实验
典型
附表
热工
流体
工程 习题
方程

流体
基本概念
典型
导热
性质
物理
内容摘要
本书共分三篇,由工程热力学、流体力学和传热学三部分内容组成。工程热力学部分主要讲述:热力学基本 概念和基本定律,常用工质的热物理性质及基本热力过程,气体和蒸汽的流动,典型蒸汽动力循环和制冷循环分 析计算;流体力学部分主要讲述:流体的基本物理性质,流体静力学,流体动力学基础,黏性流体的有压流动特 点及能量损失计算;传热学部分主要讲述:导热、对流传热、辐射传热的基本规律和计算方法,传热过程的分析 计算方法及优化控制措施,换热器的类型和传热计算方法。各章附有切合实际的典型例题、思考题和习题,附录 附有热工流体典型实验、习题解答、模拟试题及参考答案。本书综合了热工及流体基础理论知识,可作为热工控 制及自动化、供热工程、环境工程、热能工程、制冷及低温工程、热工测量仪表及相关专业的教材或教学参考书, 也可作为能源动力类专业培训教材,或作为相关工程技术人员参考用书。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热工与流体力学基础第二版知识点
《热工与流体力学基础》第二版是一本涵盖热工学和流体力学基础知
识的教材。

下面是该教材的主要知识点总结。

第一章:热力学基础
1.热力学基本概念:系统、过程、状态、平衡等。

2.热力学第一定律:能量守恒原理,包括内能、功和热量的转化。

3.理想气体的状态方程和理想气体的内能、焓、比热容等基本性质。

4.热力学第二定律:热量无法自流体温度较低的物体传递到温度较高
的物体,熵增原理。

5.热力学过程:等温过程、绝热过程、等焓过程、等熵过程等。

第二章:热力学第二定律
1.热力学第二定律的表述:克劳修斯表述、开尔文表述、普朗克表述等。

2.热力学可逆性:可逆过程和不可逆过程的区别。

3.温度原理:第二定律的另一个表述。

4.卡诺循环:理想热机的最高效率,热量机和制冷机的理论效率等。

5.热力学状态函数:焓、熵等。

第三章:气体物性
1.理想气体状态方程:理想气体的状态方程、气体的通用状态方程等。

2.实际气体的物性:气体的压缩因子、物态方程等。

3.混合气体:混合气体的压力、物态方程等。

4.湿空气的物性:湿空气的物态方程,空气的相对湿度等。

第四章:热力学循环
1.热力学循环的基本概念:容器、工质、制冷剂等。

2.理想循环:卡诺循环、斯特林循环、布雷顿循环等。

3. 实际循环:由理想循环引出的实际循环,如Otto循环、Diesel 循环等。

4.循环效率:循环效率的计算和提高方法等。

第五章:流体力学基础
1.流体力学的基本概念:流体、运动、静压力、动压力等。

2.流体的物理性质:密度、体积模量、表面张力等。

3. 流体静力学:流体的静力学平衡方程、静压力、Pascal定律等。

4.流体流动的描述:速度场、流线、流管、速度势等。

第六章:定常流动
1.流体的连续性方程:质量守恒定律。

2.流体的动量方程:动量守恒定律,流体的动力学压强等。

3. 流体的能量方程:能量守恒定律,Bernoulli方程等。

4.流动的稳定性:雷诺数、层流和湍流等。

第七章:定常不可压缩流动
1.纳维-斯托克斯方程:表示定常不可压缩流动的方程。

2.理想流体和黏性流体的运动学性质:速度场和流线的性质。

3.理想流体和黏性流体的动力学性质:雷诺数、渐进逼近法等。

4.分析解和数值解:求解定常不可压缩流动的方法。

第八章:定常可压缩流动
1.定常可压缩流动的基本概念:亚音速流动和超音速流动等。

2.亚音速流动方程组:连续性方程、动量方程、能量方程等。

3.绝热流动:绝热流动的基本方程、马赫数等。

4.气流的扩张和收缩:大试验、小试验、前面突然变窄等。

本教材通过以上知识点的介绍,全面而深入地讲解了热工学和流体力学的基本概念、定律和原理,为读者打下了良好的基础,提供了解决工程问题的理论依据。

同时,书中也介绍了一些实际应用,并提供了相关的计算方法和例题,有助于读者在实践中运用所学知识。

相关文档
最新文档