机械设计基础知识点整理
50个机械设计基础知识点

50个机械设计基础知识点1.刚体力学:研究物体在作用力下的平衡和运动。
2.静力学:研究物体在静止状态下的力学性质。
3.动力学:研究物体在运动状态下的力学性质。
4.运动学:研究物体的运动特性,如速度、加速度和位移。
5.力学系统:由若干物体组成,并且相互作用,受到外界力的作用。
6.力的合成:通过矢量相加的方法计算多个力的合力。
7.力的分解:将一个力分解为多个力的合力。
8.平衡:物体受到的合力和合力矩均为零。
9.功:力在物体上产生的位移所做的功。
10.能量:物体的能力做功的量度。
11.弹性力:物体受到变形后,恢复原状的力。
12.摩擦力:物体在运动或静止时受到的阻力。
13.运动学链:由多个刚体连接而成的机构,用来进行运动传递和转换。
14.齿轮传动:利用齿轮的互相啮合实现运动传递和转换。
15.杠杆机构:利用杠杆的原理实现力的放大或缩小的机构。
16.曲柄连杆机构:利用曲柄和连杆的结构实现运动转换。
17.铰链机构:通过铰链连接物体的机构,实现固定、旋转或滑动。
18.滑块机构:由滑块和导轨构成的机构,实现直线运动。
19.传动比:用来衡量运动传递的效率。
20.齿轮比:齿轮传动中两个齿轮的旋转速度比值。
21.离合器:用来连接或分离两个旋转物体的装置。
22.制动器:用来减速、停止或固定运动物体的装置。
23.轴承:用来支撑和减小机械运动中的摩擦力的装置。
24.轴线:用来连接和支撑旋转物体的直线。
25.键连接:通过键连接来实现轴线和轴承的固定。
26.螺纹连接:通过螺纹连接实现两个物体的拧紧或松开。
27.轴承间隙:轴承内外圈之间的间隙,用来调整摩擦力和轴承的转动。
28.轴向力:作用于轴线方向上的力。
29.径向力:作用于轴线垂直方向上的力。
30.弹簧:用来储存和释放能量的装置。
31.拉伸强度:材料抵抗拉伸破坏的能力。
32.压缩强度:材料抵抗压缩破坏的能力。
33.硬度:材料抵抗划伤或穿透的能力。
34.拉伸试验:测试材料的拉伸性能和强度。
(完整word版)《机械设计基础》知识点汇总.

机械设计基础》知识点汇总1、具有以下三个特征的实物组合体称为机器。
(1)都是人为的各种实物的组合。
(2)组成机器的各种实物间具有确定的相对运动。
(3)可代替或减轻人的劳动,完成有用的机械功或转换机械能。
2、机构主要用来传递和变换运动。
机器主要用来传递和变换能量。
3、零件是组成机器的最小单元,也是机器的制造单元,机器是由若干个不同的零件组装而成的。
各种机器经常用到的零件称为通用零件。
特定的机器中用到的零件称为专用零件。
4、构件是机器的运动单元,一般由若干个零件刚性联接而成,也可以是单一的零件。
若从运动的角度来讲,可以认为机器是由若干个构件组装而成的。
根据功能的不同,一部完整的机器由以下四部分组成:1. 原动部分:机器的动力来源。
2. 工作部分:完成工作任务的部分。
3. 传动部分:把原动机的运动和动力传递给工作机。
4. 控制部分:使机器的原动部分、传动部分、工作部分按一定的顺序和规律运动,完成给定的工作循环。
5、物体间机械作用的形式是多种多样的,力对物体的效应取决于力的大小、方向和作用点,这三者被称为力的三要素。
公理1 二力平衡公理作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。
对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。
公理2 加减平衡力系公理在已知力系上加上或者减去任意平衡力系,并不改变原力系对刚体的作用。
推论1 力的可传性原理作用在刚体上某点的力,可以沿着它的作用线移动到刚体内任意一点,并不改变该力对刚体的作用效应。
公理 3 力的平行四边形公理作用在刚体上同一点的两个力,可以合成为一个合力。
合力的作用点也在该点,合力的大小、方向,由这两个力为边构成的平行四边形的对角线确定。
推论2 三力平衡汇交原理:作用在刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线通过汇交点。
