龙贝格求积算法

合集下载

龙贝格求 积分

龙贝格求 积分

龙贝格(Romberg )求积法1.算法理论Romberg 求积方法是以复化梯形公式为基础,应用Richardson 外推法导出的数值求积方法。

由复化梯形公式 )]()(2)([2222b f h a f a f h T +++=可以化为)]()]()([2[212112h a f h b f a f hT +++==)]([21211h a f h T ++一般地,把区间[a,b ]逐次分半k -1次,(k =1,2,……,n)区间长度(步长)为kk m a b h -=,其中mk =2k -1。

记k T =)1(k T由)1(k T =]))12(([21211)1(1∑=---++km j k k k h j a f h T 从而⎰badxx f )(=)1(kT-)(''122k f h a b ξ- (1)按Richardson 外推思想,可将(1)看成关于k h ,误差为)(2k h O 的一个近似公式,因而,复化梯形公式的误差公式为⎰badxx f )(-)1(k T =......4221++kkh K h K =∑∞=12i i k i h K (2)取1+k h =k h 21有 ⎰ba dx x f )(-)1(1+k T =∑∞=+121221i ik ii hK (3)误差为)(2jh O 的误差公式 )(j kT=)1(-j kT+141)1(1)1(------j j k j k T T2。

误差及收敛性分析(1)误差,对复化梯形公式误差估计时,是估计出每个子区间上的误差,然后将n 个子区间上的误差相加作为整个积分区间上的误差。

(2)收敛性,记h x i =∆,由于∑=++=ni i i n x f x f h f T 01))]()([2)(=))()((21101∑∑-==∆+∆n i ni i i i i x x f x x f上面两个累加式都是积分和,由于)(x f 在区间],[b a 上可积可知,只要],[b a 的分划的最大子区间的长度0→λ时,也即∞→n 时,它们的极限都等于积分值)(f I 。

龙贝格求积公式

龙贝格求积公式

2
f( ) 2
T3 , 1 T3 , 2
T3 , 3
T4 , 1 T5 , 1
M
T4 , 2 T5 , 2
M
T4, 3 T5 , 3
M
T4 , 4 T5 , 4
M
用龙贝格方法计算积分的步骤为:
(1):准备初值,先用梯形公式计算积分近
似 (值 2)::T1按 变b 2步a[长f (a梯) 形f (公b)]式计算积分近似值:
4 0.918741799 0.916327874 0.916297224 0.916294351
5 0.916905342 0.916293190 0.916290077 0.916290776
T5 , 4 0.916290776
例3:取=0.00001,用龙贝格方法计算积分
1
I
4
dx
01 x2
解:由题意
f(x)=4/(1+x2) a=0 b=1 f(0)=4 f(1)=2 由梯形公式得
T1=1/2[f(0)+f(1)]=3 计算f(1/2)=16/5 用变步长梯形公式得
T2=1/2[T1+f(1/2)]=3.1 由加速公式得
S1=1/3(4T2-T1)=3.133333333
求出f(1/4) f(3/4) 进而求得 T4=1/2{T2+1/2[f(1/4)+f(3/4)]}
Simpson加速公式: Cn
42 S2n Sn 42 1
I
C2n
1 43 1(C2n
Cn )
43C2n Cn 43 1
Cotes加速公式:Rn
43C2n Cn 43 1
Romberg 值序列

龙贝格求积和高斯求积

龙贝格求积和高斯求积
的零点,且
xi = cos
3.5.3
2i + 1 π , i = 0,1, L, n. 2n + 2
高斯求积公式的余项与稳定性
定理 3.5.2 假设 f ( x) ∈ C 2 n + 2 ([a, b]) ,则高斯求积公式(3.8)的余项
RG = ∫ ρ ( x) f ( x)dx − ∑ Ai f ( xi ) =
Pn +1 ( x) =
的零点.系数
1 d n +1 [( x 2 − 1) n +1 ] 2 n +1 (n + 1)! dx n +1
1 Pn′+1 ( xi ) Pn ( xi ). n +1 2) 高斯-拉盖尔(Gauss-laguerre)求积公式 Ai =

+∞
0
e − x f ( x)dx ≈ ∑ Ai f ( xi ),
b a i =0 n
f ( 2 n + 2) (ξ ) b 2 ρ ( x)π n +1 ( x ) dx, ∫ a (2n + 2)!
其中, ξ ∈ (a, b). 定理 3.5.3 课堂小结 布置作业 参考文献
1. Burden R L, Faires J D.Numerical Ananlysis(Fourth Edition). Prindle, Boston, Weder and Schmidt,1989. 2. Stoer J.,Bulirsch R.,Introduction to Numerical Analysis, Second Edition, SpringerVerlag, NewYork, 1992. 3. A. Ralston and P.Rabinowitz, A First Course in Numerical Analysis, Dover Publication, 2001. 4. Cuyt A., Wuytack L., Nonlinear Methods in Numerical Analysis, Elsevier Science Publishers, B.V.,1987. 5. Richard L. Burden, J. Douglas Faires, Numerical Analysis (Seventh Edition), Brooks Pub. Co.,2001. 6.邓建中,刘之行. 计算方法(第二版).西安交通大学出版社,2001. 7. 韩旭里. 数值分析. 中南大学出版社,2003.

龙贝格算法

龙贝格算法

龙贝格积分1. 算法原理采用复化求积公式计算时,为使截断误差不超过ε,需要估计被积函数高阶导数的最大值,从而确定把积分区间[]b a ,分成等长子区间的个数n 。

首先在整个区间[]b a ,上应用梯形公式,算出积分近似值T1;然后将[]b a ,分半,对 应用复化梯形公式算出T2;再将每个小区间分半,一般地,每次总是在前一次的基础上再将小区间分半,然后利用递推公式进行计算,直至相邻两个值之差小于允许误差为止。

实际计算中,常用ε≤-n n T T 2作为判别计算终止的条件。

若满足,则取n T f I 2][≈;否则将区间再分半进行计算,知道满足精度要求为止。

又经过推导可知,∑=-++=ni i i n n x x f h T T 112)2(221,在实际计算中,取kn 2=,则k a b h 2-=,112)1*2(2++--+=+k i i ab i a x x 。

所以,上式可以写为∑=++--+-+=+kk i k k ab i a f a b T T 211122)2)12((2211k开始计算时,取())()(21b f a f ab T +-=龙贝格算法是由递推算法得来的。

由梯形公式得出辛普森公式得出柯特斯公式最后得到龙贝格公式。

根据梯形法的误差公式,积分值n T 的截断误差大致与2h 成正比,因此步长减半后误差将减至四分之一,即有21114n n T T -≈-将上式移项整理,知2211()3n n n T T T -≈-由此可见,只要二分前后两个积分值n T 和2n T 相当接近,就可以保证计算保证结果计算结果2n T 的误差很小,这种直接用计算结果来估计误差的方法称作误差的事后估计法。

按上式,积分值2n T 的误差大致等于21()3n n T T -,如果用这个误差值作为2n T 的一种补偿,可以期望,所得的()222141333n n n n n T T T T T T =+-=-应当是更好的结果。

4.4龙贝格求积公式

4.4龙贝格求积公式

4 1 T1 ( k 1) T0 ( k ) T0 ( k 1) 3 3 16 1 T2 ( k 1) T1 ( k ) T1 ( k 1) 15 15 64 1 T3 ( k 1) T2 ( k ) T2 ( k 1) 63 63
k 1, 2 ,
1 h n1 Tn f ( x 1 ) j 2 2 j 0 2 1 b a n 1 1 Tn f (a ( j )h) 2 2n j 0 2 1 b a n 1 ba Tn f ( a ( 2 j 1) ) 2 2 n j 0 2n
Romberg算法的代 数精度为m的两倍 Romberg算法的收敛 阶高达m+1的两倍
T0 (0 ) T0 (1) T0 ( 2 ) T0 ( 3) T1 (0 ) T1 (1) T1 ( 2 ) T2 (0 ) T2 (1)
T3 (0 )
龙贝格积分
例:计算
I T2n 1 I Tn 4