公理4 作用与反作用公理两物体间的作用力与反作用力总是同时存在,且大小相等、方向相反、沿同一条直线,分别作用在这两个物体上。
(完整版)机械设计基础知识点整理

1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230—450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。
最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形.确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀.疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。
疲劳点蚀使齿轮。
滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。
机械设计基础常识50条

机械设计基础常识50条1、机器由原动机部分、传动部分、执行部分、控制部分组成。
2、带传动的主要失效形式:带的疲劳损坏和打滑。
3、机械设计中贯彻标准化、系列化、通用化的意义:①、减轻设计工作量;②、标准零部件是由专业工厂大规模生产的,效率高,成本低、质量可靠;③、便于维护使用,便于更换维修,④、三化是设计应贯彻的原则,也是国家的一项技术政策。
4、联接可分为可拆联接和不可拆联接。
5、螺纹联接又可分为:螺栓联接、双头螺柱联接、螺钉联接。
6、螺纹联接的防松措施:摩擦防松、机械防松、永久防松。
7、销联接分类:定位销、联接销、安全销。
8、键联接分为:平键联接、半圆键联接、花键联接。
9、轴功用分类:传动轴、心轴、转轴。
10、联轴器分两大类:刚性联轴器和挠性联轴器。
11、轴承有:滑动轴承和滚动轴承;滑动轴承按承受载荷分为:向心轴承和推力轴承。
12、①含油轴承定义:一般将青铜、铁或铝等金属粉末与石墨调匀,压形成轴瓦,经高温烧结,即得到类似陶瓷结构的非致密、多孔性轴瓦,把它在润滑油中充分侵润后,微孔中充满了润滑油,故称为含油轴承。
含油轴承用粉末冶金材料制成。
②含油轴承特点:强度较低、不耐冲击,结构简单、价格便宜。
13、滚动轴承: 优点:①、摩擦阻力小,起动灵敏,效率高,发热少温升低;②、轴向尺寸有利于整机机构的紧凑和简化;③、径向间隙小,并且可以用预紧方法调整间隙,因此旋转精度高;④、润滑简单,耗油量小,维护保养方便;⑤、标准件,大批量生产供应市场,性价比高,使用更换也方便。
缺点:径向尺寸较大,承受冲击载荷的能力不高,高速运转时声响较大,工作寿命不长。
14、滚动轴承的组成:外圈、内圈、滚动体和保持架。
15、a、滚动轴承的代号:由前置代号、基本代号、后置代号;b、基本代号由轴承类型代号、尺寸系列代号、内径代号组成。
16、滚动轴承结构形式:双支点单向固定支承、单支点双向固定支承、双支点游动支承。
17、润滑剂分为:润滑油和润滑脂。
《机械设计基础》重点总结

《机械设计基础》重点总结机械设计基础是一门研究机械中常用机构和通用零部件工作原理、结构特点、设计方法以及机械传动系统设计的学科。
它是机械工程类专业的重要基础课程,对于我们理解和掌握机械系统的设计与应用具有重要意义。
下面我将为大家总结这门课程的重点内容。
一、平面机构的结构分析1、运动副及其分类运动副是指两构件直接接触并能产生相对运动的活动连接。
根据接触形式的不同,运动副分为低副和高副。
低副包括转动副和移动副,高副则包括齿轮副、凸轮副等。
2、平面机构的运动简图用简单的线条和符号来表示机构的组成和运动情况的图形称为机构运动简图。
绘制机构运动简图时,要准确表示出各构件之间的相对运动关系和运动副的类型。
3、平面机构的自由度计算自由度是指机构具有独立运动的数目。
平面机构的自由度计算公式为:F = 3n 2PL PH,其中 n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。
机构具有确定运动的条件是自由度等于原动件的数目。
二、平面连杆机构1、铰链四杆机构的基本类型铰链四杆机构包括曲柄摇杆机构、双曲柄机构和双摇杆机构。
其类型取决于各杆的长度关系和机架的选择。
2、铰链四杆机构的演化形式通过改变构件的形状、相对长度以及运动副的尺寸等,可以将铰链四杆机构演化成曲柄滑块机构、导杆机构、摇块机构和定块机构等。
3、平面连杆机构的运动特性包括急回特性、压力角和传动角等。
急回特性可以提高工作效率,压力角越小、传动角越大,机构的传动性能越好。
三、凸轮机构1、凸轮机构的类型按凸轮的形状可分为盘形凸轮、移动凸轮和圆柱凸轮;按从动件的端部形状可分为尖顶从动件、滚子从动件和平底从动件。
2、凸轮机构的运动规律常用的运动规律有等速运动规律、等加速等减速运动规律、余弦加速度运动规律和正弦加速度运动规律等。
不同的运动规律适用于不同的工作场合。
3、凸轮机构的设计设计凸轮机构时,需要根据工作要求确定凸轮的基圆半径、滚子半径、从动件的行程和运动规律等参数。
机械设计基础笔记知识点

机械设计基础笔记知识点一、机械设计概论1. 机械设计的定义和作用机械设计是指以人工制作的机械装置为研究对象,通过综合运用机械学、工程力学等知识,进行构思、设计和分析等工作,以满足特定的技术要求和经济要求。
2. 机械设计的基本原则和设计流程机械设计的基本原则包括适应性原则、合理性原则、先进性原则等,并按照设计流程依次进行项目论证、需求分析、方案设计、详细设计、制造和试验等阶段。
二、材料力学基础1. 材料的力学性能指标材料的力学性能指标主要包括强度、刚度、韧性、疲劳性能等。
其中强度是材料在受力时所能承受的最大应力,刚度是材料在受力时所表现出来的抗变形能力,韧性是材料在发生破坏前能吸收的能量,疲劳性能是材料在循环受力下出现破坏的抗性。
2. 应力和应变材料受到外力作用时,内部会产生相应的应力和应变。
应力是单位面积上的力的大小,应变是材料单位长度的变形量。
常见的应力形式包括拉应力、压应力、剪应力等。
三、机械零件设计1. 连接零件的设计连接零件是机械装置中起连接部件间传递力和传递运动的作用。
常见的连接方式有螺栓连接、销连接、键连接等。
在连接零件设计中,需要考虑连接强度、刚度、可拆卸性和工艺性等因素。
2. 轴的设计轴是机械装置上用来传递动力和转动运动的零件。
轴的设计需要考虑强度、刚度、平衡性和传递功率等因素。
轴的材料一般选用高强度的合金钢。
3. 螺纹的设计螺纹是机械装置中常用的连接方式之一。
螺纹的设计需要确定螺纹规格、螺纹传递力、螺纹疲劳寿命和螺纹的配合等参数。
四、机械传动设计1. 齿轮传动的设计齿轮传动是机械装置中常用的传动方式之一。
齿轮传动设计需要确定齿轮的模数、齿轮的参数、齿轮的传动比和齿轮的轴向力等。
2. 带传动的设计带传动是利用带传递动力和运动的方式。
带传动设计需要确定带的类型、传动比和带轮的尺寸等。
3. 链传动的设计链传动是一种静止的链条将动力传递给另一部分。
链传动设计需要确定链条的参数、链轮的尺寸等。
机械设计基础复习资料(综合整理)

机械设计基础复习资料一、基础知识0、零件(独立的机械制造单元)组成(无相对运动)构件(一个或多个零件、是刚体;独立的运动单元)组成(动连接)机构(构件组合体);两构件直接接触的可动连接称为运动副;运动副要素(点、线、面);平面运动副、空间运动副;转动副、移动副、高副(滚动副);点接触或线接触的运动副称为高副(两个自由度、一个约束)、面接触的运动副称为低副(一个自由度、两个约束,如转动副和移动副)0.1曲柄存在的必要条件:最短杆与最长杆长度之和小于其余两杆长度之和。
连架杆和机架中必有一杆是最短杆。
0.2在四杆机构中,不满足曲柄存在条件的为双摇杆机构,满足后,若以最短杆为机架,则为双曲柄机构;若以最短杆相对的杆为机架则为双摇杆机构;若以最短杆的两邻杆之一为机架,则为曲柄摇杆机构0.3 凸轮从动件作等速运动规律时,速度会突变,在速度突变处有刚性冲击,只能适用于低速凸轮机构;从动件作等加等减速运动规律时,有柔性冲击,适用于中、低速凸轮机构;从动件作简谐运动时,在始末位置加速度也会变化,也有柔性冲击,之适用于中速凸轮,只有当从动件做无停程的升降升连续往复运动时,才可以得到连续的加速度曲线(正弦加速度运动规律),无冲击,可适用于高速传动。