--------(7)
即 当然
Cn C2 k 1 T2 (k 1) C 2 n T2 (k )
--------(8)
同样由复合Cotes公式的余项
I C2 n 1 (C2 n Cn ) 63
64 1 64 1 得 I C2 n Cn T2 ( k ) T2 ( k 1) 63 63 63 63
43 C 2n C n Rn 3 4 1
Romberg
T1 = T0( 0 )
T2 = T0( 1 )
<?
算法: T4 = T0( 2 )
T8 = T0
(3)
S1 = T1( 0 ) S2 = T1

数值分析63 复化求积公式龙贝格求积公式讲解

数值分析63 复化求积公式龙贝格求积公式讲解
起来加以考虑 . 注意到每个子区间 [xk, xk+1]经过二分
只增加了一个分点
1 xk?1/ 2 ? 2 ( xk ? xk?1)
设hn=(b? a)/n, xk=a+kh n (k=0,1,? ,n),在[xk, xk+1] 上用梯形公式得
T1 ?
hn 2
?f
(
xk
)
?
f ? ( xk ? 1 )
复化求积的基本想法 :
将积分区间 [a, b]n等分, 步长
h?
b
? n
a
,
分点为
xk=a+kh (k=0,1,…,n) , 则由定积分性质知
? ? ? I ?
b
n?1
f ( x )dx ?
xk?1 f ( x )d x
a
k ? 0 xk
每个子区间 上的积分
?xk?1 f ( x )dx xk
用低阶求积公式 , 然后把所有区间的 计算结果求和 ,
注2: 同样也可用 | S4m-S2m |<ε 来控制计算的精度 . 这就是下面要介绍的 龙贝格求 积公式 .
6.4 龙贝格求积公式
6.4.1 梯形公式的递推化
复化求积方法可提高求积精度,实际计算时若
精度不够可将步长逐次分半 . 设将区间 [a, b]分为n等
分,共有 n+1个分点,如果将求积区间再分一次,则 分点增至 2n+1个,我们将二分 前后两个积分值 联系
果T8=0.9456909 只有2位有效数字,而应用复化辛普 森公式计算的结果 S4= 0.9460832 却有6位有效数字 .
注:为了利用余项公式估计误差,要求 f(x)=sin x/x 的高阶导数,由于

龙贝格算法

龙贝格算法

龙贝格算法一、问题分析1、1龙贝格积分题目要求学生运用龙贝格算法解决实际问题(塑料雨篷曲线满足函数y(x)=l sin (tx),则给定雨篷得长度后,求所需要平板材料得长度).二、方法原理2、1龙贝格积分原理龙贝格算法就是由递推算法得来得。

由梯形公式得出辛普生公式得出柯特斯公式最后得到龙贝格公式.在变步长得过程中探讨梯形法得计算规律.设将求积区间[a,b]分为n个等分,则一共有n+1个等分点,n.这里用表示复化梯形法求得得积分值,其下标n 表示等分数。

先考察下一个字段[],其中点,在该子段上二分前后两个积分值显然有下列关系将这一关系式关于k从0到n-1累加求与,即可导出下列递推公式需要强调指出得就是,上式中得代表二分前得步长,而梯形法得算法简单,但精度低,收敛速度缓慢,如何提高收敛速度以节省计算量,自然式人们极为关心得.根据梯形法得误差公式,积分值得截断误差大致与成正比,因此步长减半后误差将减至四分之一,既有将上式移项整理,知由此可见,只要二分前后两个积分值与相当接近,就可以保证计算保证结果计算结果得误差很小,这种直接用计算结果来估计误差得方法称作误差得事后估计法。