0.4凸轮基圆半径和凸轮机构压力角有关,当基圆半径减小时,压力角增大;反之,当基圆半径增大时,压力角减小。
设计时应适当增大基圆半径,以减小压力角,改善凸轮受力情况。
0.5.机械零件良好的结构工艺性表现为便于生产的性能便于装配的性能制造成本低1.按照工作条件,齿轮传动可分为开式传动两种。
1.1.在一般工作条件下,齿面硬度HB≤350的闭式齿轮传动,通常的主要失效形式为【齿面疲劳点蚀】1.2对于闭式软齿面来说,齿面点蚀,轮齿折断和胶合是主要失效形式,应先按齿面接触疲劳强度进行设计计算,确定齿轮的主要参数和尺寸,然后再按齿面弯曲疲劳强度进行校核。
1.3闭式齿轮传动中的轴承常用的润滑方式为飞溅润滑1.4. 直齿圆锥齿轮的标准模数规定在_大_端的分度圆上。
机械基础必考知识点总结

机械基础必考知识点总结一、力学基础1. 机械基础的力学基础是牛顿力学,重点包括牛顿三定律、力的合成与分解、力矩等内容。
2. 牛顿三定律:包括第一定律(惯性定律),第二定律(运动定律)和第三定律(作用与反作用定律)。
3. 力的合成与分解:力的合成包括平行力的力合成和共点力的合成,力的分解可分为平行力的分解和共点力的分解两种情况。
4. 力矩:力矩的概念,力矩的计算公式,平衡条件下的力矩。
5. 运动学基础:直线运动、曲线运动、角速度、角加速度等。
二、材料力学1. 材料力学是研究材料在外力作用下的变形与破坏规律的学科。
2. 主要内容包括:拉伸、压缩、剪切、弯曲等。
3. 长度变化:拉力导致的长度变化计算,弹性模量,杨氏模量。
4. 压缩变形:材料压缩应力应变关系,体积应变。
5. 剪切变形:剪切应力应变关系,剪切模量。
6. 弯曲变形:弯矩与曲率之间关系,梁的挠度计算。
三、机械制图1. 机械制图是机械工程中的基础课程,它包括正投影与倾斜投影、平行投影与中心投影、尺度比例、视图的选择与构图等内容。
2. 阅读:机械制图的阅读,包括正投影图与倾斜投影图的阅读方法,平行投影图与中心投影图的阅读方法。
3. 绘图:机械零件的一二三视图绘制,轴测图的绘制。
4. 投影:机械制图的正投影与倾斜投影,平行投影与中心投影。
四、机械设计基础1. 机械设计基础是机械工程专业的核心课程,包括零件的设计、联接件的设计、轴的设计、机构的设计等内容。
2. 零件的设计:机械零件设计的基本要求,设计的步骤与方法,尺寸和公差。
3. 联接件设计:联接件的类型和分类,常用联接件的设计原则,键连接、销连接、螺纹连接的设计计算。
4. 轴的设计:轴的分类及选择原则,轴的强度计算,轴的刚度计算。
5. 机构的设计:机构的分类、机构的设计步骤,机构的运动分析。
五、机械传动1. 机械传动是研究机械零部件之间的动力传递关系的学科,包括平面机构、空间机构、齿轮传动、带传动、链传动等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础常识
1、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水
或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)
2、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;
摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求
3、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应
力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;
即使是塑性材料,断裂时也无明显的塑性变形。
确定疲劳极限时,应考虑应力的大小、循环次数和循环特征.
4、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹
5、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角
6、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;
矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动
7、螺旋机构的类型及应用:①变回转运动为直线运动,传力螺旋(千斤顶、压
力机、台虎钳)、传导螺旋(车窗进给螺旋机构)、调整螺旋(测微计、分度机构、调整机构、道具进给量的微调机构)②变直线运动为回转运动
8、螺旋机构的特点:具有大的减速比;具有大的里的增益;反行程可以自锁;
传动平稳,噪声小,工作可靠;各种不同螺旋机构的机械效率差别很大(具有自锁能力的的螺旋副效率低于50%)
9、连杆机构广泛应用的原因:能实现多种运动形式的转换;连杆机构中各运动
副均为低副,压强小、磨损轻、便于润滑、寿命长;其接触表面是圆柱面或平面,制造比较简易,易于获得较高的制造精度
10、曲柄存在条件:①最短杆长度+最长杆长度≤其他两杆之和②最短杆为连架
杆或机架。
11、凸轮运动规律及冲击特性:①等速:刚性冲击、低速轻载②等加速等减速:
柔性冲击、中速轻载③余弦加速度:柔性冲击、中速中载④正弦加速度:无冲击、高速轻载
12、齿轮传动的优缺点:①优点:适用的圆周速度和功率范围广;传动比精确;
机械效率高;工作可靠;寿命长;可实现平行轴、相交轴交错轴之间的传动;
结构紧凑;②缺点:要求有较高的制造和安装精度,成本较高;不适宜于远距离的两轴之间的传动
13、渐开线的特性:①发生线在基圆上滚过的一段长度等于基圆上被滚过的弧长;
②渐开线上任一点的法线必与基圆相切,且N点位渐开线在K点的曲率中心,
线段NK为其曲率半径;③cosαk=ON/OK=rb/rk 渐开线上各点的压力角不等,向径rk越大,其压力角越大,基圆上压力角为零;④渐开线的形状取决于基圆大小,随着基圆半径增大,渐开线上对应点的曲率半径也增大,当基圆无限大时,渐开线成为直线,故渐开线齿条的齿廓为直线;⑤基圆以内无渐开线
14、齿轮啮合条件:必须保证处于啮合线上的各对齿轮都能正确的进入啮合状态,
m1=m2=m;α1=α2=α即模数和压力角都相等;斜齿轮还要求两轮螺旋角必须大小相等,旋向相反;锥齿轮还要求两轮的锥距相等;涡轮蜗杆要求蜗杆的导程角与涡轮的螺旋角大小相等,旋向相同
15、正变位齿轮优点:可以加工出齿数小于Zmin而不发生根切的齿轮,使齿轮
传动结构尺寸减小;选择适当变位量来满足实际中心距得的要求;提高小齿轮的抗弯能力,从而提高一对齿轮传动的总体强度
16、直齿轮传动平稳性差,冲击和噪声大;斜齿轮传动平稳,冲击和噪声小,适
合于高速传动
17、轮系的功用:获得大的传动比(减速器);实现变速、变向传动(汽车变速
箱);实现运动的合成与分解(差速器、汽车后桥);实现结构紧凑的大功率传动(发动机主减速器、行星减速器)
18、弹性滑动与打滑:打滑:由于超载所引起的带在带轮上的全面滑动,可以避
免;弹性滑动:由于带的弹性变形而引起的带在带轮上的滑动,不可避免
19、螺纹连接的基本类型:螺栓连接(普通螺栓连接、铰制孔用螺栓连接)、双
头螺柱连接、螺钉连接、紧螺钉连接
20、螺纹连接的防松:摩擦防松(弹簧垫圈、双螺母、椭圆口自锁螺母、横向切
口螺母)、机械防松(开口销与槽形螺母、止动垫圈、圆螺母止动垫圈、串连钢丝)、永久防松(冲点法、端焊法、黏结法)
21、提高螺栓连接强度的方法:避免产生附加弯曲应力;减少应力集中
22、键连接类型:平键连接(侧面)、半圆键连接(侧面)、楔键连接(上下面)、
花键连接(侧面)
23、平键的剖面尺寸确定:键的截面尺寸b×h(键宽×键高)以及键长L
24、联轴器与离合器区别:连这都是用来连接两轴(或轴与轴上的回转零件),
使它们一起旋转并传递扭矩的器件,用联轴器连接的两根轴,只有在停止运转后用拆卸的方法才能将他们分离;离合器则可在工作过程中根据工作需要不必停转随时将两轴接合或分离
25、联轴器分类:刚性联轴器(无补偿能力)和挠性联轴器(有补偿能力)
26、轴承摩擦状态:干摩擦状态、边界摩擦状态、液体摩擦状态、混合摩擦状态;
边界和混合摩擦统称为非液体摩擦
27、轴的分类:心轴(转动心轴、固定心轴;只承受弯矩不承受扭矩)、转轴(即
承受弯矩又承受扭矩)、传动轴(主要承受扭矩,不承受或承受很小弯矩)28、轴的计算注意:①轴上有键槽时,放大轴径:一个键槽3°--5°;两个键
槽7°--10°②式中弯曲应力为对称循环变应力,当扭转切应力为静应力时,取α=0.3;当扭转切应力为脉动循环变应力时,取α=0.6;若扭转切应力为对称循环变应力时,取α=1(α为折合系数)
29、轴结构设计一般原则:轴的受力合理,有利于满足轴的强度条件;轴和轴上
的零件要可靠的固定在准确的工作位置上;轴应便于加工;轴上的零件要便于拆装和调整;尽量减少应力集中等
30、滚动轴承类型选择影响因素:转速高低、受轴向力还是径向力、载荷大小、
安装尺寸的要求等。