ﻩ按上式,积分值得误差大致等于,如果用这个误差值作为得一种补偿,可以期望,所得得应当就是更好得结果。

ﻩ按上式,组合得到得近似值直接验证,用梯形二分前后得两个积分值与按式组合,结果得到辛普生法得积分值。

再考察辛普生法。

其截断误差与成正比.因此,若将步长折半,则误差相应得减至十六分之一。

既有由此得不难验证,上式右端得值其实就等于,就就是说,用辛普生法二分前后得两个积分值与,在按上式再做线性组合,结果得到柯特斯法得积分值,既有重复同样得手续,依据斯科特法得误差公式可进一步导出龙贝格公式应当注意龙贝格公式已经不属于牛顿—柯特斯公式得范畴.在步长二分得过程中运用公式加工三次,就能将粗糙得积分值逐步加工成精度较高得龙贝格,或者说,将收敛缓慢得梯形值序列加工成熟练迅速得龙贝格值序列,这种加速方法称龙贝格算法。

6b复合求积公式龙贝格算法

6b复合求积公式龙贝格算法

步长折半:[xi , xi+1/2] , [xi +1/2 , xi+1]
n1
xi xi +1/2 xi +1
h T2 n f ( xi ) f ( xi 1 2 ) f ( xi 1 2 ) f ( xi 1 ) i 0 4 n1 h f ( xi ) 2 f ( xi 1 2 ) f ( xi 1 ) i 0 4 h n1 h n1 1 h n1 f ( xi ) f ( xi 1 ) f ( xi 1 2 ) Tn f ( xi 1 2 ) 4 i 0 2 i 0 2 2 i 0 13
1 I T2 n (T2 n Tn ) 3
I Tn 4( I T2n )
3I 4T2n Tn
1 3
验后误差估计式 I T2 n (T2 n Tn )

T2n Tn 时,T2n即为所求的近似值。
1 (T2 n Tn ) 3
是T2n 的修正项,它与T2n 之和比T2n 、 Tn更接近与真值,即它是一种补偿。
|| T T2-T|< 2-T1|<
输出T2
16
举例
计算精度满足 | T2n Tn | 107
I [ f ]=0.946083070367
例:用梯形法的递推公式计算定积分 解:

1
0
sin( x ) dx , 要求 x
k
0 1 2 3 4 5 6 7 8 9 10
T (k)
梯形法递推公式
1 h n1 1 h n1 T2 n Tn f ( xi 1 2 ) Tn f ( a ih 0.5h) 2 2 i 0 2 2 i 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙贝格求积算法
龙贝格求积算法(Romberg Integration Algorithm)是用于数
值积分的一种高效的迭代方法。

它通过连续的二分、四分、八分等等
区间的方式,逐渐逼近最终的积分值,从而提高计算的精度。

该算法的基本思想是利用Richardson外推技术,结合复合梯形
法则,逐渐缩小区间并增加采样点数,以得到更精确的积分值。

下面
我们来介绍龙贝格求积算法的步骤:
1. 将积分区间[a, b]进行二分,得到初始的两个子区间;
2. 对每个子区间应用复合梯形公式进行数值积分,可以得到初始的近似积分值;
3. 利用Richardson外推技术,对不同精度的积分值进行线性组合,得到更高精度的积分值;
4. 重复步骤2和3,将积分区间不断地二分,并逐步增加采样点数,直到达到所需的精度要求。

龙贝格求积算法的主要优点是在保持高精度的能够有效减少计算量。

该算法还可以通过预先计算一些常见函数在一些固定的点上的值,以进一步提高计算速度。

总结起来,龙贝格求积算法通过利用复合梯形法则和Richardson 外推技术,逐渐逼近积分值的精确结果。

它是一种高效且精确的数值
积分方法,广泛应用于科学计算和工程领域。

相关文档
最新文档